首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The suprachiasmatic nuclei (SCN) generate the circadian rhythm of many hormones. The hormone leptin is a metabolic signal that informs the brain about fat and energy stores of the body. We investigated whether the rhythm of leptin hormone release in Syrian hamsters is directly controlled by the SCN. Three experiments were performed: in the first, hamsters were SCN‐lesioned; in the second, hamsters were exposed to different feeding regimes; and in the third, hamsters were adrenalectomized and implanted with cortisol capsules to maintain constant glucocorticoid release. Blood samples were collected before and after the experiments at different clock times and examined for leptin levels by enzyme‐linked immunosorbant assay (ELISA). Different feeding regimes and constant glucocorticoid release did not alter the rhythm of leptin release; whereas, SCN lesions abolished the rhythm. The results of the present study suggest the rhythm in leptin release in Syrian hamsters may be controlled by the SCN.  相似文献   

2.
Melatonin is produced and secreted by the pineal gland in a rhythmic manner; circulating levels are high at night and low in the day. Leptin is a hormone secreted by adipocytes as a product of the obese gene and plays an important role in regulating body energy homeostasis and reproductive function in rodents and humans. The present study was conducted to examine daily fluctuations in serum levels of melatonin and leptin in Syrian hamster. We measured serum leptin and melatonin levels by ELISA in (a) intact and pinealectomized (pinx) male hamsters kept under long daylight conditions [14 h of light (14L)]; (b) intact and pinx hamsters under short daylight (10L); and (c) intact hamsters in constant light (24L). Blood samples were obtained every 2 h throughout a 24-h period. Statistically significant circadian variations were found in both melatonin and leptin profiles. Their relationship was inverse, i.e. when melatonin was high in the serum, leptin was comparably low. These results suggest that there is a rhythm in leptin levels in the adult male Syrian hamster and this rhythm is pineal gland (melatonin) and/or photoperiod dependent.  相似文献   

3.
Summary The effects on activity rhythms of a daily 30 min opportunity to leave the home cage and hoard seeds from an open field were assessed in Syrian hamsters housed in continuous dim illumination. Six of ten hamsters responded with clear entrainment of their activity rhythms to the hoarding opportunity, as demonstrated by responses to phase shifts and by the onset phase of subsequent freerunning rhythms. No entrainable component separate from the freerunning rhythm was ever observed. Two hamsters showed phase shifts in response to the hoarding opportunity, but they did not meet the criteria for stable entrainment, and two did not respond with noticeable changes in rhythmicity. Ablations of the suprachiasmatic nuclei (SCN) were attempted in three hamsters that had entrained stably to the hoarding time. The effects of partial lesions in two animals indicated that the entrained rhythm was controlled by the light-entrainable pacemaker represented by the SCN. The one animal with an apparently complete lesion, however, developed a clear, but irregular, increase in activity in anticipation of the daily hoarding time. SCN ablation apparently unmasked an oscillator system separate from the SCN and susceptible to entrainment by a nonphotic cue. The oscillator mechanism affected by daily hoarding opportunities in hamsters appears to be tightly coupled to the SCN pacemaker, in contrast to the system in rats that is synchronized by daily feeding schedules.Abbreviations SCN suprachiasmatic nuclei - FEO food-entrain-able oscillator Portions of these results were previously reported at the 1986 meeting of the Animal Behavior Society, Tucson, Arizona, and at the 1987 meeting of the Society for Neuroscience, New Or leans, LA (Rusak et al. 1987)  相似文献   

4.
The "adipostat hypothesis" refers to the idea that circulating hormone concentrations reflect levels of body adiposity and act as signals to control food intake and reproduction. Implicit in the adipostatic hypothesis are the following two assumptions: 1) plasma levels of adipostatic hormones accurately reflect body fat content and 2) decreased plasma concentrations of adipostatic hormones necessarily result in increased food intake and inhibited reproductive processes. The present experiments are designed to test these assumptions. Fat and lean Syrian hamsters were either fasted for 12, 24, 36, or 48 h or allowed ad libitum access to food. Contrary to the first assumption, plasma leptin and insulin levels in fat hamsters dropped dramatically by 12 h after the start of a fast, with no significant change in body fat content and no postfast hyperphagia. Lean hamsters showed anestrus after a 48-h fast but not after a 24-h fast. Contrary to the second assumption of the lipostatic hypothesis, lean hamsters fasted for 24 h and then refed for the next 24 h had leptin levels that were not significantly elevated compared with those of 48-h-fasted hamsters. Thus, in adult female Syrian hamsters, plasma leptin concentrations do not accurately reflect body fat content under all conditions; normal estrous cyclicity does not necessarily require plasma leptin concentrations higher than those of fasted hamsters; and decreased plasma leptin levels do not result in increased food intake.  相似文献   

5.
We studied the effects of melatonin and leptin hormones on ovarian follicular development in intact and pinealectomized female Syrian hamsters. We first monitored the oestrous cycle of the hamsters by the vaginal smear samples throughout a ten day period to start the injections simultaneously in all groups and performed saline, melatonin and leptin hormone injection groups for both control and pinealectomized hamsters. Then the injections were applied for four days starting the oestrus phase of the cycle and the ovaries were removed for preparation of histological analysis. We measured the diameters and the numbers of the follicles and we classified the follicles according to the number of the granulosa cell layer. Leptin hormone injection increased melatonin hormone injection decreased the number and the diameter of the follicles. The stimulating effect of the leptin hormone was more pronounced in the pinealectomized group. The results of the present study indicate that the removal of the pineal gland and leptin hormone administration are playing a stimulatory while melatonin hormone administration is playing an inhibitory role on the follicular development in female Syrian hamsters.  相似文献   

6.
"Splitting" of circadian activity rhythms in Syrian hamsters maintained in constant light appears to be the consequence of a reorganized SCN, with left and right halves oscillating in antiphase; in split hamsters, high mRNA levels characteristic of day and night are simultaneously expressed on opposite sides of the paired SCN. To visualize the splitting phenomenon at a cellular level, immunohistochemical c-Fos protein expression in the SCN and brains of split hamsters was analyzed. One side of the split SCN exhibited relatively high c-Fos levels, in a pattern resembling that seen in normal, unsplit hamsters during subjective day in constant darkness; the opposite side was labeled only within a central-dorsolateral area of the caudal SCN, in a region that likely coincides with a photo-responsive, glutamate receptor antagonist-insensitive, pERK-expressing cluster of cells previously identified by other laboratories. Outside the SCN, visual inspection revealed an obvious left-right asymmetry of c-Fos expression in the medial preoptic nucleus and subparaventricular zone of split hamsters killed during the inactive phase and in the medial division of the lateral habenula during the active phase (when the hamsters were running in their wheels). Roles for the dorsolateral SCN and the mediolateral habenula in circadian timekeeping are not yet understood.  相似文献   

7.
We examined the involvement of neural mechanisms within the suprachiasmatic nucleus (SCN) and periventricular area (PVA), and the role of prolactin (Prl) in control of endocrine function in short day-exposed Syrian hamsters. Hamsters bearing lesions of the SCN or PVA, hamsters implanted with an anterior pituitary under the kidney capsule to provide sustained Prl levels, and sham-operated hamsters were exposed to either 14L:10D or 8L:16D. After 9 wk, hamsters were sacrificed, and their testes and pituitaries were studied in vitro to assess their secretory capacity. SCN lesions and large periventricular lesions impinging on the paraventricular nucleus prevented testicular regression during short-day exposure. Small periventricular lesions and pituitary implants did not prevent gonadal regression in hamsters exposed to short days. Testis weights were positively correlated with basal and luteinizing hormone (LH)-stimulated androgen production in the control and lesioned groups; pituitary implants prevented the decline in androgen production in vitro in gonadally regressed animals. The relative in vitro pituitary response to gonadotropin-releasing hormone (GnRH) stimulation in control and lesioned groups was not reduced by short-day exposure. These data indicate that either axons coursing dorsally from the SCN or extra-SCN structures in the periventricular/paraventricular area are necessary for testicular regression in short photoperiods.  相似文献   

8.
The circadian system of the Turkish hamster controlling wheel-running activity responded to single 1-hr light pulses and to repeated 1-hr pulses in a similar way as that of Syrian hamsters studied previously. At constant light of 100 lx, the period length (tau) of the freerunning activity rhythm of Turkish hamsters was longer and the activity time (alpha) was shorter than that of Syrian hamsters. Among individuals, the ability of the system to be entrained by one 1-hr light pulse per cycle was related to the range (advance plus delay amplitude) of the phase response curve (PRC) derived from single light pulses and to the compression of alpha caused by the pulse Zeitgeber. The data support the hypothesis derived from experiments on Syrian hamsters that the range of the PRC is functionally related with alpha, possibly reflecting the phase relations (coupling) between two oscillators.  相似文献   

9.
In humans there is a circadian rhythm of leptin concentrations in plasma with a minimum in the early morning and a maximum in the middle of the night. By taking blood samples from adult male rats every 3 hr for 24 hr, we determined that a circadian rhythm of plasma leptin concentrations also occurs in the rat with a peak at 0130h and a minimum at 0730h. To determine if this rhythm is controlled by nocturnally released hormones, we evaluated the effect of hormones known to be released at night in humans, some of which are also known to be released at night in rats. In humans, prolactin (PRL), growth hormone (GH), and melatonin are known to be released at night, and adrenocorticotropic hormone (ACTH) release is inhibited. In these experiments, conscious rats were injected intravenously with 0.5 ml diluent or the substance to be evaluated just after removal of the first blood sample (0.3 ml), and additional blood samples (0.3 ml) were drawn every 10 min thereafter for 2 hr. The injection of highly purified sheep PRL (500 microg) produced a rapid increase in plasma leptin that persisted for the duration of the experiment. Lower doses were ineffective. To determine the effect of blockade of PRL secretion on leptin secretion, alpha bromoergocryptine (1.5 mg), a dopamine-2-receptor agonist that rapidly inhibits PRL release, was injected. It produced a rapid decline in plasma leptin within 10 min, and the decline persisted for 120 min. The minimal effective dose of GH to lower plasma leptin was 1 mg/rat. Insulin-like growth factor (IGF-1) (10 microg), but not IGF-2 (10 microg), also significantly decreased plasma leptin. Melatonin, known to be nocturnally released in humans and rats, was injected at a dose of 1 mg/rat during daytime (1100h) or nighttime (2300h). It did not alter leptin release significantly. Dexamethasone (DEX), a potent glucocorticoid, was ineffective at a 0. 1-mg dose but produced a delayed, significant increase in leptin, manifest 100-120 min after injection of a 1 mg dose. Since glucocorticoids decrease at night in humans at the time of the maximum plasma concentrations of leptin, we hypothesize that this increase in leptin from a relatively high dose of DEX would mimic the response to the release of corticosterone following stress in the rat and that glucocorticoids are not responsible for the circadian rhythm of leptin concentration. Therefore, we conclude that an increase in PRL secretion during the night may be responsible, at least in part, for the nocturnal elevation of leptin concentrations observed in rats and humans.  相似文献   

10.
Animals have to adapt to seasonal variations in food resources and temperature. Hibernation is one of the most efficient means used by animals to cope with harsh winter conditions, wherein survival is achieved through a significant decrease in energy expenditure. The hibernation period is constituted by a succession of torpor bouts (hypometabolism and decrease in body temperature) and periodic arousals (eumetabolism and euthermia). Some species feed during these periodic arousals, and thus show different metabolic adaptations to fat-storing species that fast throughout the hibernation period. Our study aims to define these metabolic adaptations, including hormone (insulin, glucagon, leptin, adiponectin, GLP-1, GiP) and metabolite (glucose, free fatty acids, triglycerides, urea) profiles together with body composition adjustments. Syrian hamsters were exposed to varied photoperiod and temperature conditions mimicking different phases of the hibernation cycle: a long photoperiod at 20 °C (LP20 group), a short photoperiod at 20 °C (SP20 group), and a short photoperiod at 8 °C (SP8). SP8 animals were sampled either at the beginning of a torpor bout (Torpor group) or at the beginning of a periodic arousal (Arousal group). We show that fat store mobilization in hamsters during torpor bouts is associated with decreased circulating levels of glucagon, insulin, leptin, and an increase in adiponectin. Refeeding during periodic arousals results in a decreased free fatty acid plasma concentration and an increase in glycemia and plasma incretin concentrations. Reduced incretin and increased adiponectin levels are therefore in accordance with the changes in nutrient availability and feeding behavior observed during the hibernation cycle of Syrian hamsters.  相似文献   

11.
The aim of the study was to investigate the effects of acute leptin treatment of adult Syrian hamsters exposed to a long (LP, eugonadal males) and short photoperiod (SP, hypogonadal males). Animals were exposed to LP (L:D 14:10) or SP (L:D 10:14) for 10 weeks. Afterwards, both LP and SP hamsters were allocated to a control (SP-C, LP-C) or leptin-treated group (SP 3, SP 10, SP 30 or LP3, LP 10, LP 30). One hour before sacrifice, a single dose of leptin (3, 10 or 30 μg/kg) or vehicle was administered (i.p.) to the males. Testis weight, serum and pituitary luteinizing hormone (LH) concentrations, as well as the hypothalamic concentration of gonadotropin-releasing hormone (GnRH) were recorded. Histological analysis of the testis was performed and GnRH concentration in the culture medium of hypothalamic explants was examined. A dramatic regression of testicular weight and histological atrophy of seminiferous tubules, as well as a decrease in serum and pituitary LH concentrations were found in SP males. All doses of leptin significantly reduced serum LH levels and medium GnRH concentrations in both photoperiod groups. Pituitary LH and hypothalamic GnRH concentrations were not affected by leptin. In conclusion, we demonstrated that leptin inhibited the reproductive axis of Syrian male hamsters exposed to LP and SP and fed ad libitum.  相似文献   

12.
The suprachiasmatic nucleus (SCN) is required for the daily rhythm of plasma glucocorticoids; however, the independent contributions from oscillators within the different subregions of the SCN to the glucocorticoid rhythm remain unclear. Here, we use genetically and neurologically intact, forced desynchronized rats to test the hypothesis that the daily rhythm of the glucocorticoid, corticosterone, is regulated by both light responsive and light-dissociated circadian oscillators in the ventrolateral (vl-) and dorsomedial (dm-) SCN, respectively. We show that when the vlSCN and dmSCN are in maximum phase misalignment, the peak of the plasma corticosterone rhythm is shifted and the amplitude reduced; whereas, the peak of the plasma adrenocorticotropic hormone (ACTH) rhythm is also reduced, the phase is dissociated from that of the corticosterone rhythm. These data support previous studies suggesting an ACTH-independent pathway contributes to the corticosterone rhythm. To determine if either SCN subregion independently regulates corticosterone through the sympathetic nervous system, we compared unilateral adrenalectomized, desynchronized rats that had undergone either transection of the thoracic splanchnic nerve or sham transection to the remaining adrenal. Splanchnicectomy reduced and phase advanced the peak of both the corticosterone and ACTH rhythms. These data suggest that both the vlSCN and dmSCN contribute to the corticosterone rhythm by both reducing plasma ACTH and differentially regulating plasma corticosterone through an ACTH- and sympathetic nervous system-independent pathway.  相似文献   

13.
In mammals, resetting of the suprachiasmatic clock (SCN) by behavioral activation or serotonin (5-HT) agonists is mimicked by dark pulses, presented during subjective day in constant light (LL). Because behavioral resetting may be mediated in part by 5-HT inputs to the SCN, here we determined whether 5-HT system can modulate dark-induced phase-shifts in Syrian hamsters housed in LL. Two hours of darkness at mid-subjective day (circadian time 6; CT-6) resulted in increased concentrations of 5-HT in the SCN tissue and induction of c-FOS expression in the raphe nuclei. Injections of the 5-HT1A/7 agonist (+)8-OH-DPAT or dark pulses at CT-6 induced phase-advances of the wheel-running activity rhythm and down-regulated the expression of the clock genes Per1-2 and c-FOS in the SCN in a similar way. The combination of both treatments [(+)8-OH-DPAT + dark pulses], however, resulted in larger phase-advances, while associated molecular changes were not significantly modified, except for the gene Dbp , in comparison to (+)8-OH-DPAT or dark pulses alone. Dark resetting was blocked by pre-treatment with a 5-HT7 antagonist, but not with a 5-HT1A antagonist. The additive phase-shifts of two different cues to reset the SCN clock open wide the gateway for non-photic shifting, leading to new strategies in chronotherapy.  相似文献   

14.
In mammals, circadian rhythms of locomotor activity and many other behavioral and physiological functions are controlled by an endogenous pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). Among various other afferents, the SCN receives a dense serotonergic input from the mesencephalic raphe complex. Experimental evidence obtained so far in Syrian hamsters suggests that serotonin (5-HT) mimics the effect of nonphotic stimuli during subjective day and modulates photic input to the SCN during subjective night. These findings are consistent with a putative role of serotonergic pathways in the transmission of the state of arousal to the SCN. In this paper, we review recent evidence for different modes of 5-HT action and/or the involvement of different 5-HT receptor subtypes in hamsters and rats. In intact rats, 5-HT agonists induce photic-like phase shifts of locomotor activity and melatonin rhythms as well as c-Fos expression in the ventral SCN. These results suggest a role for 5-HT in the transmission of photic rather than nonphotic information to the rat SCN. Such a function of 5-HT would also explain why the circadian system of rats is less sensitive or even insensitive to nonphotic stimuli.  相似文献   

15.
In mammals, circadian rhythms of locomotor activity and many other behavioral and physiological functions are controlled by an endogenous pacemaker located in the hypothalamic suprachiasmatic nucleus (SCN). Among various other afferents, the SCN receives a dense serotonergic input from the mesencephalic raphe complex. Experimental evidence obtained so far in Syrian hamsters suggests that serotonin (5-HT) mimics the effect of nonphotic stimuli during subjective day and modulates photic input to the SCN during subjective night. These findings are consistent with a putative role of serotonergic pathways in the transmission of the state of arousal to the SCN. In this paper, we review recent evidence for different modes of 5-HT action and/or the involvement of different 5-HT receptor subtypes in hamsters and rats. In intact rats, 5-HT agonists induce photic-like phase shifts of locomotor activity and melatonin rhythms as well as c-Fos expression in the ventral SCN. These results suggest a role for 5-HT in the transmission of photic rather than nonphotic information to the rat SCN. Such a function of 5-HT would also explain why the circadian system of rats is less sensitive or even insensitive to nonphotic stimuli.  相似文献   

16.
Compensatory increases in food intake are commonly observed after a period of food deprivation in many species, including laboratory rats and mice. Thus it is interesting that Syrian hamsters fail to increase food intake after a period of food deprivation, despite a fall in plasma leptin concentrations similar to those seen in food-deprived rats and mice. In previous laboratory studies, food-deprived Syrian hamsters increased the amount of food hoarded. We hypothesized that leptin treatment during food deprivation would attenuate food-deprivation-induced increases in hoarding. Baseline levels of hoarding were bimodally distributed, with no hamsters showing intermediate levels of hoarding. Both high (HH) and low hoarding (LH) hamsters were included in each experimental group. Fifty-six male hamsters were either food deprived or given ad libitum access to food for 48 h. One-half of each group received intraperitoneal injections of leptin (4 mg/kg) or vehicle every 12 h during the food-deprivation period. Within the HH group, the hoarding score increased significantly in food-deprived but not fed hamsters (P < 0.05). Leptin treatment significantly decreased hoarding in the food-deprived HH hamsters (P < 0.05). The LH hamsters did not increase hoarding regardless of whether they were food deprived or had ad libitum access to food. These results are consistent with the idea that HH hamsters respond to energetic challenges at least in part by changing their hoarding behavior and that leptin might be one factor that mediates this response.  相似文献   

17.
Recent work with exotic 24-h light:dark:light:dark (LDLD) cycles indicates surprising flexibility in the entrainment patterns of Syrian hamsters. Following exposure to an LDLD cycle, hamsters may adopt a form of rhythm splitting in which markers of subjective night (e.g., activity, melatonin) are expressed in each of the twice daily scotophases. This pattern contrasts markedly with that of conventionally entrained hamsters in which markers of subjective night are expressed once daily in only 1 of the 2 dark periods. The "split" entrainment pattern was examined further here in Syrian and Siberian hamsters and in mice exposed to LDLD 7:5:7:5, a condition that reliably induces split activity rhythms in all 3 species. The phase angle of entrainment and activity duration were generally similar comparing the 2 daily activity bouts in each species. The stability of this split entrainment state was assessed by deletions of photophases on individual days, by exposure to skeleton photoperiods, and by transfer to constant darkness. As in Syrian hamsters, the one-time substitution of darkness for one 7-h photophase did not grossly alter activity patterns of Siberian hamsters but acutely disrupted the split rhythms of mice. Skeleton light pulses of progressively shorter duration did not significantly alter split entrainment patterns of either Syrian or Siberian hamsters. Both species continued to exhibit stable entrainment with activity expressed in alternate scotophases of an LD 1:5 cycle presented 4 times daily. In contrast, the split activity rhythms of mice were not maintained under skeleton pulses. In constant darkness, rhythms of Siberian hamsters remained distinctly split for a minimum of 2 cycles. Split entrainment to these novel LDLD and 4-pulse skeleton lighting regimes demonstrates a marked degree of plasticity common to the circadian systems of several rodent species and identifies novel entrainment patterns that may be reliably elicited with simple environmental manipulations. Inter- and intraspecific differences in the stability of split activity rhythms likely reflect differences in coupling interactions between the component circadian oscillators, which, adopting separate phase relations to these novel LD cycles, yield a split entrainment pattern.  相似文献   

18.
Serum leptin concentrations were obtained from male Siberian hamsters (Phodopus sungorus) and golden hamsters (a.k.a. Syrian, Mesocricetus auratus) housed on long [light:dark (LD) 16:8] and short (LD 6:18) photoperiods for 10-11 weeks. Blood samples were collected at 45-min intervals for 24 h from individual animals using an in-dwelling atrial catheter. In Siberian hamsters, exposure to short photoperiods as compared to long photoperiods reduced body weight (32.5 +/- 1.5 vs 47.7 +/- 1.1 g) and leptin (24-h mean: 5.3 +/- 0.4 ng/ml vs 18.6 +/- 2.1 ng/ml). Although photoperiod influenced the temporal distribution of leptin in golden hamsters, the main effect of photoperiod on leptin levels in golden hamsters did not reach significance (24-h mean: 7.1 +/- 1.0 ng/ml vs 5.1 +/- 0.8 ng/ml.). Body weights of golden hamsters did not vary significantly following exposure to short photoperiod for 11 weeks (178.3 +/- 3.6 g in LD 6:18 vs 177.8 +/- 7.3 g in LD 16:8). There was no nocturnal increase in serum leptin in either species. Marked interindividual differences were apparent in individual leptin profiles. Periodogram analysis revealed that only a few animals exhibited 24-h periodicities; the presence of a significant 24-h periodicity was more common in hamsters exposed to short days. Photoperiod-associated differences in the 24-hour profile of leptin secretion may be the result of photoperiod-associated changes in feeding behavior or metabolism. A full understanding of the regulation of leptin secretion in multiple time domains may enhance our understanding of the function of leptin.  相似文献   

19.
Syrian hamsters, like many humans, increase food intake and body adiposity in response to stress. We hypothesized that glucocorticoids (cortisol and corticosterone) mediate these stress-induced effects on energy homeostasis. Because Syrian hamsters are dual secretors of cortisol and corticosterone, differential effects of each glucocorticoid on energy homeostasis were investigated. First, adrenal intact hamsters were injected with varying physiological concentrations of cortisol, corticosterone, or vehicle to emulate our previously published defeat regimens (i.e., 1 injection/day for 5 days). Neither food intake nor body weight was altered following glucocorticoid injections. Therefore, we investigated the effect of sustained glucocorticoid exposure on energy homeostasis. This was accomplished by implanting hamsters with supraphysiological steady-state pellets of cortisol, corticosterone, or cholesterol as a control. Cortisol, but not corticosterone, significantly decreased food intake, body mass, and lean and fat tissue compared with controls. Despite decreases in body mass and adiposity, cortisol significantly increased circulating free fatty acids, triglyceride, cholesterol, and hepatic triglyceride concentrations. Although corticosterone did not induce alterations in any of the aforementioned metabolic end points, Syrian hamsters were responsive to the effects of corticosterone since glucocorticoids both induced thymic involution and decreased adrenal mass. These findings indicate that cortisol is the more potent glucocorticoid in energy homeostasis in Syrian hamsters. However, the data suggest that cortisol alone does not mediate stress-induced increases in food intake or body mass in this species.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号