首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Despite increased identification of spotted fever group rickettsioses (SFGR) in animals and arthropods, human SFGR are poorly characterized in Taiwan.

Methods

Patients with suspected Q fever, scrub typhus, murine typhus, leptospirosis, and dengue fever from April 2004 to December 2009 were retrospectively investigated for SFGR antibodies (Abs). Sera were screened for Rickettsia rickettsii Abs by indirect immunofluorescence antibody assay (IFA), and those with positive results were further examined for Abs against R. rickettsii, R. typhi, R. felis, R. conorii, and R. japonica using micro-immunofluorescence (MIF) tests. Polymerase chain reaction (PCR) for detection of SFGR DNA was applied in those indicated acute infections. Case geographic distribution was made by the geographic information system software.

Results

A total of 413 cases with paired serum, including 90 cases of Q fever, 47 cases of scrub typhus, 12 cases of murine typhus, 6 cases of leptospirosis, 3 cases of dengue fever, and 255 cases of unknown febrile diseases were investigated. Using IFA tests, a total of 49 cases with 47 (11.4%) and 4 (1.0%) cases had sera potentially positive for R. rickettsii IgG and IgM, respectively. In the 49 cases screened from IFA, MIF tests revealed that there were 5 cases of acute infections (3 possible R. felis and 2 undetermined SFGR) and 13 cases of past infections (3 possible R. felis and 10 undetermined SFGR). None of the 5 cases of acute infection had detectable SFGR DNA in the blood specimen by PCR. Possible acute infection of R. felis was identified in both one case of Q fever and scrub typhus. The geographic distribution of SFGR cases is similar with that of scrub typhus.

Conclusions

Human SFGR exist and are neglected diseases in southern Taiwan, particularly for the species closely-related to R. felis.  相似文献   

2.

Background

Rickettsioses are one of the most important causes of systemic febrile illness among travelers from developed countries, but little is known about their incidence in indigenous populations, especially in West Africa.

Methodology/Principal Findings

Overall seroprevalence evaluated by immunofluorescence using six rickettsial antigens (spotted fever and typhus group) in rural populations of two villages of the Sine-Saloum region of Senegal was found to be 21.4% and 51% for spotted fever group rickettsiae for Dielmo and Ndiop villages, respectively. We investigated the role of tick-borne rickettsiae as the cause of acute non-malarial febrile diseases in the same villages. The incidence of rickettsial DNA in 204 blood samples from 134 (62M and 72F) febrile patients negative for malaria was studied. DNA extracted from whole blood was tested by two qPCR systems. Rickettsial DNA was found in nine patients, eight with Rickettsia felis (separately reported). For the first time in West Africa, Rickettsia conorii was diagnosed in one patient. We also tested 2,767 Ixodid ticks collected in two regions of Senegal (Niakhar and Sine-Saloum) from domestic animals (cows, sheep, goats, donkeys and horses) by qPCR and identified five different pathogenic rickettsiae. We found the following: Rickettsia aeschlimannii in Hyalomma marginatum rufipes (51.3% and 44.8% in Niakhar and Sine-Saloum region, respectively), in Hyalomma truncatum (6% and 6.8%) and in Rhipicephalus evertsi evertsi (0.5%, only in Niakhar); R. c. conorii in Rh. e. evertsi (0.4%, only in Sine-Saloum); Rickettsia massiliae in Rhipicephalus guilhoni (22.4%, only in Niakhar); Rickettsia sibirica mongolitimonae in Hyalomma truncatum (13.5%, only in Sine-Saloum); and Rickettsia africae in Rhipicephalus evertsi evertsi (0.7% and 0.4% in Niakhar and Sine-Saloum region, respectively) as well as in Rhipicephalus annulatus (20%, only in Sine-Saloum). We isolated two rickettsial strains from H. truncatum: R. s. mongolitimonae and R. aeschlimannii.

Conclusions/Significance

We believe that together with our previous data on the high prevalence of R. africae in Amblyomma ticks and R. felis infection in patients, the presented results on the distribution of pathogenic rickettsiae in ticks and the first R. conorii case in West Africa show that the rural population of Senegal is at risk for other tick-borne rickettsioses, which are significant causes of febrile disease in this area.  相似文献   

3.

Background

Rickettsia heilongjiangensis, the agent of Far-Eastern spotted fever (FESF), is an obligate intracellular bacterium. The surface-exposed proteins (SEPs) of rickettsiae are involved in rickettsial adherence to and invasion of host cells, intracellular bacterial growth, and/or interaction with immune cells. They are also potential molecular candidates for the development of diagnostic reagents and vaccines against rickettsiosis.

Methods

R. heilongjiangensis SEPs were identified by biotin-streptavidin affinity purification and 2D electrophoreses coupled with ESI-MS/MS. Recombinant SEPs were probed with various sera to analyze their serological characteristics using a protein microarray and an enzyme-linked immune sorbent assay (ELISA).

Results

Twenty-five SEPs were identified, most of which were predicted to reside on the surface of R. heilongjiangensis cells. Bioinformatics analysis suggests that these proteins could be involved in bacterial pathogenesis. Eleven of the 25 SEPs were recognized as major seroreactive antigens by sera from R. heilongjiangensis-infected mice and FESF patients. Among the major seroreactive SEPs, microarray assays and/or ELISAs revealed that GroEL, OmpA-2, OmpB-3, PrsA, RplY, RpsB, SurA and YbgF had modest sensitivity and specificity for recognizing R. heilongjiangensis infection and/or spotted fever.

Conclusions

Many of the SEPs identified herein have potentially important roles in R. heilongjiangensis pathogenicity. Some of them have potential as serodiagnostic antigens or as subunit vaccine antigens against the disease.  相似文献   

4.
5.

Background

Rickettsia raoultii is a novel Rickettsia species recently isolated from Dermacentor ticks and classified within the spotted fever group (SFG). The inability of R. raoultii to spread within L929 cells suggests that this bacterium is unable to polymerize host cell actin, a property exhibited by all SFG rickettsiae except R. peacocki. This result led us to investigate if RickA, the protein thought to generate actin nucleation, was expressed within this rickettsia species.

Methodology/Principal Findings

Amplification and sequencing of R. raoultii rickA showed that this gene encoded a putative 565 amino acid protein highly homologous to those found in other rickettsiae. Using immunofluorescence assays, we determined that the motility pattern (i.e. microcolonies or cell-to-cell spreading) of R. raoultii was different depending on the host cell line in which the bacteria replicated. In contrast, under the same experimental conditions, R. conorii shares the same phenotype both in L929 and in Vero cells. Transmission electron microscopy analysis of infected cells showed that non-motile bacteria were free in the cytosol instead of enclosed in a vacuole. Moreover, western-blot analysis demonstrated that the defect of R. raoultii actin-based motility within L929 cells was not related to lower expression of RickA.

Conclusion/Significance

These results, together with previously published data about R. typhi, strongly suggest that another factor, apart from RickA, may be involved with be responsible for actin-based motility in bacteria from the Rickettsia genus.  相似文献   

6.
Rickettsia felis, the etiologic agent of spotted fever, is maintained in cat fleas by vertical transmission and resembles other tick-borne spotted fever group rickettsiae. In the present study, we utilized an Ixodes scapularis-derived tick cell line, ISE6, to achieve isolation and propagation of R. felis. A cytopathic effect of increased vacuolization was commonly observed in R. felis-infected cells, while lysis of host cells was not evident despite large numbers of rickettsiae. Electron microscopy identified rickettsia-like organisms in ISE6 cells, and sequence analyses of portions of the citrate synthase (gltA), 16S rRNA, Rickettsia genus-specific 17-kDa antigen, and spotted fever group-specific outer membrane protein A (ompA) genes and, notably, R. felis conjugative plasmids indicate that this cultivatable strain (LSU) was R. felis. Establishment of R. felis (LSU) in a tick-derived cell line provides an alternative and promising system for the expansion of studies investigating the interactions between R. felis and arthropod hosts.  相似文献   

7.

Background

To date, Alphavirus infections and their most prominent member, chikungunya fever, a viral disease which first became apparent in Tanzania in 1953, have been very little investigated in regions without epidemic occurrence. Few data exist on burden of disease and socio-economic and environmental covariates disposing to infection.

Methods

A cross-sectional seroprevalence study was undertaken in 1,215 persons from Mbeya region, South-Western Tanzania, to determine the seroprevalence of anti-Alphavirus IgG antibodies, and to investigate associated risk factors.

Results

18% of 1,215 samples were positive for Alphavirus IgG. Seropositivity was associated with participant age, low to intermediate elevation, flat terrain and with IgG positivity for Rift Valley fever, Flaviviridae, and rickettsiae of the spotted fever group. When comparing the geographical distribution of Alphavirus seropositivity to that of Rift Valley fever, it was obvious that Alphaviruses had spread more widely throughout the study area, while Rift Valley fever was concentrated along the shore of Lake Malawi.

Conclusion

Alphavirus infections may contribute significantly to the febrile disease burden in the study area, and are associated with several arthropod-borne infections. Their spread seems only limited by factors affecting mosquitoes, and seems less restricted than that of Rift Valley fever.  相似文献   

8.

Background

The role of pathogen-mediated febrile illness in sub-Saharan Africa is receiving more attention, especially in Southern Africa where four countries (including Namibia) are actively working to eliminate malaria. With a high concentration of livestock and high rates of companion animal ownership, the influence of zoonotic bacterial diseases as causes of febrile illness in Namibia remains unknown.

Methodology/Principal Findings

The aim of the study was to evaluate exposure to Coxiella burnetii, spotted fever and typhus group rickettsiae, and Bartonella henselae using IFA and ELISA (IgG) in serum collected from 319 volunteer blood donors identified by the Blood Transfusion Service of Namibia (NAMBTS). Serum samples were linked to a basic questionnaire to identify possible risk factors. The majority of the participants (64.8%) had extensive exposure to rural areas or farms. Results indicated a C. burnetii prevalence of 26.1% (screening titre 1∶16), and prevalence rates of 11.9% and 14.9% (screening titre 1∶100) for spotted fever group and typhus group rickettsiae, respectively. There was a significant spatial association between C. burnetii exposure and place of residence in southern Namibia (P<0.021). Donors with occupations involving animals (P>0.012), especially cattle (P>0.006), were also significantly associated with C. burnetii exposure. Males were significantly more likely than females to have been exposed to spotted fever (P<0.013) and typhus (P<0.011) group rickettsiae. Three (2.9%) samples were positive for B. henselae possibly indicating low levels of exposure to a pathogen never reported in Namibia.

Conclusions/Significance

These results indicate that Namibians are exposed to pathogenic fever-causing bacteria, most of which have flea or tick vectors/reservoirs. The epidemiology of febrile illnesses in Namibia needs further evaluation in order to develop comprehensive local diagnostic and treatment algorithms.  相似文献   

9.

Background

Rickettsia felis is a common emerging pathogen detected in mosquitoes in sub-Saharan Africa. We hypothesized that, as with malaria, great apes may be exposed to the infectious bite of infected mosquitoes and release R. felis DNA in their feces.

Methods

We conducted a study of 17 forest sites in Central Africa, testing 1,028 fecal samples from 313 chimpanzees, 430 gorillas and 285 bonobos. The presence of rickettsial DNA was investigated by specific quantitative real-time PCR. Positive results were confirmed by a second PCR using primers and a probe targeting a specific gene for R. felis. All positive samples were sequenced.

Results

Overall, 113 samples (11%) were positive for the Rickettsia-specific gltA gene, including 25 (22%) that were positive for R. felis. The citrate synthase (gltA) sequence and outer membrane protein A (ompA) sequence analysis indicated 99% identity at the nucleotide level to R. felis. The 88 other samples (78%) were negative using R. felis-specific qPCR and were compatible with R. felis-like organisms.

Conclusion

For the first time, we detected R. felis in wild-living ape feces. This non invasive detection of human pathogens in endangered species opens up new possibilities in the molecular epidemiology and evolutionary analysis of infectious diseases, beside HIV and malaria.  相似文献   

10.

Background

Rickettsia felis is a flea-associated rickettsial pathogen recurrently identified in both colonized and wild-caught cat fleas, Ctenocephalides felis. We hypothesized that within colonized fleas, the intimate relationship between R. felis and C. felis allows for the coordination of rickettsial replication and metabolically active periods during flea bloodmeal acquisition and oogenesis.

Methodology/Principal Findings

A quantitative real-time PCR assay was developed to quantify R. felis in actively feeding R. felis-infected fleas. In three separate trials, fleas were allowed to feed on cats, and a mean of 3.9×106 R. felis 17-kDa gene copies was detected for each flea. A distinct R. felis infection pattern was not observed in fleas during nine consecutive days of bloodfeeding. However, an inverse correlation between the prevalence of R. felis-infection, which ranged from 96% in Trial 1 to 35% in Trial 3, and the R. felis-infection load in individual fleas was identified. Expression of R. felis-infection load as a ratio of R. felis/C. felis genes confirmed that fleas in Trial 3 had significantly greater rickettsial loads than those in Trial 1.

Conclusion/Significance

Examining rickettsial infection dynamics in the flea vector will further elucidate the intimate relationship between R. felis and C. felis, and facilitate a more accurate understanding of the ecology and epidemiology of R. felis transmission in nature.  相似文献   

11.
12.

Background

The importance of tick-borne diseases is increasing all over the world, including Turkey. The tick-borne disease outbreaks reported in recent years and the abundance of tick species and the existence of suitable habitats increase the importance of studies related to the epidemiology of ticks and tick-borne pathogens in Turkey. The aim of this study was to investigate the presence of and to determine the infection rates of some tick-borne pathogens, including Babesia spp., Borrelia burgdorferi sensu lato and spotted fever group rickettsiae in the ticks removed from humans in different parts of Ankara.

Methodology/Principal Findings

A total of 169 ticks belonging to the genus Haemaphysalis, Hyalomma, Ixodes and Rhipicephalus were collected by removing from humans in different parts of Ankara. Ticks were molecularly screened for Babesia spp., Borrelia burgdorferi sensu lato and spotted fever group rickettsiae by PCR and sequencing analysis. We detected 4 Babesia spp.; B. crassa, B. major, B. occultans and B. rossi, one Borrelia spp.; B. burgdorferi sensu stricto and 3 spotted fever group rickettsiae; R. aeschlimannii, R. slovaca and R. hoogstraalii in the tick specimens analyzed. This is the report showing the presence of B. rossi in a region that is out of Africa and in the host species Ha. parva. In addition, B. crassa, for which limited information is available on its distribution and vector species, and B. occultans, for which no conclusive information is available on its presence in Turkey, were identified in Ha. parva and H. marginatum, respectively. Two human pathogenic rickettsia species (R. aeschlimannii and R. slovaca) were detected with a high prevalence in ticks. Additionally, B. burgdorferi sensu stricto was detected in unusual tick species (H. marginatum, H. excavatum, Hyalomma spp. (nymph) and Ha. parva).

Conclusions/Significance

This study investigates both the distribution of several tick-borne pathogens affecting humans and animals, and the presence of new tick-borne pathogens in Turkey. More epidemiological studies are warranted for B. rossi, which is very pathogenic for dogs, because the presented results suggest that B. rossi might have a wide distribution in Turkey. Furthermore, we recommend that tick-borne pathogens, especially R. aeschlimannii, R. slovaca, and B. burgdorferi sensu stricto, should be taken into consideration in patients who had a tick bite in Turkey.  相似文献   

13.

Aim

It has been reported that bone marrow-derived cells (BMDC) can be original cells of mouse gastric cancers induced by Helicobacter felis (H. felis) infection. However, it is unknown whether BMDCs are also the original cells of mouse gastrointestinal cancers induced by gastric carcinogens N-nitroso-N-methylurea (NMU) and H. felis infection.

Methods

C57BL/6 recipient mice were initially irradiated with 10Gy X-ray, reconstituted with bone marrow cells from the C57BL/6-Tg (CAG-EGFP) donor mice to label BMDCs with green fluorescence protein (GFP). After 4 weeks of recovery, the bone marrow-transplanted mice were given NMU in drinking water (240 ppm) and subsequently infected with H. felis by gavage. Eighty weeks later, all mice were euthanized for pathological examination. The BMDCs expressing GFP were detected in tissues using direct GFP fluorescence confocal microscopy analysis and immunohistochemistry staining (IHC) assays.

Results

Neoplastic lesions were induced by NMU treatment and/or H. felis infection at the antrum of the glandular stomach and small intestine. In the direct GFP fluorescence confocal assay, GFP(+) epithelial cell cluster or glands were not observed in these gastrointestinal tumors, however, most GFP(+) BMDCs sporadically located in the tumor stromal tissues. Some of these GFP(+) stromal BMDCs co-expressed the hematopoietic marker CD45 or myofibroblasts markers αSMA and SRF. In the indirect GFP IHC assay, similar results were observed among 11 gastric intraepithelial neoplasia lesions and 2 small intestine tumors.

Conclusion

These results demonstrated that BMDCs might not be the source of gastrointestinal tumor cells induced by NMU and/or H. felis infection.  相似文献   

14.

Background

Completed genome sequences are rapidly increasing for Rickettsia, obligate intracellular α-proteobacteria responsible for various human diseases, including epidemic typhus and Rocky Mountain spotted fever. In light of phylogeny, the establishment of orthologous groups (OGs) of open reading frames (ORFs) will distinguish the core rickettsial genes and other group specific genes (class 1 OGs or C1OGs) from those distributed indiscriminately throughout the rickettsial tree (class 2 OG or C2OGs).

Methodology/Principal Findings

We present 1823 representative (no gene duplications) and 259 non-representative (at least one gene duplication) rickettsial OGs. While the highly reductive (∼1.2 MB) Rickettsia genomes range in predicted ORFs from 872 to 1512, a core of 752 OGs was identified, depicting the essential Rickettsia genes. Unsurprisingly, this core lacks many metabolic genes, reflecting the dependence on host resources for growth and survival. Additionally, we bolster our recent reclassification of Rickettsia by identifying OGs that define the AG (ancestral group), TG (typhus group), TRG (transitional group), and SFG (spotted fever group) rickettsiae. OGs for insect-associated species, tick-associated species and species that harbor plasmids were also predicted. Through superimposition of all OGs over robust phylogeny estimation, we discern between C1OGs and C2OGs, the latter depicting genes either decaying from the conserved C1OGs or acquired laterally. Finally, scrutiny of non-representative OGs revealed high levels of split genes versus gene duplications, with both phenomena confounding gene orthology assignment. Interestingly, non-representative OGs, as well as OGs comprised of several gene families typically involved in microbial pathogenicity and/or the acquisition of virulence factors, fall predominantly within C2OG distributions.

Conclusion/Significance

Collectively, we determined the relative conservation and distribution of 14354 predicted ORFs from 10 rickettsial genomes across robust phylogeny estimation. The data, available at PATRIC (PathoSystems Resource Integration Center), provide novel information for unwinding the intricacies associated with Rickettsia pathogenesis, expanding the range of potential diagnostic, vaccine and therapeutic targets.  相似文献   

15.

Background

Characteristic skin lesions play a key role in clinical diagnosis of spotted fever group rickettsioses and this study describes these cutaneous manifestations along with basic histological features.

Methods and Findings

Study was conducted at Medical Unit, Teaching Hospital, Peradeniya, from November 2009 to October 2011, where a prospective data base of all rickettsial infections is maintained. Confirmation of diagnosis was made when IgM and IgG immunofluorescent antibody titre of 1/32 and >1/256 respectively. Of the 210 clinical cases, 134 had cutoff antibody titers for Rickettsia conorii antigen for confirmation. All these 134 patients had fever and skin rash, and of them 132(98%) had discrete maculopapular rash while eight (6%) had fern leaf type skin necrosis. Eight patients (6%) had healed tick bite marks. Average size of a skin lesion was 5 mm and rash involved 52% of body surface, distributed mainly in limbs and back of the chest. Generally the facial and leg skin was slightly oedematous particularly in old aged patients. Sixteen patients (12%) had pain and swelling of ankle joints where swelling extended to feet and leg. Biopsies from skin rash of six patients showed evidence of cutaneous vasculitis and of them, 247 bp region of the 17-kDa spotted fever group specific protein antigen was amplified using PCR.

Conclusions

A discrete maculopapular rash and occasional variations such as fern leaf shape necrosis and arthritis are found in spotted fever group. Histology found vasculitis as the pathology of these lesions.  相似文献   

16.
17.

Background

The bacterium Salmonella enterica serovar Typhi causes typhoid fever, which is typically associated with fever and abdominal pain. An outbreak of typhoid fever in Malawi-Mozambique in 2009 was notable for a high proportion of neurologic illness.

Objective

Describe neurologic features complicating typhoid fever during an outbreak in Malawi-Mozambique

Methods

Persons meeting a clinical case definition were identified through surveillance, with laboratory confirmation of typhoid by antibody testing or blood/stool culture. We gathered demographic and clinical information, examined patients, and evaluated a subset of patients 11 months after onset. A sample of persons with and without neurologic signs was tested for vitamin B6 and B12 levels and urinary thiocyanate.

Results

Between March – November 2009, 303 cases of typhoid fever were identified. Forty (13%) persons had objective neurologic findings, including 14 confirmed by culture/serology; 27 (68%) were hospitalized, and 5 (13%) died. Seventeen (43%) had a constellation of upper motor neuron findings, including hyperreflexia, spasticity, or sustained ankle clonus. Other neurologic features included ataxia (22, 55%), parkinsonism (8, 20%), and tremors (4, 10%). Brain MRI of 3 (ages 5, 7, and 18 years) demonstrated cerebral atrophy but no other abnormalities. Of 13 patients re-evaluated 11 months later, 11 recovered completely, and 2 had persistent hyperreflexia and ataxia. Vitamin B6 levels were markedly low in typhoid fever patients both with and without neurologic signs.

Conclusions

Neurologic signs may complicate typhoid fever, and the diagnosis should be considered in persons with acute febrile neurologic illness in endemic areas.  相似文献   

18.

Background

Isolation of Rickettsia species from skin biopsies may be replaced by PCR. We evaluated culture sensitivity compared to PCR based on sampling delay and previous antibiotic treatment.

Methodology/Principal Findings

Skin biopsies and ticks from patients with suspected Rickettsia infection were screened for Rickettsia spp. using qPCR, and positive results were amplified and sequenced for the gltA and ompA genes. Immunofluorescence for spotted fever group rickettsial antigens was done for 79 patients. All skin biopsies and only ticks that tested positive using qPCR were cultured in human embryonic lung (HEL) fibroblasts using the centrifugation-shell vial technique. Patients and ticks were classified as definitely having rickettsioses if there was direct evidence of infection with a Rickettsia sp. using culture or molecular assays or in patients if serology was positive. Data on previous antibiotic treatments were obtained for patients with rickettsiosis. Rickettsia spp. infection was diagnosed in 47 out of 145 patients (32%), 41 by PCR and 12 by culture, whereas 3 isolates were obtained from PCR negative biopsies. For 3 of the patients serology was positive although PCR and culture were negative. Rickettsia africae was the most common detected species (n = 25, [17.2%]) and isolated bacterium (n = 5, [3.4%]). The probability of isolating Rickettsia spp. was 12 times higher in untreated patients and 5.4 times higher in patients from our hometown. Rickettsia spp. was amplified in 24 out of 95 ticks (25%) and we isolated 7 R. slovaca and 1 R. raoultii from Dermacentor marginatus.

Conclusions/Significance

We found a positive correlation between the bacteria copies and the isolation success in skin biopsies and ticks. Culture remains critical for strain analysis but is less sensitive than serology and PCR for the diagnosis of a Rickettsia infection.  相似文献   

19.

Background

There are limited data on the etiology and characteristics of bloodstream infections in children presenting in hospital outpatient settings in South Asia. Previous studies in Nepal have highlighted the importance of murine typhus as a cause of febrile illness in adults and enteric fever as a leading bacterial cause of fever among children admitted to hospital.

Methods

We prospectively studied a total of 1084 febrile children aged between 2 months and 14 years presenting to a general hospital outpatient department in Kathmandu Valley, Nepal, over two study periods (summer and winter). Blood from all patients was tested by conventional culture and by real-time PCR for Rickettsia typhi.

Results

Putative etiological agents for fever were identified in 164 (15%) patients. Salmonella enterica serovar Typhi (S. Typhi) was identified in 107 (10%), S. enterica serovar Paratyphi A (S. Paratyphi) in 30 (3%), Streptococcus pneumoniae in 6 (0.6%), S. enterica serovar Typhimurium in 2 (0.2%), Haemophilus influenzae type b in 1 (0.1%), and Escherichia coli in 1 (0.1%) patient. S. Typhi was the most common organism isolated from blood during both summer and winter. Twenty-two (2%) patients were PCR positive for R. typhi. No significant demographic, clinical and laboratory features distinguished culture positive enteric fever and murine typhus.

Conclusions

Salmonella infections are the leading cause of bloodstream infection among pediatric outpatients with fever in Kathmandu Valley. Extension of immunization programs against invasive bacterial disease to include the agents of enteric fever and pneumococcus could improve the health of children in Nepal.  相似文献   

20.

Background

There is higher rate of R. felis infection among febrile patients than in healthy people in Sub-Saharan Africa, predominantly in the rainy season. Mosquitoes possess a high vectorial capacity and, because of their abundance and aggressiveness, likely play a role in rickettsial epidemiology.

Methodology/Principal Findings

Quantitative and traditional PCR assays specific for Rickettsia genes detected rickettsial DNA in 13 of 848 (1.5%) Anopheles mosquitoes collected from Côte d’Ivoire, Gabon, and Senegal. R. felis was detected in one An. gambiae molecular form S mosquito collected from Kahin, Côte d’Ivoire (1/77, 1.3%). Additionally, a new Rickettsia genotype was detected in five An. gambiae molecular form S mosquitoes collected from Côte d’Ivoire (5/77, 6.5%) and one mosquito from Libreville, Gabon (1/88, 1.1%), as well as six An. melas (6/67, 9%) mosquitoes collected from Port Gentil, Gabon. A sequence analysis of the gltA, ompB, ompA and sca4 genes indicated that this new Rickettsia sp. is closely related to R. felis. No rickettsial DNA was detected from An. funestus, An. arabiensis, or An. gambiae molecular form M mosquitoes. Additionally, a BLAST analysis of the gltA sequence from the new Rickettsia sp. resulted in a 99.71% sequence similarity to a species (JQ674485) previously detected in a blood sample of a Senegalese patient with a fever from the Bandafassi village, Kedougou region.

Conclusion

R. felis was detected for the first time in An. gambiae molecular form S, which represents the major African malaria vector. The discovery of R. felis, as well as a new Rickettsia species, in mosquitoes raises new issues with respect to African rickettsial epidemiology that need to be investigated, such as bacterial isolation, the degree of the vectorial capacity of mosquitoes, the animal reservoirs, and human pathogenicity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号