首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Blood–brain barrier (BBB) disruption occurring within the first few hours of ischemic stroke onset is closely associated with hemorrhagic transformation following thrombolytic therapy. However, the mechanism of this acute BBB disruption remains unclear. In the neurovascular unit, neurons do not have direct contact with the endothelial barrier; however, they are highly sensitive and vulnerable to ischemic injury, and may act as the initiator for disrupting BBB when cerebral ischemia occurs. Herein, we employed oxygen–glucose deprivation (OGD) and an in vitro BBB system consisting of brain microvascular cells and astrocytes to test this hypothesis. Neurons (CATH.a cells) were exposed to OGD for 3‐h before co‐culturing with endothelial monolayer (bEnd 3 cells), or endothelial cells plus astrocytes (C8‐D1A cells). Incubation of OGD‐treated neurons with endothelial monolayer alone did not increase endothelial permeability. However, when astrocytes were present, the endothelial permeability was significantly increased, which was accompanied by loss of occludin and claudin‐5 proteins as well as increased vascular endothelial growth factor (VEGF) secretion into the conditioned medium. Importantly, all these changes were abolished when VEGF was knocked down in astrocytes by siRNA. Our findings suggest that ischemic neurons activate astrocytes to increase VEGF production, which in turn induces endothelial barrier disruption.

  相似文献   


2.
Ischaemic strokes evoke blood–brain barrier (BBB) disruption and oedema formation through a series of mechanisms involving Rho‐kinase activation. Using an animal model of human focal cerebral ischaemia, this study assessed and confirmed the therapeutic potential of Rho‐kinase inhibition during the acute phase of stroke by displaying significantly improved functional outcome and reduced cerebral lesion and oedema volumes in fasudil‐ versus vehicle‐treated animals. Analyses of ipsilateral and contralateral brain samples obtained from mice treated with vehicle or fasudil at the onset of reperfusion plus 4 h post‐ischaemia or 4 h post‐ischaemia alone revealed these benefits to be independent of changes in the activity and expressions of oxidative stress‐ and tight junction‐related parameters. However, closer scrutiny of the same parameters in brain microvascular endothelial cells subjected to oxygen–glucose deprivation ± reperfusion revealed marked increases in prooxidant NADPH oxidase enzyme activity, superoxide anion release and in expressions of antioxidant enzyme catalase and tight junction protein claudin‐5. Cotreatment of cells with Y‐27632 prevented all of these changes and protected in vitro barrier integrity and function. These findings suggest that inhibition of Rho‐kinase after acute ischaemic attacks improves cerebral integrity and function through regulation of endothelial cell oxidative stress and reorganization of intercellular junctions.

  相似文献   


3.

Background

Disruption to the blood brain barrier (BBB) is a leading factor associated with the development of postoperative cognitive dysfunction (POCD). Despite this, the underlying mechanism by which BBB disruption promotes POCD in the elderly population has not yet been not fully elucidated.

Results

In this study, we established a POCD mice model using isoflurane, and observed the highly expressed occludin and claudin 5 in brain tissues concomitant with the increased enrichment of CD4 positive cells and NK cells in the hippocampus of POCD mice compared to normal and non-POCD control.

Conclusions

Our data suggests that peripheral immune cells may participate in the inflammatory reaction within the hippocampus, following the administration of anesthesia via inhalation with the destruction of the blood-brain barrier.
  相似文献   

4.
The dysfunction of the blood‐brain barrier (BBB) is one of the main pathological features of Alzheimer's disease (AD). Memantine (MEM), an N‐methyl‐d ‐aspartate (NMDA) receptor antagonist, has been reported that been used widely for AD therapy. This study was performed to demonstrate the role of the MEM in regulating BBB permeability in AD microenvironment as well as its possible mechanisms. The present study showed that LINC00094 was dramatically increased in Abeta1‐42‐incubated microvascular endothelial cells (ECs) of BBB model in vitro. Besides, it was decreased in MEM‐incubated ECs. Silencing LINC00094 significantly decreased BBB permeability, meanwhile up‐regulating the expression of ZO‐1, occludin and claudin‐5. Furthermore, silencing LINC00094 enhance the effect of MEM on decreasing BBB permeability in AD microenvironment. The analysis of the mechanism demonstrated that reduction of LINC00094 inhibited Endophilin‐1 expression by up‐regulating miR‐224‐4p/miR‐497‐5p, promoted the expression of ZO‐1, occludin and claudin‐5, and ultimately alleviated BBB permeability in AD microenvironment. Taken together, the present study suggests that the MEM/LINC00094/miR‐224‐5p (miR‐497‐5p)/Endophilin‐1 axis plays a crucial role in the regulation of BBB permeability in AD microenvironment. Silencing LINC00094 combined with MEM provides a novel target for the therapy of AD.  相似文献   

5.

Background

RNA interference is a powerful method for the knockdown of pathologically relevant genes. The in vivo delivery of siRNAs, preferably through systemic, nonviral administration, poses the major challenge in the therapeutic application of RNAi. Small interfering RNA (siRNA) complexation with polyethylenimines (PEI) may represent a promising strategy for siRNA‐based therapies and, recently, the novel branched PEI F25‐LMW has been introduced in vitro. Vascular endothelial growth factor (VEGF) is frequently overexpressed in tumors and promotes tumor growth, angiogenesis and metastasis and thus represents an attractive target gene in tumor therapy.

Methods

In subcutaneous tumor xenograft mouse models, we established the therapeutic efficacy and safety of PEI F25‐LMW/siRNA‐mediated knockdown of VEGF. In biodistribution and siRNA quantification studies, we optimized administration strategies and, employing chemically modified siRNAs, compared the anti‐tumorigenic efficacies of: (i) PEI/siRNA‐mediated VEGF targeting; (ii) treatment with the monoclonal anti‐VEGF antibody Bevacizumab (Avastin®); and (iii) a combination of both.

Results

Efficient siRNA delivery is observed upon systemic administration, with the biodistribution being dependent on the mode of injection. Toxicity studies reveal no hepatotoxicity, proinflammatory cytokine induction or other side‐effects of PEI F25‐LMW/siRNA complexes or polyethylenimine, and tumor analyses show efficient VEGF knockdown upon siRNA delivery, leading to reduced tumor cell proliferation and angiogenesis. The determination of anti‐tumor effects reveals that, in pancreas carcinoma xenografts, single treatment with PEI/siRNA complexes or Bevacizumab is already highly efficacious, whereas, in prostate carcinoma, synergistic effects of both treatments are observed.

Conclusions

PEI F25‐LMW/siRNA complexes, which can be stored frozen as opposed to many other carriers, represent an efficient, safe and promising avenue in anti‐tumor therapy, and PEI/siRNA‐mediated, therapeutic VEGF knockdown exerts anti‐tumor effects. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
Streptococcus suis serotype 2 (SS2) is a zoonotic agent that causes meningitis in humans and pigs. However, the mechanism whereby SS2 crosses the microvasculature endothelium of the brain is not understood. In this study, transposon (TnYLB‐1) mutagenesis was used to identify virulence factors potentially associated with invasive ability in pathogenic SS2. A poorly invasive mutant was identified and was found to contain a TnYLB‐1 insertion in the serine/threonine kinase (stk) gene. Transwell chambers containing hBMECs were used to model the blood–brain barrier (BBB). We observed that the SS2 wild‐type ZY05719 strain crossed the BBB model more readily than the mutant strain. Hence, we speculated that STK is associated with the ability of crossing blood–brain barrier in SS2. In vitro, compared with ZY05719, the ability of the stk‐deficient strain (Δstk) to adhere to and invade both hBMECs and bEnd.3 cells, as well as to cross the BBB, was significantly attenuated. Immunocytochemistry using antibodies against claudin‐5 in bEnd.3 cells showed that infection by ZY05719 disrupted BBB tight junction proteins to a greater extent than in infection by Δstk. The studies revealed that SS2 initially binds at or near intercellular junctions and crosses the BBB via paracellular traversal. Claudin‐5 mRNA levels were indistinguishable in ZY05719‐ and Δstk‐infected cells. This result indicated that the decrease of claudin‐5 was maybe induced by protein degradation. Cells infected by ZY05719 exhibited higher ubiquitination levels than cells infected by Δstk. This result indicated that ubiquitination was involved in the degradation of claudin‐5. Differential proteomic analysis showed that E3 ubiquitin protein ligase HECTD1 decreased by 1.5‐fold in Δstk‐infected bEnd.3 cells relative to ZY05719‐infected cells. Together, the results suggested that STK may affect the expression of E3 ubiquitin ligase HECTD1 and subsequently increase the degradation of claudin‐5, thus enabling SS2 to traverse the BBB.  相似文献   

7.
The remodelling of structural and functional neurovascular unit (NVU) becomes a central therapeutic strategy after cerebral ischaemic stroke. In the present study, we investigated the effect of combined therapy of sodium ferulate (SF), n‐butylidenephthalide (BP) and adipose‐derived stromal cells (ADSCs) to ameliorate the injured NVU in the photochemically induced thrombotic stroke in rats. After solely or combined treatment, the neovascularization, activation of astrocytes, neurogenesis, expressions of vascular endothelial growth factor (VEGF) and claudin‐5 were assessed by immunohistochemical or immunofluorescence staining. In order to uncover the underlying mechanism of therapeutic effect, signalling of protein kinase B/mammalian target of rapamycin (AKT/mTOR), extracellular signal‐regulated kinase 1/2 (ERK1/2), and Notch1 in infarct zone were analysed by western blot. 18F‐2‐deoxy‐glucose/positron emission tomography, magnetic resonance imaging, Evans blue staining were employed to evaluate the glucose metabolism, cerebral blood flow (CBF), and brain‐blood barrier (BBB) permeability, respectively. The results showed that combined treatment increased the neovascularization, neurogenesis, and VEGF secretion, modulated the astrocyte activation, enhanced the regional CBF, and glucose metabolism, as well as reduced BBB permeability and promoted claudin‐5 expression, indicating the restoration of structure and function of NVU. The activation of ERK1/2 and Notch1 pathways and inhibition of AKT/mTOR pathway might be involved in the therapeutic mechanism. In summary, we have demonstrated that combined ADSCs with SF and BP, targeting the NVU remodelling, is a potential treatment for ischaemic stroke. These results may provide valuable information for developing future combined cellular and pharmacological therapeutic strategy for ischaemic stroke.  相似文献   

8.

Background

A variety of synthetic carriers, such as cationic polymers and lipids, have been used as nonviral carriers for small interfering RNA (siRNA) delivery. Although siRNA polyplexes and lipoplexes exhibited good gene silencing efficiencies, they often showed serious cytotoxicities, which are not useful for clinical applications. A double‐stranded RNA binding cellular protein with highly specific siRNA binding property and noncytotoxicity was used for siRNA delivery.

Methods

A double‐stranded RNA binding domain (dsRBD) of human double‐stranded RNA activated protein kinase R was genetically produced and utilized to complex siRNA for intracellular delivery. For characterization of the siRNA/dsRBD complexes, decomplexation assay and RNase protection assay were performed. Cytotoxicity and target gene inhibition ability were also examined using human carcinoma cell lines.

Results

The recombinantly produced polypeptide dsRBD exhibited its inherent binding activity for siRNA without sequence specificity, and the siRNA/dsRBD complexes protected siRNA from degradation by ribonucleases. Green fluorescent protein (GFP) siRNA/dsRBD complexes showed prominent down‐regulation of a target GFP gene, when an endosomal escape function was supplemented by addition of a fusogenic peptide, KALA, in the formulation.

Conclusions

The results suggest that dsRBD‐based protein carriers could be successfully applied for a wide range of therapeutic siRNAs for intracellular gene inhibition without showing any cytotoxicity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

9.

Background

The blood-brain barrier (BBB), blood-spinal cord barrier (BSCB), and blood-cerebrospinal fluid barrier (BCSFB) control cerebral/spinal cord homeostasis by selective transport of molecules and cells from the systemic compartment. In the spinal cord and brain of both ALS patients and animal models, infiltration of T-cell lymphocytes, monocyte-derived macrophages and dendritic cells, and IgG deposits have been observed that may have a critical role in motor neuron damage. Additionally, increased levels of albumin and IgG have been found in the cerebrospinal fluid in ALS patients. These findings suggest altered barrier permeability in ALS. Recently, we showed disruption of the BBB and BSCB in areas of motor neuron degeneration in the brain and spinal cord in G93A SOD1 mice modeling ALS at both early and late stages of disease using electron microscopy. Examination of capillary ultrastructure revealed endothelial cell degeneration, which, along with astrocyte alteration, compromised the BBB and BSCB. However, the effect of these alterations upon barrier function in ALS is still unclear. The aim of this study was to determine the functional competence of the BSCB in G93A mice at different stages of disease.

Methodology/Principal Findings

Evans Blue (EB) dye was intravenously injected into ALS mice at early or late stage disease. Vascular leakage and the condition of basement membranes, endothelial cells, and astrocytes were investigated in cervical and lumbar spinal cords using immunohistochemistry. Results showed EB leakage in spinal cord microvessels from all G93A mice, indicating dysfunction in endothelia and basement membranes and confirming our previous ultrastructural findings on BSCB disruption. Additionally, downregulation of Glut-1 and CD146 expressions in the endothelial cells of the BSCB were found which may relate to vascular leakage.

Conclusions/Significance

Results suggest that the BSCB is compromised in areas of motor neuron degeneration in ALS mice at both early and late stages of the disease.  相似文献   

10.
Blood–brain barrier (BBB) dysfunction is considered to be an early event in the pathogenesis of a variety of neurological diseases in old patients, and this could occur in old people even when facing common stress. However, the mechanism remains to be defined. In this study, we tested the hypothesis that decreased melatonin levels may account for the BBB disruption in old mice challenged with lipopolysaccharide (LPS), which mimicked the common stress of sepsis. Mice (24–28 months of age) received melatonin (10 mg kg?1 day?1, intraperitoneally, i.p.) or saline for one week before exposing to LPS (1 mg kg?1, i.p.). Evan's blue dye (EB) and immunoglobulin G (IgG) leakage were used to assess BBB permeability. Immunostaining and Western blot were used to detect protein expression and distribution. Our results showed that LPS significantly increased BBB permeability in old mice accompanied by the degradation of tight junction proteins occludin and claudin‐5, suppressed AMP‐activated protein kinase (AMPK) activation, and elevated gp91phox protein expression. Interestingly, administration of melatonin for one week significantly decreased LPS‐induced BBB disruption, AMPK suppression, and gp91phox upregualtion. Moreover, activation of AMPK with metformin significantly inhibited LPS‐induced gp91phox upregualtion in endothelial cells. Taken together, our findings demonstrate that melatonin alleviates LPS‐induced BBB disruption through activating AMPK and inhibiting gp91phox upregulation in old mice.  相似文献   

11.
BackgroundThe leakage of blood-brain barrier (BBB) is main pathophysiological change in acute stage of ischemic stroke, which not only deteriorates neurological function, but also increases the risk of hemorrhagic transformation after thrombolysis.Purpose/Study DesignThis article investigates the efficacy of Notoginsenoside R1, an active ingredient of Panax notoginseng, on BBB permeability and explores related mechanisms after acute ischemic stroke.MethodsIn vivo, male Sprague-Dawley rats (260–280 g) were selected and randomly divided into 6 groups: sham group, model group, low, middle and high doses of Notoginsenoside R1 groups and positive drug Dl-3-n-Butylphthalide group. Except for sham group, rats were performed with permanent middle cerebral artery occlusion model in each group. Twelve hours later, rats were evaluated for Bederson neurological function, and BBB integrity by Evans blue leak imaging; Triphenyltetrazolium chloride staining was used to detect the volume of cerebral infarction. Frozen sections of rats’ brain tissue were prepared for detection of MMPs activity in situ zymography. Peripheral tissue of cerebral infarction was collected and tested the expression of MMP2, 9 and tight junction proteins (zo1, claudin5, occludin) by western blot. In vitro, transwell endothelial barrier model was established by bEnd.3 cells. Oxygen glucose deprivation (OGD) was chosen to simulate the hypoxic environment. Suitable OGD stimulation time as well as Notoginsenoside R1 and Dl-3-n-Butylphthalide optimal dose concentrations were determined through transwell leakage and CCK8 assay. Furthermore, endothelial subcellular component proteins were extracted. The change of zo1, claudin5, occludin and caveolin1 was detected by western blot.ResultsNotoginsenoside R1 treatment significantly reduced BBB leakage and cerebral infarction volume, weakened neurological deficits in post-stroke rats. Moreover, it inhibited the activity of MMPs in infarcted cortex and striatum, down-regulated MMP2, 9 and up-regulated zo1 and claudin5 expressions in penumbra. In vitro, Notoginsenoside R1 treatment decreased OGD-induced endothelial barrier permeability, restored expressions of zo1, claudin5 on cellular membrane and cytoplasm, as well as mediated membrane redistribution of occludin and caveolin1 from actin cytoskeletal fraction.ConclusionsNotoginsenoside R1 treatment attenuates BBB permeability, cerebral infarction volume and neurological impairments in rats with acute cerebral ischemia. The mechanisms might be related to intervening degradation and redistribution of zo1, caludin5 and occludin by caveolin1/ MMP2/9 pathway. More effects and mechanisms of Notoginsenoside R1 on rehabilitation of stroke are worthy to be explored in the future.  相似文献   

12.

Background

Small interfering RNA (siRNA) has been recognized as a new therapeutic drug to treat various diseases by inhibition of oncogene or viral gene expression. Because hyaluronic acid (HA) has been described as a biocompatible biomaterial, we tested the nanoparticles formed by electrostatic complexation of negatively‐charged HA and cationic poly L ‐arginine (PLR) for siRNA delivery systems.

Methods

Different electrostatic complexes of HA and PLR (HPs) were formulated: HP101 with 50% (w/w) HA and HP110 with 9% (w/w) HA.

Results

Gel retardation assays showed that HP101 and HP110 could form complexes with siRNAs. The diameters of these complexes were less than 200 nm. Cellular delivery efficiency of siRNAs by HPs depended on cell surface CD44 density. The HP‐mediated delivery of siRNAs was highest in WM266.4 cells followed by B16F10 cells and COS‐7 cells, in parallel with CD44 surface densities of these cell lines. TC50 values (i.e. the HP concentrations at which 50% of cells were viable after treatment) were used as indicators of cytotoxicity. HP101 showed TC50 values that were 2‐fold and 23‐fold higher than those of HP110 and PLR, respectively. After delivery into cells, siRNA exerted target‐specific RNA interference effects on mRNA and protein levels. Three days after treatment of red fluorescent protein (RFP)‐expressing B16F10 cells with RFP‐specific siRNA complexed to HP101, cellular fluorescence signals were reduced. Intratumoral administration of RFP‐specific siRNA via HP101 delivery significantly reduced the expression of RFP in tumor tissues.

Conclusions

HP101 may function as a biocompatible polymeric carrier of siRNAs and have possible application to localized siRNA delivery in vivo. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

13.
The objectives of this study were to establish pure blood–nerve barrier (BNB) and blood–brain barrier (BBB)‐derived pericyte cell lines of human origin and to investigate their unique properties as barrier‐forming cells. Brain and peripheral nerve pericyte cell lines were established via transfection with retrovirus vectors incorporating human temperature‐sensitive SV40 T antigen (tsA58) and telomerase. These cell lines expressed several pericyte markers such as α‐smooth muscle actin, NG2, platelet‐derived growth factor receptor β, whereas they did not express endothelial cell markers such as vWF and PECAM. In addition, the inulin clearance was significantly lowered in peripheral nerve microvascular endothelial cells (PnMECs) through the up‐regulation of claudin‐5 by soluble factors released from brain or peripheral nerve pericytes. In particular, bFGF secreted from peripheral nerve pericytes strengthened the barrier function of the BNB by increasing the expression of claudin‐5. Peripheral nerve pericytes may regulate the barrier function of the BNB, because the BNB does not contain cells equivalent to astrocytes which regulate the BBB function. Furthermore, these cell lines expressed several neurotrophic factors such as NGF, BDNF, and GDNF. The secretion of these growth factors from peripheral nerve pericytes might facilitate axonal regeneration in peripheral neuropathy. Investigation of the characteristics of peripheral nerve pericytes may provide novel strategies for modifying BNB functions and promoting peripheral nerve regeneration. J. Cell. Physiol. 226: 255–266, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Drug delivery to the brain for the treatment of pathologies with a CNS component is a significant clinical challenge. P‐glycoprotein (PgP), a drug efflux pump in the endothelial cell membrane, is a major factor in preventing therapeutics from crossing the blood‐brain barrier (BBB). Identifying PgP regulatory mechanisms is key to developing agents to modulate PgP activity. Previously, we found that PgP trafficking was altered concomitant with increased PgP activity and disassembly of high molecular weight PgP‐containing complexes during acute peripheral inflammatory pain. These data suggest that PgP activity is post‐translationally regulated at the BBB. The goal of the current study was to identify proteins that co‐localize with PgP in rat brain microvessel endothelial cell membrane microdomains and use the data to suggest potential regulatory mechanisms. Using new density gradients of microvessel homogenates, we identified two unique pools (1,2) of PgP in membrane fractions. Caveolar constituents, caveolin1, cavin1, and cavin2, co‐localized with PgP in these fractions indicating the two pools contained caveolae. A chaperone (Hsc71), protein disulfide isomerase and endosomal/lysosomal sorting proteins (Rab5, Rab11a) also co‐fractionated with PgP in the gradients. These data suggest signaling pathways with a potential role in post‐translational regulation of PgP activity at the BBB.

  相似文献   


15.
Adropin is expressed in the CNS and plays a crucial role in the development of stroke. However, little is currently known about the effects of adropin on the blood‐brain barrier (BBB) function after intracerebral hemorrhage (ICH). In this study, the role of adropin in collagenase‐induced ICH was investigated in mice. At 1‐h post‐ICH, mice were administered with recombinant human adropin by intranasal. Brain water +content, BBB permeability, and neurological function were measured at different time intervals. Proteins were quantified using western blot analysis, and the localizations of adropin and Notch1 were visualized via immunofluorescence staining. It is shown that adropin reduced brain water content and improved neurological functions. Adropin preserved the functionality of BBB by increasing N‐cadherin expression and reducing extravasation of albumin. Moreover, in vivo knockdown of Notch1 and Hes1 both abolished the protective effects of adropin. Taken together, our data demonstrate that adropin constitutes a potential treatment value for ICH by preserving BBB and improving functional outcomes through the Notch1 signaling pathway.

  相似文献   

16.

Background

Recent advances toward an effective therapy for prion diseases employ RNA interference to suppress PrPC expression and subsequent prion neuropathology, exploiting the phenomenon that disease severity and progression correlate with host PrPC expression levels. However, delivery of lentivirus encoding PrP shRNA has demonstrated only modest efficacy in vivo.

Methodology/Principal Findings

Here we describe a new siRNA delivery system incorporating a small peptide that binds siRNA and acetylcholine receptors (AchRs), acting as a molecular messenger for delivery to neurons, and cationic liposomes that protect siRNA-peptide complexes from serum degradation.

Conclusions/Significance

Liposome-siRNA-peptide complexes (LSPCs) delivered PrP siRNA specifically to AchR-expressing cells, suppressed PrPC expression and eliminated PrPRES formation in vitro. LSPCs injected intravenously into mice resisted serum degradation and delivered PrP siRNA throughout the brain to AchR and PrPC-expressing neurons. These data promote LSPCs as effective vehicles for delivery of PrP and other siRNAs specifically to neurons to treat prion and other neuropathological diseases.  相似文献   

17.
18.

Background and Objectives

Blood-brain barrier (BBB) dysfunction is an integral feature of neurological disorders and involves the action of multiple proinflammatory cytokines on the microvascular endothelial cells lining cerebral capillaries. There is still however, considerable ambiguity throughout the scientific literature regarding the mechanistic role(s) of cytokines in this context, thereby warranting a comprehensive in vitro investigation into how different cytokines may cause dysregulation of adherens and tight junctions leading to BBB permeabilization.

Methods

The present study employs human brain microvascular endothelial cells (HBMvECs) to compare/contrast the effects of TNF-α and IL-6 on BBB characteristics ranging from the expression of interendothelial junction proteins (VE-cadherin, occludin and claudin-5) to endothelial monolayer permeability. The contribution of cytokine-induced NADPH oxidase activation to altered barrier phenotype was also investigated.

Results

In response to treatment with either TNF-α or IL-6 (0–100 ng/ml, 0–24 hrs), our studies consistently demonstrated significant dose- and time-dependent decreases in the expression of all interendothelial junction proteins examined, in parallel with dose- and time-dependent increases in ROS generation and HBMvEC permeability. Increased expression and co-association of gp91 and p47, pivotal NADPH oxidase subunits, was also observed in response to either cytokine. Finally, cytokine-dependent effects on junctional protein expression, ROS generation and endothelial permeability could all be attenuated to a comparable extent using a range of antioxidant strategies, which included ROS depleting agents (superoxide dismutase, catalase, N-acetylcysteine, apocynin) and targeted NADPH oxidase blockade (gp91 and p47 siRNA, NSC23766).

Conclusion

A timely and wide-ranging investigation comparing the permeabilizing actions of TNF-α and IL-6 in HBMvECs is presented, in which we demonstrate how either cytokine can similarly downregulate the expression of interendothelial adherens and tight junction proteins leading to elevation of paracellular permeability. The cytokine-dependent activation of NADPH oxidase leading to ROS generation was also confirmed to be responsible in-part for these events.  相似文献   

19.

Objective

Blood brain barrier (BBB) breakdown and increased endothelial permeability is a hallmark of neuro-vascular inflammation. Angiopoietin-1 (Ang-1), a Tie-2 receptor agonist ligand, is known to modulate barrier function of endothelial cells; however the molecular mechanisms related to Ang-1 mediated repair of Tight Junctions (TJs) in brain endothelium still remain elusive. In this study, we investigated a novel role of non-receptor protein tyrosine phosphatase N-2 (PTPN-2) in Ang-1 mediated stabilization of tight junction proteins.

Method and Result

To study the barrier protective mechanism of Ang-1, we challenged human brain microvascular endothelial cells in-vitro, with a potent inflammatory mediator thrombin. By using confocal microscopy and transwell permeability assay, we show that pretreatment of brain endothelial cells with Ang-1 diminish thrombin mediated disruption of TJs and increase in endothelial permeability. We also found that Ang-1 inhibits thrombin induced tyrosine phosphorylation of Occludin and promote Occludin interaction with Zona Occludens-1 (ZO-1) to stabilize TJs. Interestingly, our study revealed that depletion of PTPN-2 by siRNAs abolishes Ang-1 ability to promote tyrosine dephosphorylation of Occludin, resulting Occludin disassociation from ZO-1 and endothelial hyperpermeability.

Summary

Collectively, our findings suggest that in brain endothelial cells blocking PTPN-2 mediated tyrosine phosphorylation of Occludin is a novel mechanism to maintain BBB function, and may offer a key therapeutic strategy for neuro-inflammatory disorders associated with BBB disruption.  相似文献   

20.

Background

Polymeric nanoparticles (PNP) have received significant amount of interests for targeted drug delivery across the blood-brain barrier (BBB). Experimental studies have revealed that PNP can transport drug molecules from microvascular blood vessels to brain parenchyma in an efficient and non-invasive way. Despite that, very little attention has been paid to theoretically quantify the transport of such nanoparticles across BBB.

Methods

In this study, for the first time, we developed a mathematical model for PNP transport through BBB endothelial cells. The mathematical model is developed based on mass-action laws, where kinetic rate parameters are determined by an artificial neural network (ANN) model using experimental data from in-vitro BBB experiments.

Results

The presented ANN model provides a much simpler way to solve the parameter estimation problem by avoiding integration scheme for ordinary differential equations associated with the mass-action laws. Furthermore, this method can efficiently deal with both small and large data set and can approximate highly nonlinear functions. Our results show that the mass-action model, constructed with ANN based rate parameters, can successfully predict the characteristics of the polymeric nanoparticle transport across the BBB.

Conclusions

Our model results indicate that exocytosis of nanoparticles is seven fold slower to endocytosis suggesting that future studies should focus on enhancing the exocytosis process.

General significance

This mathematical study will assist in designing new drug carriers to overcome the drug delivery problems in brain. Furthermore, we anticipate that this model will form the basis of future comprehensive models for drug transport across BBB.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号