首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Comparison of four nuclear isolation buffers for plant DNA flow cytometry   总被引:7,自引:1,他引:6  
Background and Aims DNA flow cytometry requires preparationof suspensions of intact nuclei, which are stained using a DNA-specificfluorochrome prior to analysis. Various buffer formulas weredeveloped to preserve nuclear integrity, protect DNA from degradationand facilitate its stoichiometric staining. Although nuclearisolation buffers differ considerably in chemical composition,no systematic comparison of their performance has been madeuntil now. This knowledge is required to select the appropriatebuffer for a given species and tissue. • Methods Four common lysis buffers (Galbraith's, LB01,Otto's and Tris.MgCl2) were used to prepare samples from leaftissues of seven plant species (Sedum burrito, Oxalis pes-caprae,Lycopersicon esculentum, Celtis australis, Pisum sativum, Festucarothmaleri and Vicia faba). The species were selected to covera wide range of genome sizes (1·30–26·90pg per 2C DNA) and a variety of leaf tissue types. The followingparameters were assessed: forward (FS) and side (SS) light scatters,fluorescence of propidium iodide-stained nuclei, coefficientof variation of DNA peaks, presence of debris background andthe number of nuclei released from sample tissue. The experimentswere performed independently by two operators and repeated onthree different days. • Key Results Clear differences among buffers were observed.With the exception of O. pes-caprae, any buffer provided acceptableresults for all species. LB01 and Otto's were generally thebest buffers, with Otto's buffer providing better results inspecies with low DNA content. Galbraith's buffer led to satisfactoryresults and Tris.MgCl2 was generally the worst, although ityielded the best histograms in C. australis. A combined analysisof FS and SS provided a ‘fingerprint’ for each buffer.The variation between days was more significant than the variationbetween operators. • Conclusions Each lysis buffer tested responded to a specificproblem differently and none of the buffers worked best withall species. These results expand our knowledge on nuclear isolationbuffers and will facilitate selection of the most appropriatebuffer depending on species, tissue type and the presence ofcytosolic compounds interfering with DNA staining.  相似文献   

2.
Electrophoresis through agarose and polyacrylamide-type gels is the standard method to separate, identify, and purify nucleic acids. Properties of electrophoresis buffers such as pH, ionic strength, and composition affect performance. The buffers in use contain a weak acid or weak base buffered by a compound with a dissimilar pK. Herein, three pK-matched buffers were developed, each containing two effective buffering components: one weak base and one weak acid which have similar pKa at 25 degrees C (within 0.3 pK units): (i) Ethanolamine/Capso, pH 9.6; (ii) triethanolamine/Tricine, pH 7.9; and (iii) Bis-Tris/Aces, pH 6.7. On agarose gels, the buffers in various concentrations were tested for separation of double-stranded DNA fragments with various DNA markers, agarose gel concentrations, and field strengths. Mobility was inversely proportional to the logarithm of molecular weight. The buffers provided high resolution without smearing at more dilute concentration than is possible with standard TAE (Tris/acetate, pH 8.0) or TBE (Tris/borate, pH 8.3) buffers. The buffers were also tested in 7 M urea denaturing LongRanger sequencing gels and in nondenaturing polyacrylamide SSCP gels. The pK-matched buffers provide good separation and high resolution, at a broad range of potential pH values. In comparison to TAE and TBE, pK-matched buffers provide higher voltage and current stability, lower working concentration, more concentrated stock solutions (up to 200x), and lower current per unit voltage, resulting in less heat generation.  相似文献   

3.
On-line cell lysis of bacteria and its spores using a microfluidic biochip   总被引:1,自引:0,他引:1  
Optimal detection of pathogens by molecular methods in water samples depends on the ability to extract DNA rapidly and efficiently. In this study, an innovative method was developed using a microfluidic biochip, produced by microelectrochemical system technology, and capable of performing online cell lysis and DNA extraction during a continuous flow process. On-chip cell lysis based on chemical/physical methods was performed by employing a sufficient blend of water with the lysing buffer. The efficiency of lysis with microfluidic biochip was compared with thermal lysis in Eppendorf tubes and with two commercial DNA extraction kits: Power Water DNA isolation kit and ForensicGEM Saliva isolation kit in parallel tests. Two lysing buffers containing 1% Triton X-100 or 5% Chelex were assessed for their lysis effectiveness on a microfluidic biochip. SYBR Green real-time PCR analysis revealed that cell lysis on a microfluidic biochip using 5% Chelex buffer provided better or comparable recovery of DNA than commercial isolation kits. The system yielded better results for Gram-positive bacteria than for Gram-negative bacteria and spores of Gram-positive bacteria, within the limits of detection at 103 CFU/ml. During the continuous flow process in the system, rapid cells lysis with PCR-amplifiable genomic DNA were achieved within 20 minutes.  相似文献   

4.
Changes in plasma volume in vivo cause rapid changes in extracellular pH by altering the plasma bicarbonate concentration at a constant Pco(2) (Garella S, Chang BS, and Kahn SI. Kidney Int 8: 279, 1975). Few studies have examined the possibility that changes in cell volume produce comparable changes in intracellular pH (pH(i)). In the present study, alveolar macrophages were exposed to hyperosmotic medium in the absence or presence of the open-system buffers CO(2)-HCO(3)(-), propionic acid-propionate, or NH(3)-NH(4)(+). In the absence of open-system buffers, exposure to twice-normal osmolarity (2T) produced a slow cellular alkalinization [change in pH(i) (DeltapH(i)) approximately 0.38; exponential time constant (tau) approximately 120 s]. In the presence of 5% CO(2), 2T caused a biphasic pH(i) response: a rapid increase (DeltapH(i) approximately 0.10, tau approximately 15 s) followed by a slower pH(i) increase. Identical rapid pH(i) increases were produced by 2T in the presence of propionic acid (20 mM). Conversely, 2T caused a rapid pH(i) decrease (DeltapH(i) approximately -0.21, tau approximately 10 s) in the presence of NH(3) (20 mM). Thus osmotic cell shrinkage caused rapid pH(i) changes of opposite direction in the presence of a weak acid buffer (contraction alkalosis with CO(2) or propionic acid) vs. a weak base buffer (contraction acidosis with NH(3)). Graded DeltapH(i) were produced by varying extracellular osmolarity in the presence of open-system buffers; osmolarity increases of as little as 5-10% produced significant DeltapH(i). The rapid pH(i) responses to 2T were insensitive to inhibitors of membrane H(+) transport (ethylisopropylamiloride and bafilomycin A(1)). The results are consistent with shrinkage-induced disequilibria in the total cellular buffer system (i.e., intrinsic buffers plus added weak acid-base buffer).  相似文献   

5.
Aims:  The ability to transform Vibrio spp. is limited by the extracellular nuclease that their cells secrete. The reported transformation efficiency of this organism is 102–105 transformants per microgram DNA. We tried different buffers and conditions, aiming to elevate its transformation efficiency.
Methods and Results:  MgCl2 and sucrose are often included in the washing and/or electroporation buffers to stabilize the cell membrane. However, Mg2+ is required for production and activity of the extracellular nuclease. A simple electroporation buffer lacking Mg2+ was found to increase transformation efficiency dramatically, to levels 50-fold more than the buffers containing Mg2+. To maintain the stability of the cell membranes, Mg2+ was replaced with high concentrations of sucrose, from 272 to 408 mmol l−1. With the new buffers, the transformation efficiency of Vibrio parahaemolyticus was increased to 2·2 × 106 transformants per microgram DNA.
Conclusions:  Mg2+ in the buffer adversely affected transformation of V. parahaemolyticus by electroporation. The cell membranes of vibrio can be stabilized by high concentration of sucrose when Mg2+ is absent.
Significance and Impact of the Study:  A greater transformation efficiency can facilitate the genetic analysis of an organism and its pathogenicity. Buffers lacking Mg2+ can be used for other nuclease-producing organisms.  相似文献   

6.
We have developed a protocol to quantify polymer DNA cleavage which replaces the traditional radiolabeling and scintillation counting with fluorescent staining and digital imaging. This procedure offers high sensitivity, speed, and convenience, while avoiding waste and error associated with traditional 32P radiolabeling. This protocol was used to measure cleavage of pBR322 plasmid DNA by EcoRV, a type II restriction enzyme. EcoRV was found to exhibit an order of magnitude difference in binding in two apparently similar buffers used in previous investigations. To determine the origin of this effect, we measured reaction kinetics in buffers of different chemical nature and concentration: Tris, bis-Tris propane, Tes, Hepes, and cacodylate. We found that buffer concentration and identity had significant effects on EcoRV reaction velocity through large changes in specific binding and nonspecific binding (reflected in the Michaelis constant Km and the dissociation constant for nonspecific binding Kns). There were only small changes in Vmax. The source of the buffer effect is the protonated amines common to many pH buffers. These buffer cations likely act as counterions screening DNA phosphates, where both the protonated buffer structure and concentration affect enzyme binding strength. It appears that by choosing anionic buffers or zwitterionic buffers with a buried positive charge, buffer influence on the protein binding to DNA can be largely eliminated.  相似文献   

7.
Recent experimental studies (Pusch and Neher, 1988) and theoretical studies (Oliva et al., 1988) have found that the pipette tip is a significant barrier to diffusion in the whole cell patch clamp configuration. In this paper, we extend the theoretical analysis of fluxes between the pipette and cell to include transmembrane fluxes. The general conclusions are: (a) within the pipette, ion fluxes are driven primarily by diffusion rather than voltage gradients. (b) At steady state there is a concentration difference between the bulk pipette and intracellular solution that is described by delta c = jRp/Dp, where delta c = 1 mM for a flux, j = 1 fmol/s, through a pipette of resistance, Rp = 1 M omega, filled with a solution of resistivity, p = 100 omega --cm, given a solute diffusion coefficient, D = 10(-5) cm2/s. (c) The time to steady state is always accelerated by membrane transport, regardless of the direction of transport. We apply our analysis to the measurement of transport by the Na/K pump and Na/Ca exchanger in cells from the ventricles of mammalian heart. We find that the binding curve for intracellular Na+ to the Na/K pump will appear significantly less steep and more linear if one does not correct for the concentration difference between intracellular and pipette Na+. Similar shifts in the binding curve for extracellular Na+ to the Na/Ca exchanger can occur due to depletion of intracellular Ca(+)+ when the exchanger is stimulated. Lastly, in Appendix we analyze the effects of mobile and fixed intracellular buffers on the movement of Ca(+)+ between the pipette and cell. Fixed buffers greatly slow the time for equilibration of pipette and intracellular Ca(+)+. Mobile buffers act like a shuttle system, as they carry Ca(+)+ from pipette to cell then diffuse back when they are empty. Vigorous transport by the Na/Ca exchanger depletes mobile buffered calcium, thus stimulating diffusion from the pipette to match the rate of Ca(+)+ transport. Moreover, we find that binding of Ca(+)+ to the exchanger can be affected by the mobile buffer.  相似文献   

8.
9.
Plasmid DNA was introduced by electroporation into Bacillus, Enterococcus, Lactobacillus, Lactococcus, Leuconostoc, Listeria, Pediococcus, Propionibacterium and Staphylococcus as an alternative to competent-cell or protoplast transformation. Plasmid-containing transformants were recovered in these recipients at frequencies ranging from 10(1) to 10(5) transformants micrograms-1 of pGK12. Several parameters of the protocol, including DNA concentration, voltage, plating regimen and electroporation buffers were evaluated to determine conditions that improved transformation frequencies for Lactobacillus acidophilus. Using optimized conditions, the following plasmids were introduced into L. acidophilus: pAMB1, pC194, pGB354, pGKV1, pSA3, pTRK13, pTV1 and pVA797. The ability to transfer plasmid DNA via eletroporation will greatly facilitate the application of recombinant DNA methodology and transposon technology to Gram-positive bacteria for cloning and analysis of significant genes.  相似文献   

10.
For large-scale separations of proteins, the use of simple non-amphoteric buffers in free solution and in multicompartment electrolyzers seems promising for industrial applications. The stabilization of a pH profile with this type of buffer requires the strict observation of two conditions: choice of an adequate buffer; stationary profiles of concentrations. During electrolysis in free solution, the ions of the buffer are displaced across the compartments by migration and by diffusion. To keep a stationary composition, the inflow and outflow of all individual ionic species through each compartment must be identical. At high current, diffusion may be neglected against migration and the ionic flows will be identical if the transport number of each ion is constant at each location within the cell. In these conditions, stationary compositions will be independent of the electric current. This condition of constant transport numbers implies the use of profiles of buffer concentrations different from those published up to now. The new equations for these profiles of concentrations are given in the present paper. The constant migration of the ions must be compensated in the end compartments of the isoelectric focusing cell to provide a stable steady state. Two methods are proposed in the literature: the buffer renewal method and the external recycling method (rheoelectrolysis). Here modified buffer renewal method is proposed. Using stationary mass balances, analytical equations are given to calculate the flows and the composition of the solutions to be recycled or added. Using these equations and the profiles of concentrations to keep constant transport numbers, it is demonstrated that only a renewal of the buffers in the end compartments may lead to stable pH profiles and thus to valid conditions of separation.  相似文献   

11.
We report on the study of immobilization DNA probes onto quartz crystal oscillators by self-assembly technique to form variety types of mono- and multi-layered sensing films towards the realization of DNA diagnostic devices. A 18-mer DNA probe complementary to the site of genetic beta-thalassaemia mutations was immobilized on the electrodes of QCM by covalent bonding or electrostatic adsorption on polyelectrolyte films to form mono- or multi-layered sensing films by self-assembled process. Hybridization was induced by exposure of the QCMs immobilized with DNA probe to a test solution containing the target nucleic acid sequences. The kinetics of DNA probe immobilization and hybridization with the fabricated DNA sensors were studied via in-situ frequency changes. The characteristics of QCM sensors containing mono- or multi-layered DNA probe constructed by direct chemical bonding, avidin-biotin interaction or electrostatic adsorption on polyelectrolyte films were compared. Results indicated that the DNA sensing films fabricated by immobilization of biotinylated DNA probe to avidin provide fast sensor response and high hybridization efficiencies. The effects of ionic strength of the buffer solution and the concentration of target nucleic acid used in hybridization were also studied. The fabricated DNA biosensor was used to detect a set of real samples. We conclude that the microgravimetric DNA sensor with its direct detection of amplified products provide a rapid, low cost and convenient diagnostic method for genetic disease.  相似文献   

12.
Although single-channel Ca2+ microdomains are capable of gating neurotransmitter release in some instances, it is likely that in many cases the microdomains from several open channels overlap to activate vesicle fusion. We describe a mathematical model in which transmitter release is gated by single or overlapping Ca2+ microdomains produced by the opening of nearby Ca2+ channels. This model accounts for the presence of a mobile Ca2+ buffer, provided either that the buffer is unsaturable or that it is saturated near an open channel with Ca2+ binding kinetics that are rapid relative to Ca2+ diffusion. We show that the release time course is unaffected by the location of the channels (at least for distances up to 50 nm), but paired-pulse facilitation is greater when the channels are farther from the release sites. We then develop formulas relating the fractional release following selective or random channel blockage to the cooperative relationship between release and the presynaptic Ca2+ current. These formulas are used with the transmitter release model to study the dependence of this form of cooperativity, which we call Ca2+ current cooperativity, on mobile buffers and on the local geometry of Ca2+ channels. We find that Ca2+ current cooperativity increases with the number of channels per release site, but is considerably less than the number of channels, the theoretical upper bound. In the presence of a saturating mobile buffer the Ca2+ current cooperativity is greater, and it increases more rapidly with the number of channels. Finally, Ca2+ current cooperativity is an increasing function of channel distance, particularly in the presence of saturating mobile buffer.  相似文献   

13.
The pacific white shrimp (Litopenaeus vannamei) is one of the most economically important marine aquaculture species in the world. To facilitate gene cloning and characterization, genome analysis, physical mapping, and molecular selection breeding of marine shrimp, we have developed the techniques to isolate high-quality megabase-sized DNA from hemocyte nuclear DNA of female shrimp and constructed a bacterial artificial chromosome (BAC) genomic library for the species. The library was constructed in the Hind III site of the vector pECBAC1, consisting of 101,760 clones arrayed in 265 384-well microtiter plates, with an average insert size of 101 kb, and covering the genome approximately fivefold. To characterize the library, 92,160 clones were spotted onto high-density nylon filters for hybridization screening. A set of 18 pairs of overgo probes designed from eight cDNA sequences of L. vannamei genes were used in hybridization screening, and 35 positive clones were identified. These results suggest that the shrimp BAC libraries will provide a useful resource for screening of genomic regions of interest candidate genes, gene families, or large-sized synthetic DNA region and promote future works on comparative genomics, physical mapping, and large-scale genome sequencing in the species.  相似文献   

14.
A simple and rapid strategy for distinguishing between positively hybridizing colonies and false positive-hybridization signals is described. The isolation of a specific DNA sequence depends on the ability to distinguish between a clone that contains the correct sequence and a false hybridization-positive or background signal. This procedure utilizes the same oligonucleotide mixture both as a screening probe and as a sequencing primer. The mixture of oligonucleotides is used as a primer to obtain sequence information directly from double-stranded DNA. Conditions for sequencing with oligonucleotides having up to 64-fold degeneracy are described. Since the sequence information obtained is directly adjacent to the site of oligonucleotide:DNA hybridization, it is necessary to know only a minimal length of DNA or peptide sequence to both design oligonucleotide probes and confirm the authenticity of the hybridization positives. The advantages of the degenerate oligonucleotide sequencing method include the rapid, reliable identification of authentic versus false hybridization positives made directly without subcloning into single-stranded M13 phage, without sequencing large regions of DNA, or without synthesizing sequence-specific primers.  相似文献   

15.
Background and Aims: After the initial boom in the application of flow cytometryin plant sciences in the late 1980s and early 1990s, which wasaccompanied by development of many nuclear isolation buffers,only a few efforts were made to develop new buffer formulas.In this work, recent data on the performance of nuclear isolationbuffers are utilized in order to develop new buffers, generalpurpose buffer (GPB) and woody plant buffer (WPB), for plantDNA flow cytometry. Methods: GPB and WPB were used to prepare samples for flow cytometricanalysis of nuclear DNA content in a set of 37 plant speciesthat included herbaceous and woody taxa with leaf tissues differingin structure and chemical composition. The following parametersof isolated nuclei were assessed: forward and side light scatter,propidium iodide fluorescence, coefficient of variation of DNApeaks, quantity of debris background, and the number of particlesreleased from sample tissue. The nuclear genome size of 30 selectedspecies was also estimated using the buffer that performed betterfor a given species. Key Results: In unproblematic species, the use of both buffers resulted inhigh quality samples. The analysis of samples obtained withGPB usually resulted in histograms of DNA content with higheror similar resolution than those prepared with the WPB. In morerecalcitrant tissues, such as those from woody plants, WPB performedbetter and GPB failed to provide acceptable results in somecases. Improved resolution of DNA content histograms in comparisonwith previously published buffers was achieved in most of thespecies analysed. Conclusions: WPB is a reliable buffer which is also suitable for the analysisof problematic tissues/species. Although GPB failed with someplant species, it provided high-quality DNA histograms in speciesfrom which nuclear suspensions are easy to prepare. The resultsindicate that even with a broad range of species, either GPBor WPB is suitable for preparation of high-quality suspensionsof intact nuclei suitable for DNA flow cytometry.  相似文献   

16.
Recombinant proteins typically include one or more affinity tags to facilitate purification and/or detection. Expression constructs with affinity tags often include an engineered protease site for tag removal. Like other enzymes, the activities of proteases can be affected by buffer conditions. The buffers used for integral membrane proteins contain detergents, which are required to maintain protein solubility. We examined the detergent sensitivity of six commonly-used proteases (enterokinase, factor Xa, human rhinovirus 3C protease, SUMOstar, tobacco etch virus protease, and thrombin) by use of a panel of 94 individual detergents. Thrombin activity was insensitive to the entire panel of detergents, thus suggesting it as the optimal choice for use with membrane proteins. Enterokinase and factor Xa were only affected by a small number of detergents, making them good choices as well.  相似文献   

17.
The interaction of DNA with various neutral pH, amine-based buffers has been analyzed by free solution capillary electrophoresis, using a mixture of a plasmid-sized DNA molecule and a small DNA oligonucleotide as the reporter system. The two DNAs migrate as separate, nearly Gaussian-shaped peaks in 20-80 mM TAE (TAE, Tris-acetate-EDTA; Tris, tris[hydroxymethyl]aminomethane) buffer. The separation between the peaks gradually increases with increasing TAE buffer concentration because of differences in solvent friction between large and small DNA molecules. The two DNAs form complexes with the borate ions in TBE (Tris-borate-EDTA) buffer, with mobilities that depend on the DNA/borate ratio. In 45 mM TBE buffer, the two DNAs comigrate as a single sharp peak, with a mobility that is faster than either of the constituent DNAs in the same buffer. Hence, the mixed DNA-borate complex is stabilized by the binding of additional borate ions, possibly forming bridges between the different DNAs. The mixed DNA-borate complex is gradually dissociated into its component DNAs by increasing the TBE concentration, possibly because the borate binding sites become saturated at high buffer concentrations. Other neutral pH, amine-based buffers, such as Mops (3-[N-morpholino]propanesulfonic acid), Hepes (N-[2-hydroxyethyl]piperazine-N'-[2-ethanesulfonic acid]), Bes (N,N-bis[2-hydroxyethyl]-2-aminoethanesulfonic acid), Tes (N-tris[hydroxymethyl]methyl-2-aminoethanesulfonic acid), and tricine (N-tris[hydroxymethyl]methylglycine) also form complexes with DNA, giving distorted peaks in the electropherograms. The combined results indicate that borate buffers and most neutral pH, amine-based buffers interact with DNA.  相似文献   

18.
Current Tris‐based solutions for DNA electrophoresis produce a positive feedback loop between current and temperature at high voltage, resulting in long running times for the separation of even small DNA fragments. We optimized the separation of small DNA fragments (90–300 bp) in polyacrylamide‐based electrophoresis at high voltages (200volts/cm) by substituting Tris with low concentration alkali salts (e.g. 1 mm LiCl and CsCl). These media reduced the heat produced during electrophoresis, enhanced the DNA fragment resolution, and allowed gels to be run at higher voltages, reducing gel running times by 25%. In addition, the elimination of Tris and EDTA from the buffer reduced material costs approximately 10‐fold.  相似文献   

19.
The mechanism underlying DNA charge transport is intriguing. However, poor conductivity of DNA makes it difficult to detect DNA charge transport. Metallic DNA (M-DNA) has better conducting properties than native DNA. Ni2+ may chelate in DNA and thus enhance DNA conductivity. On the basis of this finding, it is possible to reveal the mechanisms underlying DNA charge transport. The conductivity of various Ni-DNA species such as single-stranded, full complement, or mismatched sequence molecules was systematically tested with ultraviolet absorption and electrical or chemical methods. The results showed that the conductivity of single-stranded Ni-DNA (Ni-ssDNA) was similar to that of a native DNA duplex. Moreover, the resistance of Ni-DNA with a single basepair mismatch was significantly higher than that of fully complementary Ni-DNA duplexes. The resistance also increased exponentially as the number of mismatched basepairs increased linearly after the tunneling current behavior predicted by the Simmons model. In conclusion, the charges in Ni2+-doped DNA are transported through the Ni2+-mediated ππ stacking corridor. Furthermore, Ni-DNA acts as a conducting wire and exhibits a tunneling barrier when basepair mismatches occur. This property may be useful in detecting single basepair mismatches.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号