首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present study we investigated the role of 5-hydroxytryptamine (5-HT) and 5-HT1A receptor during liver regeneration after partial hepatectomy (PH) and N-nitrosodiethylamine (NDEA) induced hepatocellular carcinoma in male Wistar rats. 5-HT content was significantly increased during liver regeneration after PH and NDEA induced hepatocellular carcinoma. Scatchard analysis using 8-OH-DPAT, a 5-HT1A specific agonist showed a decreased receptor during liver regeneration after PH and NDEA induced hepatocellular carcinoma. 5-HT when added alone to primary hepatocyte culture did not increase DNA synthesis but was able to increase the EGF mediated DNA synthesis and inhibit the TGFβ1 mediated DNA synthesis suppression in vitro. This confirmed the co-mitogenic activity of 5-HT. 8-OH-DPAT at a concentration of 10−4 M inhibited the basal and EGF-mediated DNA synthesis in primary hepatocyte cultures. It also suppressed the TGFβ1-mediated DNA synthesis suppression. This clearly showed that activated 5-HT1A receptor inhibited hepatocyte DNA synthesis. Our results suggest that decreased hepatic 5-HT1A receptor function during hepatocyte regeneration and neoplasia has clinical significance in the control of cell proliferation.  相似文献   

2.
Summary Cell division is induced in stationary cultures of BALB/c-3T3 mouse embryo cells without renewal of medium by addition of the tumor promoter, phorbol myristate acetate (PMA), or bovine serum. The addition of dbcAMP (10−3 m) or other inhibitors of cAMP phosphodiesterase, papaverine (6.7×10−6 m), Persantin (5×10−5 m) or RO-20-1724 (10−4 m), prevents cell replication induced by PMA or serum. In contrast, ouabain (10−4 m) and N,N′-dicyclohexylcarbodiimide (10−5 m), inhibitors of Na+−K+-ATPase activity, block the PMA-stimulated effect but do not inhibit serum-stimulated cell division. Several stages in the cell cycle are sensitive to dbcAMP addition. One is early in the G1 phase at the time of reinitiation of the cell cycle from a stationary (G0) phase, a second is associated with the G1-S transition, and a third with passage of cells from a post-S phase to mitosis. Based on observations of early morphological changes, responses of plasma membrane ezymes and effects of enzyme inhibitors, the stimulation of cell division in BALB/c-3T3 cells by PMA or serum appears to involve several membrane functions which may act in a cooperative manner. This work was supported by a USPHS Research Grant CA12503, and a Center Grant ES-00260 awarded to the Institute of Environmental Medicine. Mrs. Susan Kulina provided the consistent and excellent technical aid necessary to perform this work. Note added in proof: During the preparation and review of this paper, Boynton reported that PMA appears to sensitize BALB/c-3T3 cells to calcium ion which may play a critical role in the regulation of the DNA synthesis (36).  相似文献   

3.
4.
When cycloheximide is added to (B12)-deficient cultures before or after replenishment of the cells with B12, reversion of these cells is inhibited. This inhibition is not caused by interference of the inhibitor in the uptake of B12 as measured by division kinetics. Cycloheximide does not inhibit the initial increase in the rate of DNA synthesis caused by B12 replenishment, but within 30–45 min the rate decreases and DNA synthesis ceases. Cycloheximide added to replenished deficient cells after completion of DNA duplication inhibits cell division. The total cellular protein and RNA in replenished cells treated with cycloheximide does not change. B12 added to deficient cells does not stimulate the incorporation of [14C]leucine into protein during resumption and completion of DNA duplication. However, there is a large increase in [14C]leucine incorporation into the protein of these cells soon after completion of DNA duplication and before resumption of cell division. The addition of cycloheximide to B12-replenished or to nonreplenished deficient cells rapidly inhibits the incorporation. We suggest that the addition of B12 accelerates the rate of DNA synthesis in the deficient cells and that possibly no new protein synthesis is required except for mitosis. However, protein synthesis is needed for continuous DNA synthesis.  相似文献   

5.
Studies were conducted to examine the influence of the H+-ATPase inhibitor bafilomycin A1 on cultured rabbit nonpigmented ciliary epithelial cells (NPE). Cytoplasmic pH and sodium concentrations were measured by digital fluorescence microscopy using BCECF and SBFI respectively. In some experiments, cell sodium content was measured by atomic absorption spectroscopy. Added alone, bafilomycin A1 (100 nm) failed to change cytoplasmic pH but it caused an increase of cytoplasmic sodium concentration which occurred within 10 min. It is likely that the rise of cytoplasmic sodium concentration was responsible for the stimulation of active sodium-potassium transport which occurred in bafilomycin A1-treated cells as judged by a 50% increase of ouabain sensitive potassium (86Rb) uptake. In bafilomycin A1-treated cells, but not in control cells, dimethylamiloride (DMA) inhibited ouabain-sensitive potassium (86Rb) uptake in a dose-dependent manner with an IC50 of ∼2 μm. DMA (10 μm) also prevented the increase of cytoplasmic sodium caused by bafilomycin A1. Added alone, DMA (10 μm) failed to change cytoplasmic sodium content but reduced cytoplasmic pH by ∼0.4 pH units. In cells that first received 10 μm DMA, the subsequent addition of bafilomycin A1 (100 nm) caused a further cytoplasmic pH reduction of ∼0.3 pH units. Taken together, the results suggest H+-ATPase might contribute to the regulation of basal cytoplasmic pH in cultured NPE. In the presence of bafilomycin A1, Na-H exchanger activity appears to be stimulated, so stabilizing cytoplasmic pH but resulting in an increase of cytoplasmic sodium concentration and consequent stimulation of active sodium-potassium transport. Received: 19 March 1999/Revised: 20 September 1999  相似文献   

6.
Endosymbiosis is an intriguing plant–animal interaction in the dinoflagellate–Cnidaria association. Throughout the life span of the majority of corals, the dinoflagellate Symbiodinium sp. is a common symbiont residing inside host gastrodermal cells. The mechanism of regulating the cell proliferation of host cells and their intracellular symbionts is critical for a stable endosymbiotic association. In the present study, the cell cycle of a cultured Symbiodinium sp. (clade B) isolated from the hermatypic coral Euphyllia glabrescens was investigated using flow cytometry. The results showed that the external light–dark (L:D) stimulation played a pivotal role in regulating the cell cycle process. The sequential light (40–100 μmol m−2 s−1 ~ 12 h) followed by dark (0 μmol m−2 s−1 ~ 12 h) treatment entrained a single cell cycle from the G1 to the S phase, and then to the G2/M phase, within 24 h. Blue light (~450 nm) alone mimicked regular white light, while lights of wavelengths in the red and infrared area of the spectrum had little or no effect in entraining the cell cycle. This diel pattern of the cell cycle was consistent with changes in cell motility, morphology, and photosynthetic efficiency (F v /F m ). Light treatment drove cells to enter the growing/DNA synthesis stage (i.e., G1 to S to G2/M), accompanied by increasing motility and photosynthetic efficiency. Inhibition of photosynthesis by 3-(3, 4-dichlorophenyl)-1, 1-dimethyl-urea (DCMU) treatment blocked the cell proliferation process. Dark treatment was required for the mitotic division stage, where cells return from G2/M to G1. Two different pools of adenylyl cyclase (AC) activities were shown to be involved in the growing/DNA synthesis and mitotic division states, respectively. Communicated by Biology Editor Dr Michael Lesser  相似文献   

7.
Summary Addition of cerulenin (0.25–1.0 mM) to cultures ofActinomadura verrucosospora before the onset of esperamicin synthesis inhibited the production of esperamicin A1 by the microorganism. This result indicates that esperamicin A1 is biosynthesized in part by the polyketide pathway. Addition of cerulenin to the cultures during the active production phase led to a net decrease in esperamicin A1 production. The14C-acetate labeling pattern of esperamicin A1 in the cultures with or without addition of cerulenin at the active production phase also demonstrated the instability of esperamicin A1 in the fermentation. This suggests that esperamicin A1 is unstable and degradation occurs during the active production phase. Addition of the neutral resin Diaion HP-20 (1%) to the fermentation enhanced the production of esperamicin A1 by 53%.  相似文献   

8.
Sixty to eighty per cent of the cells in a culture of human diploid fibroblasts may be stimulated from the state of density dependent inhibition of replication to active DNA synthesis and division. The maximum response is effected by 50% serum within the pH range 7.2–8.0. The proportion of cells responding depends on the concentration of serum protein in the medium which may be effectively substituted by crystalling serum albumin. There is a differential sensitivity to the stimulus of cells in the densely packed centers of whorls and in the less dense areas between the whorls. The cell response is parasynchronous and the median durations of the various phases of the cell cycle are: G1I 6 β ?æ® ¿ ∞ 8 hours, G2 = 6 hours and doubling time = 30 hours. The stimulatory effect of fresh medium is lost during contact with dense cultures so that it has only 50% of its initial capacity after 14 hours. It can be restored by dialysis against serum-free medium. The stimulus must be applied for at least ten hours to be effective in inducing DNA synthesis. During the latter half of ten hour induction period subsequent DNA synthesis becomes exquisitely sensitive to actinomycin D. After this time an increasing number of cells become irreversibly committed to replicate. The data are interpreted to indicate that during contact with serum proteins (including albumin) changes in the cell surface, if continued long enough, trigger a mechanism which involves the synthesis of a unique RNA species during the fifth to tenth hours. After this RNA has been synthesized the cells are then committed to DNA synthesis.  相似文献   

9.
Heavy metals inhibit plant growth. This proces may be directly or indirectly connected with mechanisms regulating cell division. We analyzed the effect of Cd2+ on cell cycle progression in partially synchronized soybean (Glycine max) cell suspension culture and followed the expression of cell cycle genes (cyclin B1 and cyclin-dependent kinase A - CDK-A). We have checked the hypothesis that Cd2+-induced impairment of cell division is connected with DNA damage. The [3H]-thymidine incorporation in cell cultures synchronized either with hydroxyurea (HU) or phosphate starvation have shown, that Cd2+ strongly affects the S phase of soybean cell cycle, by causing the earlier entry of cells into S phase and by decreasing the rate of DNA synthesis. RT-PCR analysis indicated that Cd2+ decreases the level of cyclin B1 mRNA and has no effect on CDK-A mRNA. The result of comet assay indicated the damaging effect of Cd2+ on DNA of soybean cells. We suggest that Cd2+ affects plant cell cycle at two major checkpoints: the G1/S — by damaging of DNA, and G2/M - by decreasing the level of cyclin B1 mRNA  相似文献   

10.
When studying the kinetics of DNA synthesis, growth and cell division inEscherichia coli B/r after irradiation with different doses of UV-radiation (254 nm) we could demonstrate, by means of pulse incorporation of3H-thymidine, a lag in DNA synthesis after the irradiation. The relative rate of the restored DNA synthesis (related to the number of viable cells) was higher than in the non-irradiated culture. After 3 h the rate of DNA synthesis settled at a constant value, which was identical with the control rate up to the “critical dose” of 20 J/m2. The irradiated cell population is heterogenous and contains basically two categories of cells — surviving and non-surviving. Cells of both types contribute to DNA synthesis restored after the lag period to a different extent. During the first hour after the irradiation even the nonviable portion of the population,i.e. cells that do not form colonies but are still penicillin-sensitive, is involved in the DNA synthesis.  相似文献   

11.
K. Grossmann  E. W. Weiler  J. Jung 《Planta》1985,164(3):370-375
Cell division in cell suspension cultures can be completely blocked by the growth retardant tetcyclacis at a concentration of 10-4 mol l-1. In rice cells it has been demonstrated that the growth inhibition can be completely overcome by application of cholesterol independent of the duration of pretreatment with tetcyclacis. In suspension cultures of maize and soybean, too, the effect of tetcyclacis on cell division was neutralized by adding cholesterol. Other plant sterols, stigmasterol, campesterol and sitosterol were active in a decreasing order. Modifications in the cholesterol perhydro-cyclopentanophenanthrene-ring system indicate that the hydroxyl group at C-3 and the double bond between C-5 and C-6 in ring B are required for the activity. In contrast, gibberellic acid as well as ent-kaurenoic acid could not compensate retardant effects. Likewise, tetcyclasis did not change the level of gibberellins in rice cells as shown by radioimmunoassay. Thus, it is concluded that in cell suspension cultures sterols play a more important role in cell division than gibberellins.Abbreviation GAx gibberelin Ax  相似文献   

12.
Our previous studies have implied that prostaglandins inhibit cell growth independent of cAMP. Recent reports, however, have suggested that prostaglandin arrest of the cell cycle may be mediated through protein kinase A. In this report, in order to eliminate the role of c-AMP in prostaglandin mediated cell cycle arrest, we use the-49 lymphoma variant (cyc?) cells that lack adenylate cyclase activity. We demonstrate that dimethyl prostaglandin A1 (dmPGA1) inhibits DNA synthesis and cell growth in cyc? cells. DNA synthesis is inhibited 42% by dmPGA1 (50 μM) despite the fact that this cell line lacks cellular components needed for cAMP generation. The ability to decrease DNA synthesis depends upon the specific prostaglandin structure with the most effective form possessing the α,β unsaturated ketone ring. Dimethyl PGA1 is most effective in inhibiting DNA synthesis in cyc? cells, with prostaglandins PGE1 and PGB1 being less potent inhibitors of DNA synthesis. DmPGE2 caused a significant stimulation of DNA synthesis. S-49 cyc- variant cells exposed to (30–50 μm) dmPGA1, arrested in the G1 phase of the cell cycle within 24 h. This growth arrest was reversed when the prostaglandin was removed from the cultured cells; growth resumed within hours showing that this treatment is not toxic. The S-49 cyc? cells were chosen not only for their lack of adenylate cyclase activity, but also because their cell cycle has been extensively studied and time requirements for G1, S, G2, and M phases are known. Within hours after prostaglandin removal the cells resume active DNA synthesis, and cell number doubles within 15 h suggesting rapid entry into S-phase DNA synthesis from the G1 cell cycle block. The S-49 cyc? cells are known to have a G1/S boundary through M phase transition time of 14.8 h, making the location of the prostaglandin cell cycle arrest at or very near the G1/S interface. The oncogenes, c-fos and c-myc which are normally expressed during G1 in proliferating cells have a 2–3 fold enhanced expression in prostaglandin G1 arrested cells. These data using the S-49 variants demonstrate that dmPGA1 inhibits DNA synthesis and arrests the cell cycle independent of cAMP-mediated effects. The prostaglandin arrested cells maintain the gene expression of a G1 synchronous cell which suggests a unique molecular mechanism for prostaglandin action in arresting cell growth. These properties indicate that this compound may be an effective tool to study molecular mechanisms of regulation of the cell cycle.  相似文献   

13.
The replication time and pattern have been investigated in hepatoma cells induced by feeding 3'Me-DAB to male rats for 5 months. With the use of tritiated thymidine as a DNA label along with autoradiography, mitotic nuclear labeling has been studied 0.5 to 72 hours after the administration of the label. The following time intervals have been estimated: replication time, 31 hours; DNA synthesis, 17 hours; G2 plus Mitosis, 2 hours; G1, 12 hours. Only about 8 per cent of the tumor cell (interphase) population is "flash" labeled, following a single dose of 50 µC of H3TDR. This group of cells has been followed through three cycles of division. The repeated rhythmic passage of tumor cells through cell division is similar to that previously reported for normal liver cells in the growing rat. However, tumor cells have longer replication and DNA synthesis times. In addition, the several time intervals studied vary more in the tumor cell population than they do in the growing normal cell population.  相似文献   

14.
Protoplasts were isolated from cell suspensions derived from cotyledon and hypocotyl Gentiana kurroo (Royle). Cell walls were digested with an enzyme cocktail containing cellulase, macerozyme, driselase, hemicellulase and pectolyase in CPW solution. Protoplast viability ranged from 88 to 96%. Three techniques of culture and six media were evaluated in terms of their efficiency in producing viable cultures and regenerating whole plants. With liquid culture, cell division occurred in only a low number of the protoplasts isolated, and no plant regeneration was successful. Cell division occurred within 2 or 3 days in case of agarose solidified media. After 10 days of culture, the number of dividing cells was the highest with modified MS medium in which NH4NO3 was replaced with 3.0 g l−1 glutamine. The best results were obtained with agarose bead cultures: plating efficiency was 68.7% and 58.1% for protoplasts isolated from cotyledon and hypocotyl derived suspensions, respectively. The results were achieved with using medium containing 0.5 mg l−1 2,4-D + 1.0 mg l−1 kinetin or 2.0 mg l−1 BAP + 1.0 mg l−1 dicamba + 0.1 mg l−1 NAA + 80 mg l−1 adenine sulfate. Protocalluses transferred on the following composition of plant growth regulators: 0.5 mg l−1 2,4-D + 1.0 mg l−1 kinetin or 1.0 mg l−1 kinetin + 0.5 mg l−1 GA3 + 80.0 mg l−1 adenine sulfate developed in embryogenic cultures. However, the best embryo production occurred with the first one. Later embryos were transferred to half-strength MS mineral salts to promote plants formation. Flow cytometry studies revealed increased amounts of DNA in about one third of the regenerants.  相似文献   

15.
Ehrlich ascites tumor cells, loaded with 3H-labeled arachidonic acid and 14C-labeled stearic acid for two hours, were washed and transferred to either isotonic or hypotonic media containing BSA to scavenge the labeled fatty acids released from the cells. During the first two minutes of hypo-osmotic exposure the rate of 3H-labeled arachidonic acid release is 3.3 times higher than that observed at normal osmolality. Cell swelling also causes an increase in the production of 14C-stearic acid-labeled lysophosphatidylcholine. This indicates that a phospholipase A2 is activated by cell swelling in the Ehrlich cells. Within the same time frame there is no swelling-induced increase in 14C-labeled stearic acid release nor in the synthesis of phosphatidyl 14C-butanol in the presence of 14C-butanol. Furthermore, U7312, an inhibitor of phospholipase C, does not affect the swelling induced release of 14C-labeled arachidonic acid. Taken together these results exclude involvement of phospholipase A1, C and D in the swelling-induced liberation of arachidonic acid. The swelling-induced release of 3H-labeled arachidonic acid from Ehrlich cells as well as the volume regulatory response are inhibited after preincubation with GDPβS or with AACOCF3, an inhibitor of the 85 kDa, cytosolic phospholipase A2. Based on these results we propose that cell swelling activates a phospholipase A2—perhaps the cytosolic 85 kDa type—by a partly G-protein coupled process, and that this activation is essential for the subsequent volume regulatory response. Received: 23 July 1996/Revised: 17 June 1997  相似文献   

16.
Cloned cultures of the dinoflagellate Gonyaulax polyedra grown in a 12-h light-12-h dark cycle (LD 12:12) were synchronized to the beginning of G1 by a two sequential filtration technique. After the second filtration, with the cultures growing in LD 12:12, not many cells had divided after 1 day, but approximately half underwent cell division after 2 days. Flow cytometric measurements of the cells revealed that there is one unique S phase starting about 12 h prior to cell division and lasting for less than 4 h. A majority of cells in cultures synchronized in the same way but maintained in continuous light (LL) after filtration also divided synchronously after 2 days. Just as for the cultures in LD 12:12, those in LL have a similar discrete DNA synthesis phase prior to division. It is concluded that the circadian control of cell division acts before the S phase, giving rise to a discontinuous DNA synthesis phased by the circadian clock.  相似文献   

17.
Prostaglandins A2, B1, E1, E2, F and F were added to cultures of human epidermal cells (keratinocytes) for 24 hours at 37°C, and the effects on 3H-thymidine uptake into DNA was measured. At 70 μg/ml all prostaglandins tested except PGF inhibited the uptake of 3H-thymidine greater than 50%. However, at 35 μg/ml, PGA2 and PGB1 were the only two prostaglandins to show significant inhibition, 96% and 51% respectively. At 17.5 μg/ml only PGA2 caused substantial inhibition, 68%. In order to determine if the PGA2 action was mediated by membrane receptors propranolol, phentolamine, metiamide and prostynoic acid were added in conjunction with PGA2. None of the above receptor antagonists were able to reduce the PGA2-induced inhibition of 3H-thymidine uptake. These results indicate that the pre-incubation of human keratinocytes with prostaglandins for 24 hours results in a decrease of 3H-thymidine incorporation in DNA. The precise mechanism of action is unknown at this time.  相似文献   

18.
Summary The temporal relationships between aspects of DNA metabolism and the suppression of cell proliferation were investigated in rat glioma (strain C6) monolayer cultures exposed to 10μM dexamethasone. Cell densities (cell number per cm2), rates of DNA synthesis (dpm of [3H]thymidine incorporated per μg DNA per min), and cellular DNA (μg DNA per cm2) were measured daily in control and dexamethasone-treated cultures over a 3-day period. The percentage of cells in metaphase and the proportion of metaphases containing >2n(42) chromosomes also were determined in control and treated cultures. When log-phase C6 cultures were exposed to dexamethasone (day 0), cell densities were not significantly different from controls by day 1. Cell proliferation ceased thereafter in dexamethasone-treated cultures, whereas control cell populations continued to proliferate at log-phaserates. In contrast, cellular DNA increased exponentially in control and treated cultures over the 3-day period. On days 0 and 1, control and treated cells each contained 6 pg DNA. By day 3, the DNA content per treated cell increased to >20 pg; control cells each contained 10 pg DNA. The rates of DNA synthesis in the treated cultures did not differ significantly from controls on days 1 and 2. However, the rate in the treated cultures decreased significantly on day 3, one day after cell proliferation ceased. On day 2, the percentage of cells found in metaphase in the treated cultures was 0.32% compared to 0.64% in control cultures. By day 3, these percentages decreased to 0.20% and 0.22%, respectively. However, the proportion of metaphases containing >42 chromosomes increased 1.5-fold in the treated cultures relative to controls. These results indicate that nonproliferating dexamethasone-treated cells contain elevated amounts of DNA. Thus dexamethasone action appears to arrest the cell cycle at any point between the completion of DNA replication and mitosis. A preliminary report of this work was presented on June 8, 1977, at the 28th Annual Meeting of the Tissue Culture Association in New Orleans, Louisiana. This investigation was supported in part by grants from Merck Sharp & Dohme Research Laboratories, West Point, Pa., the American Cancer Society (IN-113), and NIH (AM 18719).  相似文献   

19.
The relationship between cell fusion, DNA synthesis and the cell cycle in cultured embryonic normal and dysgenic (mdgmdg) mouse muscle cells has been determined by autoradiography. The experimental evidence shows that the homozygous mutant myotubes form by a process of cell fusion and that nuclei within the myotubes do not synthesize DNA or undergo mitotic or amitotic division. The duration of the total cell cycle and its component phases was statistically the same in 2-day normal and mutant (mdgmdg) myogenic cultures with the approximate values: T, 21.5 hr; G1, 10.5 hr; S, 7.5 hr; and G2, 2.5 hr. In both kinds of cultures, labeled nuclei appeared in myotubes 15–16 hr after mononucleated cells were exposed to [3H]thymidine, and the rate of incorporation of labeled nuclei into multinucleated muscle cells was comparable in control and dysgenic cultures. Thus, homozygous mdgmdg muscle cells in culture are similar to control cells with respect to their mechanism of myotube formation and the coordinate regulation of DNA synthesis and the cell cycle during myogenesis.  相似文献   

20.
M. Wierzbicka 《Protoplasma》1999,207(3-4):186-194
Summary Allium cepa (L.) adventitious roots were treated with lead (2.5 mg of Pb2+ [from Pb(NO3)2] per dm3) for 30–72 h. The cell cycle was studied by pulse labeling with [3H]thymidine. Mitotic activity kinetics, occurrence of disturbed mitoses (c-mitoses), and level of DNA synthesis were examined. It was found that lead prolonged the cell cycle and that cells in two phases of the cycle, G2 and S, differed in their sensitivity to lead. Cells in G2 were more sensitive; lead lengthened their cycle by 216% and disturbed the course of cell division by causing c-mitoses. Cells in S phase were less sensitive. Their cell cycle was longer by 55%. They went through their G2 phase without major disturbances, mitosis in these cells was normal. During treatment ofA. cepa with lead, its destructive effects on cells were exerted only during the first few hours (around 6 h) of incubation. That is when the inhibition of mitotic activity, numerous disturbances of cell division, a decline in the number of cells synthesizing DNA, and a lower level of DNA synthesis were observed. As the incubation continued, the above processes were found to return to normal. In the discussion, data are presented supporting the hypothesis that during the initial period of exposure ofA. cepa to lead, this metal enters both the root apoplast and symplast, exerting a destructive effect on cells, while later, lead penetrates only into the root apoplast, and in this way remains harmless to cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号