首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The teres minor muscle of the adult chicken was studied ultrastructurally following tonic stretch-induced hypertrophy. The contralateral control muscle fibres showed compact myofibrils and proliferation of normal Z-bands. Myofibrils of the hypertrophied muscle however, showed Z-band alterations as Z-band expansions and Z-band streaming. Thus Z-band is a highly responsive structure to tonic stretch. Since a number of neuromuscular conditions display Z-band anomalies, the latter occurring in response to a variety of metabolic and physiologic stimuli, including tonic stretch as shown here, represents a non-specific phenomenon.  相似文献   

3.
In the present study, we examined the responses of apoptosis and apoptotic regulatory factors to muscle hypertrophy induced by stretch overload in quail slow-tonic muscles. The wings from one side of young and aged Japanese quails were loaded by attaching a tube weight corresponding to 12% of the bird's body weight for 7 or 21 days. Muscle from the contralateral side served as the intraanimal control. Relative to the intraanimal contralateral control side, the muscle wet weight increased by 96% in young birds, whereas the muscle weight gain in aged birds was not significant after 7 days of loading. After 21 days of loading, muscle weight significantly increased by 179% and 102% in young and aged birds, respectively. Heat shock protein (HSP)72 and HSP27 protein contents in the loaded sides were higher than on the control sides exclusively in young birds after 7 days of loading. Compared with the contralateral control muscle, the extent of apoptotic DNA fragmentation and the total cytosolic apoptosis-inducing factor protein content were reduced in all loaded muscles except for the 7-day-loaded muscles from the aged birds. Bax protein content was diminished in the loaded muscle relative to the control side from all groups, whereas Bcl-2 protein content was reduced in the young and aged muscles after 21 days of loading. The total cytosolic cytochrome c protein content was decreased and the X chromosome-linked inhibitor of apoptosis protein content was elevated in 7- and 21-day-loaded muscles relative to the intraanimal control muscle from young birds. Furthermore, after 7 days of loading the muscles of aged birds, H2O2 content and the total cytosolic protein content of second mitochondrial activator of caspases/direct inhibitor of apoptosis-binding protein with low isoelectric point were elevated compared with the intraanimal control side. These data suggest that stretch overload-induced muscle hypertrophy is associated with changes in apoptosis in slow-tonic skeletal muscle. Moreover, discrepant apoptotic responses to muscle overload in young and aged muscles may account in part for the age-related decline in the capability for muscle hypertrophy. aging; sarcopenia; Bcl-2; Bax; heat shock proteins; apoptosis-inducing factor  相似文献   

4.
Increased mechanical stress induced by stretch is an important growth stimulus in skeletal muscle. Heat shock proteins (HSPs) are an important family of endogenous, protective proteins. HSP90 and HSP70 families show elevated levels under beat stress. Mechanical stress, such as physical exercise, is known to induce not only muscular hypertrophy but also the elevation of HSPs expression in skeletal muscle. The purpose of this study was to determine whether heat stress facilitates the stretch-induced hypertrophy of skeletal muscle cells. Cultured rat myotubes (L6) were plated on collagenized Silastic membranes and incubated at 41 degrees C for 60 and 75 minutes (heat shock). Following the incubation, the cells were subjected two-second stretching and four-second releasing for 4 days at 37 degrees C. Protein concentrations in the homogenates and pellets of the cultured skeletal muscle cells increased under heat shock and/or mechanical stretching. The protein concentration of cells following mechanical stretching following heat shock was significantly higher than that following either heat shock or mechanical stretching alone. HSP72 in supernatants and HSP90 in pellets increased under heat shock and/or mechanical stretching. HSP90 in supernatants decreased following heat shock and/or mechanical stretching. Changes in HSPs and cellular protein concentrations in stressed cells suggest that the expression of HSPs may be closely related with muscular hypertrophy.  相似文献   

5.
6.
7.
Calcineurin is required for skeletal muscle hypertrophy.   总被引:23,自引:0,他引:23  
  相似文献   

8.
Muscle cells (fibres) are post-mitotic and thus undergo changes in phenotype by modifying their existing structure. Hypertrophy is a hallmark change that occurs in response to increased loading and can be achieved in humans through repeated bouts of resistance exercise (i.e., training). In resistance exercise, contractions are initiated by neural drive leading to immediate perturbations such as calcium influx, cross-bridge cycling and tension/stress on the cytoskeleton, sarcolemma and extracellular matrix, as well as more delayed cellular events such as the production/release of potential local growth factors (e.g., IGF-1). Resistance exercise can also elevate the systemic concentration of certain hormones (growth hormone, testosterone, IGF-1) that are hypothesized to drive hypertrophy. However, while these hormones are clearly anabolic during childhood and puberty, or when given at supraphysiological exogenous doses, the transient post-exercise elevations in hormone concentration are of little consequence to the either the acute protein synthetic response or to a hypertrophic phenotype after resistance training. Thus, the acute post-exercise increases in systemic hormones are in no way a proxy marker for anabolism since they do not underpin the capacity of the muscle to hypertrophy in any measurable way. In contrast, the acute activation of intrinsically located signalling proteins such as p70S6K and the acute elevation of muscle protein synthesis are more reflective of the potential to increase in muscle mass with resistance training. Ultimately, local mechanisms are activated by the stress imposed by muscle loading and prime the muscle for protein accretion. Membrane-derived molecules and tension-sensing pathways are two intrinsic mechanisms implicated in upregulating the synthesis and incorporation of muscle proteins into the myofibre in response to mechanical stress derived from loaded contractions.  相似文献   

9.
ANG II mediates the hypertrophic response of overloaded cardiac muscle, likely via the ANG II type 1 (AT(1)) receptor. To examine the potential role of ANG II in overload-induced skeletal muscle hypertrophy, plantaris and/or soleus muscle overload was produced in female Sprague-Dawley rats (225-250 g) by the bilateral surgical ablation of either the synergistic gastrocnemius muscle (experiment 1) or both the gastrocnemius and plantaris muscles (experiment 2). In experiment 1 (n = 10/group), inhibiting endogenous ANG II production by oral administration of an angiotensin-converting enzyme (ACE) inhibitor during a 28-day overloading protocol attenuated plantaris and soleus muscle hypertrophy by 57 and 96%, respectively (as measured by total muscle protein content). ACE inhibition had no effect on nonoverloaded (sham-operated) muscles. With the use of new animals (experiment 2; n = 8/group), locally perfusing overloaded soleus muscles with exogenous ANG II (via osmotic pump) rescued the lost hypertrophic response in ACE-inhibited animals by 71%. Furthermore, orally administering an AT(1) receptor antagonist instead of an ACE inhibitor produced a 48% attenuation of overload-induced hypertrophy that could not be rescued by ANG II perfusion. Thus ANG II may be necessary for optimal overload-induced skeletal muscle hypertrophy, acting at least in part via an AT(1) receptor-dependent pathway.  相似文献   

10.
In the last decade, molecular biology has contributed to define some of the cellular events that trigger skeletal muscle hypertrophy. Recent evidence shows that insulin like growth factor 1/phosphatidyl inositol 3-kinase/protein kinase B (IGF-1/PI3K/Akt) signaling is not the main pathway towards load-induced skeletal muscle hypertrophy. During load-induced skeletal muscle hypertrophy process, activation of mTORC1 does not require classical growth factor signaling. One potential mechanism that would activate mTORC1 is increased synthesis of phosphatidic acid (PA). Despite the huge progress in this field, it is still early to affirm which molecular event induces hypertrophy in response to mechanical overload. Until now, it seems that mTORC1 is the key regulator of load-induced skeletal muscle hypertrophy. On the other hand, how mTORC1 is activated by PA is unclear, and therefore these mechanisms have to be determined in the following years. The understanding of these molecular events may result in promising therapies for the treatment of muscle-wasting diseases. For now, the best approach is a good regime of resistance exercise training. The objective of this point-of-view paper is to highlight mechanotransduction events, with focus on the mechanisms of mTORC1 and PA activation, and the role of IGF-1 on hypertrophy process.  相似文献   

11.
In the last decade, molecular biology has contributed to define some of the cellular events that trigger skeletal muscle hypertrophy. Recent evidence shows that insulin like growth factor 1/phosphatidyl inositol 3-kinase/protein kinase B (IGF-1/PI3K/Akt) signaling is not the main pathway towards load-induced skeletal muscle hypertrophy. During load-induced skeletal muscle hypertrophy process, activation of mTORC1 does not require classical growth factor signaling. One potential mechanism that would activate mTORC1 is increased synthesis of phosphatidic acid (PA). Despite the huge progress in this field, it is still early to affirm which molecular event induces hypertrophy in response to mechanical overload. Until now, it seems that mTORC1 is the key regulator of load-induced skeletal muscle hypertrophy. On the other hand, how mTORC1 is activated by PA is unclear, and therefore these mechanisms have to be determined in the following years. The understanding of these molecular events may result in promising therapies for the treatment of muscle-wasting diseases. For now, the best approach is a good regime of resistance exercise training. The objective of this point-of-view paper is to highlight mechanotransduction events, with focus on the mechanisms of mTORC1 and PA activation, and the role of IGF-1 on hypertrophy process.  相似文献   

12.
Skeletal muscle mass declines with age, as does the potential for overload-induced fast-twitch skeletal muscle hypertrophy. Because 5'-AMP-activated protein kinase (AMPK) activity is thought to inhibit skeletal muscle protein synthesis and may therefore modulate muscle mass and hypertrophy, the purpose of this investigation was to examine AMPK phosphorylation status (a marker of AMPK activity) and its potential association with the attenuated overload-induced hypertrophy observed in aged skeletal muscle. One-week overload of fast-twitch plantaris and slow-twitch soleus muscles was achieved in young adult (8 mo; n = 7) and old (30 mo; n = 7) Fischer344 x Brown Norway male rats via unilateral gastrocnemius ablation. Significant (P < or = 0.05) age-related atrophy (as measured by total protein content) was noted in plantaris and soleus control (sham-operated) muscles. In fast-twitch plantaris muscles, percent hypertrophy with overload was significantly attenuated with age, whereas AMPK phosphorylation status as determined by Western blotting [phospho-AMPK (Thr172)/total AMPK] was significantly elevated with age (regardless of loading status). There was also a main effect of loading on AMPK phosphorylation status in plantaris muscles (overload > control). Moreover, a strong and significant negative correlation (r = -0.82) was observed between AMPK phosphorylation status and percent hypertrophy in the overloaded plantaris muscles of all animals. In contrast to the plantaris, overload-induced hypertrophy of the slow-twitch soleus muscle was similar between ages, and AMPK phosphorylation in this muscle was also unaffected by age or overload. These data support the possibility that an age-related elevation in AMPK phosphorylation may partly contribute to the attenuated hypertrophic response observed with age in overloaded fast-twitch plantaris muscle.  相似文献   

13.
  • 1.1. The effects of different amounts of passive stretch per day and number of days of stretch on muscle hypertrophy in the chicken patagialis (PAT) muscle were determined.
  • 2.2. Stretch for 24 hr per day (h/d) resulted in a more rapid hypertrophy both on a wet and dry tissue basis (P < 0.001) than stretch for 4 h/d.
  • 3.3. Stretch increased PAT weight 43% and 25% in 24 h/d and 4 h/d treatments, respectively, after 10 days of stretch, but by day 25 of stretch there was no difference between treatments.
  • 4.4. In a second experiment, the PAT muscle was hypertrophied and then the effects of intermittent stretch (4 h/d) on regression of hypertrophy (muscle atrophy) were investigated.
  • 5.5. Intermittent stretch (4 h/d) for 5 and 10 d significantly (P < 0.001) inhibited regression of hypertrophied muscle.
  • 6.6. The results of the present study indicate that stretch-induced hypertrophy can be modulated by varying the amount of stretch applied per day.
  • 7.7. Intermittent stretch can be used to inhibit the regression which occurs when a continuous stretch stimulus is removed.
  • 8.8. Intermittent stretch is a useful model for investigating mechanisms of muscle hypertrophy and inhibition of muscle atrophy.
  相似文献   

14.
When skeletal muscle is stretched or injured, myogenic satellite cells are activated to enter the cell cycle. This process depends on nitric oxide (NO) production, release of hepatocyte growth factor (HGF) from the extracellular matrix, and presentation of HGF to the c-met receptor. Matrix metalloproteinases (MMPs), a large family of zinc-dependent endopeptidases, mediate HGF release from the matrix and this step in the pathway is downstream from NO synthesis [Yamada, M., Tatsumi, R., Kikuiri, T., Okamoto, S., Nonoshita, S., Mizunoya, W., et al. (2006). Matrix metalloproteinases are involved in mechanical stretch-induced activation of skeletal muscle satellite cells. Muscle Nerve, 34, 313-319]. Experiments reported herein provide evidence that MMP2 may be involved in the NO-dependent release of HGF in vitro. Whole lysate analyses of satellite cells demonstrated the presence of MMP2 mRNA and the protein. When rat satellite cells were treated with 30 microM sodium nitroprusside a NO donor or mechanical cyclic stretch for 2h period, inactive proMMP2 (72 kDa) was converted into 52-kDa form and this processing was abolished by adding a NO synthase inhibitor l-NAME (10 microM) to the stretch culture. The 52-kDa species was also generated by treatment of the recombinant MMP2 protein with 1 microM NOC-7 that can spontaneously release NO under physiological conditions without any cofactor, and its activating activity was demonstrated by applying the NOC-7-treated MMP2 to satellite cell culture. HGF release was detected in NOC-7-MMP2-conditioned media by western blotting; very little HGF was found in media that were generated from cultures receiving NOC-7-treated MMP2 (10 ng/ml) plus 250 ng/ml tissue inhibitor-1 of metalloproteinases. Therefore, results from these experiments provide evidence that NO-activated MMP2 may cause release of HGF from the extracellular matrix of satellite cells and contribute to satellite cell activation.  相似文献   

15.
The main purpose of this study was to evaluate the effects of shortening on the stretch-induced force enhancement in single muscle fibers, and indirectly test the hypothesis that force enhancement may be associated with the engagement of a passive element upon activation. Fibers were placed on the descending limb of the force-length relationship, and stretch and shortening contractions were performed. Fibers underwent two sets of shortening-stretch cycles. First, fibers were shortened by a fixed amplitude and speed (10% fiber length, and at 40% fiber length/s), and then were stretched (10% fiber length, and at 40% fiber length/s) immediately following shortening, or 500 or 1000 ms following the shortening. Second, fibers were shortened by varying amounts (5%, 10% and 15% fiber length) and at a constant speed (40% fiber length/s) immediately preceding a given fiber stretch (10% fiber length, and at 40% fiber length/s). When stretching was immediately preceded by shortening, force enhancement was decreased proportionally with the shortening magnitude. When intervals were introduced between shortening and stretch, the effects of shortening on the stretch-induced force enhancement became less prominent. We concluded that, in contrast to published suggestions, shortening affects the stretch-induced force enhancement in an amplitude-dependent manner in single fibers, as it does in whole muscles, but this effect is diminished by increasing the time period between the shortening and stretch phases.  相似文献   

16.
17.
18.
Skeletal muscles adapt to increasing workload by augmenting their fiber size, through mechanisms that are poorly understood. This study identifies the cytokine interleukin-6 (IL-6) as an essential regulator of satellite cell (muscle stem cell)-mediated hypertrophic muscle growth. IL-6 is locally and transiently produced by growing myofibers and associated satellite cells, and genetic loss of IL-6 blunted muscle hypertrophy in vivo. IL-6 deficiency abrogated satellite cell proliferation and myonuclear accretion in the preexisting myofiber by impairing STAT3 activation and expression of its target gene cyclin D1. The growth defect was indeed muscle cell intrinsic, since IL-6 loss also affected satellite cell behavior in vitro, in a STAT3-dependent manner. Myotube-produced IL-6 further stimulated cell proliferation in a paracrine fashion. These findings unveil a role for IL-6 in hypertrophic muscle growth and provide mechanistic evidence for the contribution of satellite cells to this process.  相似文献   

19.
Sutrave P  Leferovich JM  Kelly AM  Hughes SH 《Gene》2000,241(1):107-116
The chicken c-ski gene expresses at least three alternatively spliced messages. Transgenic mice expressing proteins from cDNA corresponding to two of these messages (FB27 and FB29) under the control of a murine sarcoma virus (MSV) long terminal repeat (LTR) express the transgene in skeletal muscle and develop a muscular phenotype. Both a biologically active form of c-ski and the MSV LTR are required for the development of the muscular phenotype. The normal c-ski gene linked to two other tissue-specific promoters failed to induce muscle growth in transgenic mice, as did an inactive mutant of c-ski expressed under the control of the MSV LTR.  相似文献   

20.
Heat stress inhibits skeletal muscle hypertrophy   总被引:1,自引:1,他引:0       下载免费PDF全文
Heat shock proteins (Hsps) are molecular chaperones that aid in protein synthesis and trafficking and have been shown to protect cells/tissues from various protein damaging stressors. To determine the extent to which a single heat stress and the concurrent accumulation of Hsps influences the early events of skeletal muscle hypertrophy, Sprague-Dawley rats were heat stressed (42 degrees C, 15 minutes) 24 hours prior to overloading 1 plantaris muscle by surgical removal of the gastrocnemius muscle. The contralateral plantaris muscles served as controls. Heat-stressed and/or overloaded plantaris muscles were assessed for muscle mass, total muscle protein, muscle protein concentration, Type I myosin heavy chain (Type I MHC) content, as well as Hsp72 and Hsp25 content over the course of 7 days following removal of the gastrocnemius muscle. As expected, in non-heat-stressed animals, muscle mass, total muscle protein and MHC I content were significantly increased (P < 0.05) following overload. In addition, Hsp25 and Hsp72 increased significantly after 2 and 3 days of overload, respectively. A prior heat stress-elevated Hsp25 content to levels similar to those measured following overload alone, but heat stress-induced Hsp72 content was increased significantly greater than was elicited by overload alone. Moreover, overloaded muscles from animals that experienced a prior heat stress showed a lower muscle mass increase at 5 and 7 days; a reduced total muscle protein elevation at 3, 5, and 7 days; reduced protein concentration; and a diminished Type I MHC content accumulation at 3, 5, and 7 days relative to nonheat-stressed animals. These data suggest that a prior heat stress and/or the consequent accumulation of Hsps may inhibit increases in muscle mass, total muscle protein content, and Type I MHC in muscles undergoing hypertrophy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号