共查询到20条相似文献,搜索用时 15 毫秒
1.
Galaxias maculatus is one of the world's most widely distributed freshwater fish. This species has a marine-tolerant juvenile phase, and a geographical range extending through much of the southern hemisphere. We conducted phylogeographic analyses of 163 control region haplotypes of G. maculatus, including samples from New Zealand (five locations), Tasmania (one location) and Chile (one location). A lack of genetic structure among New Zealand samples suggests that marine dispersal facilitates considerable gene flow on an intra-continental scale. The discovery of a Tasmanian-like haplotype in one of 144 New Zealand samples indicates that inter-continental marine dispersal occurs but is insufficient to prevent mitochondrial DNA differentiation among continents. The sister relationship of Tasmanian and New Zealand clades implies that marine dispersal is an important biogeographical mechanism for this species. However, a vicariant role in the divergence of eastern and western Pacific G. maculatus cannot be rejected. 相似文献
2.
In a given area, plant-animal mutualistic interactions form complex networks that often display nestedness, a particular type of asymmetry in interactions. Simple ecological and evolutionary factors have been hypothesized to lead to nested networks. Therefore, nestedness is expected to occur in other types of mutualisms as well. We tested the above prediction with the network structure of interactions in cleaning symbiosis at three reef assemblages. In this type of interaction, shrimps and fishes forage on ectoparasites and injured tissues from the body surface of fish species. Cleaning networks show strong patterns of nestedness. In fact, after controlling for species richness, cleaning networks are even more nested than plant-animal mutualisms. Our results support the notion that mutualisms evolve to a predictable community-level structure, be it in terrestrial or marine communities. 相似文献
3.
R. J. H. Beverton 《Journal of fish biology》1990,37(SA):5-16
Evidence of the collapse and recovery of major marine fisheries for pelagic fish species is reviewed, distinguishing the influence of fishing compared with natural (environmental) effects. In one only of the best documented cases (Icelandic spring-spawning herring) has the stock failed to reappear, after 20 years. Several others, e.g. California sardine, have persisted at 1/000th or possibly less of their peak size for some years before beginning to recover. Fishing has been the main cause of collapse in most but not all cases, due initially to the escalation of catchability as stock size decreases–a phenomenon characteristic of fisheries for pelagic species due to their shoaling habit, ease of detection and vulnerability to modern fishing methods. It is concluded that although the threat of fishing to the continuity of the species is remote, excessive depletion (although avoidable by firm and timely management) is potentially able to cause temporary disappearance of local stock and disruption of the ecosystem. 相似文献
4.
Trophic structure of a neotropical frugivore community: is there competition between birds and bats?
Summary Dietary overlap and competition between frugivorous birds and bats in the Neotropics have been presumed to be low, but comparative data have been lacking. We determined the diets of volant frugivores in an early successional patch of Costa Rican wet forest over a one month period. Ordination of the diet matrix by Reciprocal Averaging revealed that birds and bats tend to feed on different sets of fruits and that diets differed more among bat species than among bird species. However, there was overlap between Scarlet-rumped Tanagers and three Carollia bat species on fruits of several Piper species which comprised most of the diet of these bats. Day/night exclosure experiments on P. friedrichsthalli treetlets provided evidence that birds deplete the amount of ripe fruit available to bats. These results indicate that distantly related taxa may overlap in diet and compete for fruit, despite the apparent adaptation of animal-dispersed plant species for dispersal by particular animal taxa. 相似文献
5.
Poulin R Krasnov BR Shenbrot GI Mouillot D Khokhlova IS 《International journal for parasitology》2006,36(2):185-191
Evolutionary trends in the evolution of host specificity have been the focus of much discussion but little rigorous empirical testing. On the one hand, specialization is often presumed to lead irreversibly into evolutionary dead ends and little diversification; this would mean that generalists might evolve into specialists, but not vice versa. On the other hand, low host specificity may limit the risk of extinction and provide more immediate fitness benefits to parasites, such that selection may favour evolution toward a generalist strategy. Here, we test for directionality in the evolution of host specificity using a large data set and phylogenetic information on 297 species of fleas parasitic on small mammals. The analyses determined whether host specificity, measured both as the number of host species exploited and their taxonomic diversity, was related to clade rank of the flea species, or the number of branching events between an extant species and the root of the phylogenetic tree (i.e., the total path length from the root of the tree to the species). Based on regression analyses, we found positive relationships between the number of host species used and clade rank across all 297 species, as well as within one (Hystrichopsyllidae) of four large families and one of seven large genera investigated separately; in addition, we found a positive relationship between the taxonomic diversity of host species used and clade rank in another of the seven genera. These results suggest a slight evolutionary trend of decreasing host specificity. Using a much more conservative likelihood ratio test, however, a random walk, or null model, of evolution could not be discarded in favour of the directional trends in all cases mentioned above. Still, these results suggest that host specificity may have tended to decrease in many flea lineages, a process that could have been driven by the benefits of exploiting a wide range of host species. 相似文献
6.
Hosts often differ in their degree of parasitism and their expression of resistance. Yet very little is known about how the availability (and allocation) of resources to parasites at pre-infective stages influences their success in initiating parasitism, or in inducing and succumbing to resistance from hosts. We studied a damselfly-mite association to address how experimental variation in the age of first contact with hosts (timing) influenced subsequent parasite fitness. We demonstrate that timing influenced the ability of larval mites to make the transition to parasitism, but was not associated with measures of physiological resistance by hosts. Timing presumably relates to the availability of resources remaining for individuals to exploit their hosts. More research is needed on the importance of such factors, from variation in host resistance and parasite success and, ultimately, to the numbers and distributions of parasites on hosts. 相似文献
7.
8.
Demographic compensation among populations: what is it,how does it arise and what are its implications? 下载免费PDF全文
Jesús Villellas Daniel F. Doak María B. García William F. Morris 《Ecology letters》2015,18(11):1139-1152
Most species are exposed to significant environmental gradients across their ranges, but vital rates (survival, growth, reproduction and recruitment) need not respond in the same direction to those gradients. Opposing vital rate trends across environments, a phenomenon that has been loosely called ‘demographic compensation’, may allow species to occupy larger geographical ranges and alter their responses to climate change. Yet the term has never been precisely defined, nor has its existence or strength been assessed for multiple species. Here, we provide a rigorous definition, and use it to develop a strong test for demographic compensation. By applying the test to data from 26 published, multi‐population demographic studies of plants, we show that demographic compensation commonly occurs. We also investigate the mechanisms by which this phenomenon arises by assessing which demographic processes and life stages are most often involved. In addition, we quantify the effect of demographic compensation on variation in population growth rates across environmental gradients, a potentially important determinant of the size of a species’ geographical range. Finally, we discuss the implications of demographic compensation for the responses of single populations and species’ ranges to temporal environmental variation and to ongoing environmental trends, e.g. due to climate change. 相似文献
9.
N. C. Delarue 《CMAJ》1973,108(9):1164-passim
10.
Biochemistry and structural biology are undergoing a dramatic revolution. Until now, we have tried to study subtle and complex biological processes by crude in vitro techniques, looking at average behaviors of vast numbers of molecules under conditions usually remote from those existing in the cell. Researchers have realized the limitations of this approach, but none other has been available. Now, we can not only observe the nuances of the behaviors of individual molecules but prod and probe them as well. Perhaps most important is the emerging ability to carry out such observations and manipulations within the living cell. The long-awaited leap to an in vivo biochemistry is at last underway. 相似文献
11.
12.
Recent experimental evidence suggests that parasites can not only evade immune responses actively but also exploit the hormonal microenvironment within the host to favor their establishment, growth and reproduction. The benefit for parasites of hormonal exploitation is so great that they have evolved structures similar to the steroid and protein hormone receptors expressed in upper vertebrates that can bind to the hormonal metabolites synthesized by the host. This strategy is exemplified by two parasites that respond to adrenal steroids and sexual steroids, respectively: Schistosoma mansoni and Taenia crassiceps. Understanding how the host endocrine system can, under certain circumstances, favor the establishment of a parasite, and characterizing the parasite hormone receptors that are involved might aid the design of hormonal analogs and drugs that affect the parasite exclusively. 相似文献
13.
Henrik Jensen Rune Moe Ingerid Julie Hagen Anna Marie Holand Jaana Kekkonen Jarle Tufto Bernt‐Erik Sæther 《Molecular ecology》2013,22(7):1792-1805
Population genetic structure and intrapopulation levels of genetic variation have important implications for population dynamics and evolutionary processes. Habitat fragmentation is one of the major threats to biodiversity. It leads to smaller population sizes and reduced gene flow between populations and will thus also affect genetic structure. We use a natural system of island and mainland populations of house sparrows along the coast of Norway to characterize the different population genetic properties of fragmented populations. We genotyped 636 individuals distributed across 14 populations at 15 microsatellite loci. The level of genetic differentiation was estimated using F‐statistics and specially designed Mantel tests were conducted to study the influence of population type (i.e. mainland or island) and geographic distance on the genetic population structure. Furthermore, the effects of population type, population size and latitude on the level of genetic variation within populations were examined. Our results suggest that genetic processes on islands and mainland differed in two important ways. First, the intrapopulation level of genetic variation tended to be lower and the occurrence of population bottlenecks more frequent on islands than the mainland. Second, although the general level of genetic differentiation was low to moderate, it was higher between island populations than between mainland populations. However, differentiation increased in mainland populations somewhat faster with geographical distance. These results suggest that population bottleneck events and genetic drift have been more important in shaping the genetic composition of island populations compared with populations on the mainland. Such knowledge is relevant for a better understanding of evolutionary processes and conservation of threatened populations. 相似文献
14.
Recently, experiments have shown that cyclin-dependent kinase (CDK) activity exhibits hysteresis in its response to total cyclin when cyclin is made nondegradable and controlled externally. This observation was taken to support mathematical modeling predictions regarding the underlying dynamics of the cell cycle. However, cell cycle dynamics can also be generated by other nonhysteretic mechanisms. To examine the robustness of the hysteretic response of CDK activity to total cyclin, we simulated various cell cycle signal transduction networks, and correlated the dynamics to the response function of CDK activity versus total cyclin. By randomly searching the parameter space, we assessed robustness by estimating the frequency of hysteretic versus nonhysteretic dynamical mechanisms. When the dynamical instabilities were caused by feedback loops in CDK phosphorylation and dephosphorylation or by feedback between cyclin and the CDK inhibitor, the response function of CDK activity versus total cyclin correlated well with the dynamical instabilities. However, when the dynamical instabilities originated from feedback between cyclin and APC-CDH1 or RB-E2F, the response function did not correlate with dynamical instabilities. Thus, although a hysteretic response is neither necessary nor sufficient, it is in general a much more robust mechanism for generating cell cycle dynamics than nonhysteretic mechanisms. 相似文献
15.
Dilip Ghosh 《Genes & nutrition》2010,5(1):51-53
Consumer goods became increasingly personalised, particularly during the last half of the 20th century. Foods and food products have been added a new flavour in this consumer trends with increasingly personalised values of convenience, cost, packaging, and taste. Now functional food industry is ready to take its next venture in a relatively new domain personalising health. Whether the goal of matching foods to individual genotypes to improve the health of those individuals can be attained, and personalised nutrigenomic foods enter the world’s food markets, depends on numerous hurdles being overcome: some scientific in nature, some technical and others related to consumer, market or ethical issues. Public adoption of new technologies is an important determinant for their success. Many of the drivers behind the trend in personalisation of food are now known, particularly ethical, legal and social issues (ELSI) are the major drivers. Future development in the field of nutrigenomics undoubtedly will place its seemingly huge potential in better perspective. Thus, the agriculture and food enterprise has an extraordinary opportunity to link individuals with foods that are personalised for their health. 相似文献
16.
17.
Maxi Polihronakis Richmond Sarah Johnson Tamara S. Haselkorn Michelle Lam Laura K. Reed Therese A. Markow 《Biological journal of the Linnean Society. Linnean Society of London》2013,108(1):68-78
In the Sonoran desert, there exists a diverse community of cactophilic drosophilids that exploit toxic, rotting cactus tissue as a food resource. The chemistry of the necrotic cactus tissue varies among species, and several drosphilid species have evolved specialized detoxification mechanisms and a preference for certain cactus types. In the present study, we compared the genetic structure of two columnar cactus species, Drosophila mettleri and Drosophila mojavensis, and two prickly pear species, Drosophila mainlandi and Drosophila hamatofila, which have all recently colonized Catalina Island off the coast of southern California. Because there are no columnar cactus species on Catalina Island, the two columnar specialists underwent a host switch to prickly pear cactus, the only cactus present on the island. Previous genetic studies of D. mettleri and D. mojavensis showed significant genetic differentiation between mainland and island populations, which could result from restricted gene flow as a result of the San Pedro Channel, or because of a host switch to prickly pear. To distinguish between these possibilities, we analyzed the genetic structure of the prickly pear species aiming to isolate the effects of geography versus host switching. The results obtained show little to no genetic differentiation for the prickly pear species, supporting the hypothesis that the genetic differentiation of the two columnar species is a result of a host switch from columnar cacti to prickly pear. © 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, ?? , ??–??. 相似文献
18.
Grasshopper populations across 2000 m of altitude: is there life history adaptation? 总被引:1,自引:0,他引:1
Life history differentiation along climatic gradients may have allowed a species to extend its geographic range. To explore this hypothesis, we compared eleven Omocestus viridulus (Orthoptera: Acrididae) populations along an altitudinal gradient from 410 to 2440 m in Switzerland, both in the field and laboratory. In situ temperature records indicated a striking decline in available heat sums along the gradient, and field populations at high altitudes reached egg hatching and adulthood much later in the year than at low elevation. The reproductive period at high altitude is thus severely limited by season length, especially during a cool year. However, controlled environment experiments revealed that intrinsic rates of embryonic and juvenile development increased with the populations' altitude of origin. This countergradient variation is largely genetic and conforms to predictions of life history theory. No corresponding differentiation in the overwintering egg stage, a pivotal determinant of phenology, was found. This trait seems conserved within the gomphocerine grasshopper subfamily. Although we found evidence for altitudinal adaptation in development, the potential of O. viridulus to adapt to cool alpine climates appears restricted by a phylogenetic constraint. 相似文献
19.
As stream temperatures increase due to factors such as heated runoff from impervious surfaces, deforestation, and climate change, fish species adapted to cold water streams are forced to move to more suitable habitat, acclimate or adapt to increased thermal regimes, or die. To estimate the potential for adaptation, a (within individual) repeatable metric of thermal tolerance is imperative. Critical thermal maximum (CTmax) is a dynamic test that is widely used to measure thermal tolerance across many taxa and has been used in fishes for decades, but its repeatability in most species is unknown. CTmax tests increase water temperature steadily over time until loss of equilibrium (LOE) is achieved. To determine if CTmax is a consistent metric within individual fish, we measured CTmax on the same lab-held individually-marked adult brook trout Salvelinus fontinalis at three different times (August & September 2016, September 2017). We found that CTmax is a repeatable trait (Repeatability ± S.E.: 0.48 ± 0.14). CTmax of individuals males was consistent over time, but the CTmax of females increased slightly over time. This result indicates that CTmax is a robust, repeatable estimate of thermal tolerance in a cold-water adapted fish. 相似文献
20.
Spatial pattern of distribution of marine invertebrates within a subtidal community: do communities vary more among patches or plots? 下载免费PDF全文
Making links between ecological processes and the scales at which they operate is an enduring challenge of community ecology. Our understanding of ecological communities cannot advance if we do not distinguish larger scale processes from smaller ones. Variability at small spatial scales can be important because it carries information about biological interactions, which cannot be explained by environmental heterogeneity alone. Marine fouling communities are shaped by both the supply of larvae and competition for resources among colonizers—these two processes operate on distinctly different scales. Here, we demonstrate how fouling community structure varies with spatial scale in a temperate Australian environment, and we identify the spatial scale that captures the most variability. Community structure was quantified with both univariate (species richness and diversity) and multivariate (similarity in species composition) indices. Variation in community structure was unevenly distributed between the spatial scales that we examined. While variation in community structure within patch was usually greater than among patch, variation among patch was always significant. Opportunistic taxa that rely heavily on rapid colonization of free space spread more evenly among patches during early succession. In contrast, taxa that are strong adult competitors but slow colonizers spread more evenly among patches only during late succession. Our findings show significant patchiness can develop in a habitat showing no systematic environmental spatial variation, and this patchiness can be mediated through different biological factors at different spatial scales. 相似文献