首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The promyelocytic leukemia protein (PML) is a tumor suppressor protein that regulates a variety of important cellular processes, including gene expression, DNA repair and cell fate decisions. Integral to its function is the ability of PML to form nuclear bodies (NBs) that serve as hubs for the interaction and modification of over 90 cellular proteins. There are seven canonical isoforms of PML, which encode diverse C-termini generated by alternative pre-mRNA splicing. Recruitment of specific cellular proteins to PML NBs is mediated by protein–protein interactions with individual PML isoforms. Using a yeast two-hybrid screen employing peptide sequences unique to PML isoform I (PML-I), we identified an interaction with the eukaryotic initiation factor 3 subunit K (eIF3K), and in the process identified a novel eIF3K isoform, which we term eIF3K-2. We further demonstrate that eIF3K and PML interact both in vitro via pull-down assays, as well as in vivo within human cells by co-immunoprecipitation and co-immunofluorescence. In addition, eIF3K isoform 2 (eIF3K-2) colocalizes to PML bodies, particularly those enriched in PML-I, while eIF3K isoform 1 associates poorly with PML NBs. Thus, we report eIF3K as the first known subunit of the eIF3 translation pre-initiation complex to interact directly with the PML protein, and provide data implicating alternative splicing of both PML and eIF3K as a possible regulatory mechanism for eIF3K localization at PML NBs.  相似文献   

2.
3.
SUMO modification plays a critical role in a number of cellular functions including nucleocytoplasmic transport, gene expression, cell cycle and formation of subnuclear structures such as promyelocytic leukemia (PML) bodies. In order to identify the sites where SUMOylation takes place in the cell, we developed an in situ SUMOylation assay using a semi-intact cell system and subsequently combined it with siRNA-based knockdown of nucleoporin RanBP2, also known as Nup358, which is one of the known SUMO E3 proteins. With the in situ SUMOylation assay, we found that both nuclear rim and PML bodies, besides mitotic apparatuses, are major targets for active SUMOylation. The ability to analyze possible SUMO conjugation sites would be a valuable tool to investigate where SUMO E3-like activities and/or SUMO substrates exist in the cell. Specific knockdown of RanBP2 completely abolished SUMOylation along the nuclear rim and dislocated RanGAP1 from the nuclear pore complexes. Interestingly, the loss of RanBP2 markedly reduced the number of PML bodies, in contrast to other, normal-appearing nuclear compartments including the nuclear lamina, nucleolus and chromatin, suggesting a novel link between RanBP2 and PML bodies. SUMOylation facilitated by RanBP2 at the nuclear rim may be a key step for the formation of a particular subnuclear organization. Our data imply that SUMO E3 proteins like RanBP2 facilitate spatio-temporal SUMOylation for certain nuclear structure and function.  相似文献   

4.
The ZNF198/FGFR1 fusion gene in atypical myeloproliferative disease produces a constitutively active cytoplasmic tyrosine kinase, unlike ZNF198 which is normally a nuclear protein. We have now shown that the ZNF198/FGFR1 fusion kinase interacts with the endogenous ZNF198 protein suggesting that the function of ZNF198 may be compromised in cells expressing it. Little is currently known about the endogenous function of ZNF198 and to investigate this further we performed a yeast two-hybrid analysis and identified SUMO-1 as a binding partner of ZNF198. These observations were confirmed using co-immunoprecipitation which demonstrated that ZNF198 is covalently modified by SUMO-1. Since many of the SUMO-1-modified proteins are targeted to the PML nuclear bodies we used confocal microscopy to show that SUMO-1, PML and ZNF198 colocalize to punctate structures, shown by immunocytochemistry to be PML bodies. Using co-immunoprecipitation we now show that PML and sumoylated ZNF198 can be found in a protein complex in the cell. Mutation of the SUMO-1 binding site in wild-type ZNF198 resulted in loss of distinct PML bodies, reduced PML levels and a more dispersed nuclear localization of the PML protein. In cells expressing ZNF198/FGFR1, which also lack the SUMO-1 binding site, SUMO-1 is preferentially localized in the cytoplasm, which is associated with loss of distinct PML bodies. Recently, arsenic trioxide (ATO) was proposed as an alternative therapy for APL that was resistant to traditional therapy. Treatment of cells expressing ZNF198/FGFR1 with ATO demonstrated reduced autophosphorylation of the ZNF198/FGFR1 protein and induced apoptosis, which is not seen in cells expressing wild-type ZNF198. Overall our results suggest that the sumoylation of ZNF198 is important for PML body formation and that the abrogation of sumoylation of ZNF198 in ZNF198/FGFR1 expressing cells may be an important mechanism in cellular transformation.  相似文献   

5.
6.
The promyelocytic leukemia (PML) protein is a tumor suppressor acting as the organizer of nuclear matrix-associated structures named nuclear bodies (NBs). The involvement of PML in various cell processes, including cell death, senescence or antiviral defense underlines the multiple functions of PML due to its ability to interact with various partners either in the cytoplasm or in the nucleus. The importance of paracrine signaling in the regulation of PML expression is well established. More recently, a growing body of evidence also supports PML as a key regulator of cytokine signaling. These findings shed light on unsuspected biological functions of PML such as immune response, inflammation and cytokine-induced apoptosis. Here we review the current understanding of the pleiotropic activities of PML on cytokine-induced signaling.  相似文献   

7.
8.
9.
10.
11.
12.
Progerin accumulation disrupts nuclear lamina integrity and causes nuclear structure abnormalities, leading to premature aging, that is, Hutchinson–Gilford progeria syndrome (HGPS). The roles of nuclear subcompartments, such as PML nuclear bodies (PML NBs), in HGPS pathogenesis, are unclear. Here, we show that classical dot‐like PML NBs are reorganized into thread‐like structures in HGPS patient fibroblasts and their presence is associated with late stage of senescence. By co‐immunoprecipitation analysis, we show that farnesylated Progerin interacts with human PML2, which accounts for the formation of thread‐like PML NBs. Specifically, human PML2 but not PML1 overexpression in HGPS cells promotes PML thread development and accelerates senescence. Further immunofluorescence microscopy, immuno‐TRAP, and deep sequencing data suggest that these irregular PML NBs might promote senescence by perturbing NB‐associated DNA repair and gene expression in HGPS cells. These data identify irregular structures of PML NBs in senescent HGPS cells and support that the thread‐like PML NBs might be a novel, morphological, and functional biomarker of late senescence.  相似文献   

13.
14.
Many and possibly all macromolecules in the nucleus are segregated into discrete compartments, but the current model that this is achieved by a fibrillar nuclear matrix which structures the nuclear interior and compartments is not consistent with all experimental observations, as reviewed here. New results are presented which suggest that macromolecular crowding forces play a crucial role in the assembly of at least two compartments, nucleoli and PML bodies, and an in vitro system in which crowding assembles macromolecular complexes into structures which resemble nuclear compartments is described. Crowding forces, which are strong in the nucleus due to the high macromolecule concentration (in the range of 100 mg/ml), vastly increase the association constants of intermolecular interactions and can segregate different macromolecules into discrete phases. The model that they play a role in compartmentalisation of the nucleus is generally consistent with the properties of compartments, including their spherical or quasispherical form and their dynamic and mobile nature.  相似文献   

15.
16.
The serine/threonine kinase HIPK2 regulates gene expression programs controlling differentiation and cell death. HIPK2 localizes in subnuclear speckles, but the structural components allowing this localization are not understood. A point mutation analysis allowed mapping two nuclear localization signals and a SUMO interaction motif (SIM) that also occurs in HIPK1 and HIPK3. The SIM binds all three major isoforms of SUMO (SUMO-1-3), while only SUMO-1 is capable of covalent conjugation to HIPK2. Deletion or mutation of the SIM prevented SUMO binding and precluded localization of HIPK2 in nuclear speckles, thus causing localization of HIPK2 to the entire cell. Functional inactivation of the SIM prohibited recruitment of HIPK2 to PML nuclear bodies and disrupted colocalization with other proteins such as the polycomb protein Pc2 in nuclear speckles. Interaction of HIPK2 with Pc2 or PML in intact cells was largely dependent on a functional SIM in HIPK2, highlighting the relevance of SUMO/SIM interactions as a molecular glue that serves to enhance protein/protein interaction networks. HIPK2 mutants with an inactive SIM showed changed activities, thus revealing that non-covalent binding of SUMO to the kinase is important for the regulation of its function.  相似文献   

17.
18.
19.
《Cell reports》2023,42(5):112495
  1. Download : Download high-res image (189KB)
  2. Download : Download full-size image
  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号