首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report here the effects of Botulinum Toxin type A on the release of ATP and Acetylcholine from Torpedo electric organ synaptosomes. Our results show that Botulinum Toxin type A inhibits specifically the K+-induced release of Acetylcholine from synaptosomes without affecting the release of ATP. Membrane potential and calcium uptake into cholinergic nerve terminals are not modified after Botulinum Toxin poisoning. It is suggested that either most of the ATP released during the depolarization of the cholinergic synaptosomes does not originate from cholinergic synaptic vesicles or that there are two populations of synaptic vesicles, Acetylcholine-enriched synaptic vesicles and ATP-enriched synaptic vesicles. However, the possibility that the ACh and ATP released could come from different intrasynaptosomal compartments cannot be excluded.  相似文献   

2.
Abstract: To test the hypothesis that a pool of newly synthesized acetylcholine (ACh) turns over independently of preformed ACh, compartmentation and K+ -evoked release of ACh were examined in perfused synaptosomal beds intermittently stimulated by 50 m M K+. In resting synaptosomes, endogenous and labeled ACh was distributed between synaptic vesicles and the cytoplasm in a dynamic equilibrium ratio of 4:6. In the absence of new ACh synthesis, five sequential K+ -depolarizations caused a decremental release of preformed labeled ACh totaling 30% of the initial transmitter store. Further depolarization evoked little additional release, despite the fact that 60% of the labeled ACh remained in these preparations. Release of the preformed [14C]ACh was unaltered while new ACh was being synthesized from exogenous [3H]choline. Since the evoked release of [3H]ACh was maintained while that of [14C]ACh was decreasing, the [3H]ACh/[14C]ACh ratio in perfusate increased with each successive depolarization. This ratio was six to ten times higher than the corresponding ratio in vesicles or cytoplasm. These results indicate that the newly synthesized ACh did not equilibrate with either the depot vesicular or cytoplasmic ACh pools prior to release.  相似文献   

3.
Cholinergic nerve terminals were affinity purified from rat caudate nucleus. On stimulation with both 22.6 mM KCl and 50 microM veratridine, ATP was released in a Ca2+-dependent manner. The molar ratio of released acetylcholine to ATP (9:1) was closer to that found in isolated cholinergic vesicles (7:1) than whole terminals (3:1). Extracellular [14C]ATP was rapidly metabolized by these terminals to adenosine and inosine via ectonucleotidases. The terminals had a saturable, high-affinity uptake mechanism for adenosine (Km = 16.6 microM). Veratridine stimulation also caused the Ca2+-dependent release of nucleosides in a dipyridamole-sensitive manner. Both theophylline treatment and inhibition of extracellular ATP breakdown resulted in increased ATP and nucleoside release. Extracellular adenosine was shown to inhibit acetylcholine release, probably via the A1 receptor. The role of extracellular purines at the cholinergic nerve terminal is discussed.  相似文献   

4.
The release of acetylcholine: from a cellular towards a molecular mechanism   总被引:3,自引:0,他引:3  
The isolation of synaptic vesicles rich in acetylcholine (ACh) from the electric organ of Torpedo has indeed strengthened the hypothesis of transmitter exocytosis, but soon after it was found that non-vesicular free ACh was released and renewed upon stimulation. In contrast, vesicular ACh and the number of vesicles remained stable during physiological stimulations. In addition free ACh variations (representing the cytoplasmic pool) were correlated to the release kinetics as measured by the electroplaque discharge. Consequently, the mechanism releasing ACh from the cytoplasm in a packet form was searched at the presynaptic membrane itself. With synaptosomes isolated from the electric organ of Torpedo, it became possible to freeze them rapidly at the peak of ACh release and study their membrane and contents after cryofracture. A statistical analysis showed that the main structural change was the occurrence of large intramembrane particles at the peak of ACh release and under all release conditions. This impressive change contrasted with the stability in the number of vesicles. Another role for the vesicle was envisaged during intense stimulations when the cytoplasmic ACh and ATP pools become exhausted. The decrease in ATP leads to an increase in calcium and protons in the cytoplasm; this signals the depletion of vesicular ACh and ATP stores in the cytoplasm. Release can go on, while ATP promotes the uptake of calcium by vesicles. At the end of its cycle the vesicle will be full of calcium and will perhaps release it. As far as the mechanism of ACh release is concerned it probably depends on a membrane component (perhaps the large particles) activated by calcium and able to translocate ACh in a quantal or subquantal form. In most recent work we showed that if a lyophilized presynaptic membrane was used to make proteoliposomes filled with ACh, they released ACh upon calcium action.  相似文献   

5.
—Slices from rat brain cortex were incubated for either 5 or 60 min in a medium containing [3H]choline and 4·7 or 25 mm -KCl. Bioassayable ACh and labelled ACh were determined in the incubation medium, in the total tissue homogenate and in subcellular fractions. Raising the KCl concentration from 4·7 to 25 mm stimulated the release and synthesis of total and of labelled ACh. In medium containing 25 mm -KCl the amounts of ACh decreased in the tissue and in the nerve ending cytoplasm, but remained constant in the synaptic vesicles. After incubation in 25 mm -KCl medium the ACh in the vesicles was labelled to the same extent as the cytoplasmic ACh but after incubation in 4·7 mm -KCl medium vesicular ACh was labelled less than cytoplasmic ACh. During 5 min incubation in medium containing 25 mm -KCl the ratio of labelled to total ACh was much higher in the medium than in the homogenate, the vesicles or the cytoplasm. During the last 15 min of the 60 min incubation the ratio of labelled to total ACh in the medium was still higher than that in the tissue fractions, but less so than during the 5 min incubation. It is concluded that the vesicular and cytoplasmic fractions are not identical with the store in the tissue from which newly-synthesized ACh is preferentially released.  相似文献   

6.
These experiments measured the effect of 2-(4-phenylpiperidino)cyclohexanol (AH5183) on the release of acetylcholine (ACh) and its subcellular distribution in slices of rat striatum incubated in vitro. The AH5183, a drug that blocks the uptake of ACh by isolated synaptic vesicles, reduced the release of ACh from slices stimulated to release transmitter in response to K+ depolarization. Tissue stimulated in the presence of AH5183 contained more ACh in a nerve terminal cytoplasmic fraction than did tissue stimulated in the drug's absence, but stimulation in AH5183's presence reduced the amount of ACh measured in fractions containing synaptic vesicles. The depletion of ACh caused by stimulating tissue in the presence of AH5183 was more evident in the fraction of nerve terminal ACh occluded within synaptic vesicles as isolated by gradient centrifugation (fraction D) than it was in other nerve terminal occluded stores. It is concluded that the synaptic vesicles isolated as fraction D under the present experimental conditions likely contain releasable transmitter. The AH5183 also depressed the spontaneous release of ACh from incubated slices of striatum and this effect was evident in the presence or the absence of medium Ca2+. It is suggested that this effect might indicate that the process of spontaneous ACh release measured neurochemically results, in part, from an AH5183-sensitive carrier-mediated process.  相似文献   

7.
The present experiments measured the release of acetylcholine (ACh) by the cat superior cervical ganglia in the presence of, and after exposure to, 2-(4-phenylpiperidino)cyclohexanol (AH5183), a compound known to block the uptake of ACh by cholinergic synaptic vesicles. We confirmed that AH5183 blocks evoked ACh release during preganglionic nerve stimulation when approximately 13-14% of the initial ganglial ACh stores had been released; periods of rest in the presence of the drug did not promote recovery from the block, but ACh release recovered following the washout of AH5183. ACh was synthesized in AH5183-treated ganglia, as determined by the synthesis of [3H]ACh from [3H]choline, and this [3H]ACh could be released by stimulation following drug washout. The specific activity of the released ACh matched that of the tissue's ACh, and thus we conclude that ACh synthesized in the presence of AH5183 is a releasable as pre-existing ACh stores once the drug is removed. We tested the relative releasability of ACh synthesized during AH5183 exposure (perfusion with [3H]choline) and that synthesized during recovery from the drug's effects (perfusion with [14C]choline: the ratio of [3H]ACh to [14C]ACh released by stimulation was similar to the ratio in the tissue. These results suggest that the mobilization of ACh for release by ganglia during recovery from an AH5183-induced block is independent of the conditions under which the ACh was synthesized. Unlike nerve impulses, black widow spider venom (BWSV) induced the release of ACh from AH5183-blocked ganglia, even in the drug's continued presence. Venom-induced release of ACh from AH5183-treated ganglia was not less than the venom-induced release from tissues not exposed to AH5183. This effect of BWSV was attributed to the action of the protein, alpha-latrotoxin, because an anti-alpha-latrotoxin antiserum blocked the venom's action. ACh synthesized during AH5183 exposure was labelled from [3H]choline, and subsequent treatment with BWSV released [3H]ACh with the same temporal pattern as the release of total ACh. To exclude a nonexocytotic origin for the [3H]ACh released by BWSV, ganglia were preloaded with [3H]diethylhomocholine to form [3H]acetyldiethylhomocholine, an ACh analogue excluded from vesicles; the venom did not increase the rate of [3H]acetyldiethylhomocholine efflux. It is concluded that a vesicular ACh pool insensitive to the inhibitory action of AH5183 might exist and that this vesicular pool is not mobilized by electrical stimulation to exocytose in the presence of AH5183, but it is by BWSV.  相似文献   

8.
1. Possible interactions of contrathion (pralidoxime sulfomethylate), a reactivator of phosphorylated acetylcholinesterase (AChE), with the regulation of cholinergic transmission were investigated on an identified synapse in the buccal ganglion of Aplysia californica. 2. Transmitter release was evoked either by a presynaptic action potential or, under voltage clamp, by a long depolarization of the presynaptic cell. At concentrations higher than 10(-5) M, bath-applied contrathion decreased the amplitude of miniature postsynaptic currents and increased their decay time. At the same time, the quantal release of ACh was transiently facilitated. The facilitatory effect of contrathion was prevented by tubocurarine but not by atropine. Because in this preparation, these drugs block, respectively, the presynaptic nicotinic-like and muscarinic-like receptors involved in positive and negative feedback of ACh release, we proposed that contrathion activates presynaptic nicotinic-like receptors. 3. Differential desensitization of the presynaptic receptors is proposed to explain the transience of the facilitatory action of contrathion on ACh release. 4. The complexity of the synaptic action of contrathion raises the possibility that its therapeutic effects in AChE poisonings are not limited to AChE reactivation.  相似文献   

9.
1. When a slice of electric organ of Torpedo is stimulated and superfused with a solution containing a firefly lantern extract, it is possible to measure the release of ATP after each nerve impulse as a light emission. 2. The postsynaptic action of released ACh induces the release of ATP by the postsynaptic cell. Most of the released ATP is of postsynaptic origin. 3. Ion fluxes associated with depolarization, or depolarization itself, trigger the release of ATP from postsynaptic and presynaptic membranes (synaptosomes). 4. ATP is able to block ACh release; a postsynaptic "retrograde transmission" able to control presynaptic transmitter release is possible.  相似文献   

10.
The present experiments tested whether preganglionic stimulation and direct depolarization of nerve terminals by tityustoxin could mobilize similar or different pools of acetylcholine (ACh) from the cat superior cervical ganglia in the presence of 2-(4-phenylpiperidino)cyclohexanol (vesamicol, AH5183), an inhibitor of ACh uptake into synaptic vesicles. In the absence of vesamicol, both nerve stimulation and tityustoxin increased ACh release. In the presence of vesamicol, the release of ACh induced by tityustoxin was inhibited, and just 16% of the initial tissue content could be released, a result similar to that obtained with electrical stimulation under the same condition. When the impulse-releasable pool of ACh had been depleted, tityustoxin still could release transmitter, amounting to some 10% of the ganglion's initial content. This pool of transmitter seemed to be preformed in the synaptic vesicles, rather than synthesized in response to stimuli, as tityustoxin could not release newly synthesized [3H]ACh formed in the presence of vesamicol, and hemicholinium-3 did not prevent the toxin-induced release. In contrast to the results with tityustoxin, preganglionic stimulation could not release transmitter when impulse-releasable or toxin-releasable compartments had been depleted. Our results confirm that vesamicol inhibits the mobilization of transmitter from a reserve to a more readily releasable pool, and they also suggest that, under these experimental conditions, there might be some futile transmitter mobilization, apparently to sites other than nerve terminal active zones.  相似文献   

11.
Polyamine transport,accumulation, and release in brain   总被引:3,自引:0,他引:3  
Cycling of polyamines (spermine and spermidine) in the brain was examined by measuring polyamine transport in synaptic vesicles, synaptosomes and glial cells, and the release of spermine from hippocampal slices. It was found that membrane potential-dependent polyamine transport systems exist in synaptosomes and glial cells, and a proton gradient-dependent polyamine transport system exists in synaptic vesicles. The glial cell transporter had high affinities for both spermine and spermidine, whereas the transporters in synaptosomes and synaptic vesicles had a much higher affinity for spermine than for spermidine. Polyamine transport by synaptosomes was inhibited by putrescine, agmatine, histidine, and histamine. Transport by glial cells was also inhibited by these four compounds and additionally by norepinephrine. On the other hand, polyamine transport by synaptic vesicles was inhibited only by putrescine and histamine. These results suggest that the polyamine transporters present in glial cells, neurons, and synaptic vesicles each have different properties and are, presumably, different molecular entities. Spermine was found to be accumulated in synaptic vesicles and was released from rat hippocampal slices by depolarization using a high concentration of KCl. Polyamines, in particular spermine, may function as neuromodulators in the brain.  相似文献   

12.
Choline acetyltransferase and vesicular acetylcholine-transporter genes are adjacent and coregulated. They define a cholinergic locus that can be turned on under the control of several factors, including the neurotrophins and the cytokines. Hirschprung's disease, or congenital megacolon, is characterized by agenesis of intramural cholinergic ganglia in the colorectal region. It results from mutations of the RET (GDNF-activated) and the endothelin-receptor genes, causing a disregulation in the cholinergic locus. Using cultured cells, it was shown that the cholinergic locus and the proteins involved in acetylcholine (ACh) release can be expressed separately ACh release could be demonstrated by means of biochemical and electrophysiological assays even in noncholinergic cells following preloading with the transmitter. Some noncholinergic or even nonneuronal cell types were found to be capable of releasing ACh quanta. In contrast, other cells were incompetent for ACh release. Among them, neuroblastoma N18TG-2 cells were rendered release-competent by transfection with the mediatophore gene. Mediatophore is an ACh-translocating protein that has been purified from plasma membranes ofTorpedo nerve terminal; it confers a specificity for ACh to the release process. The mediatophores are activated by Ca2+; but with a slower time course, they can be desensitized by Ca2+. A strictly regulated calcium microdomain controls the synchronized release of ACh quanta at the active zone. In addition to ACh and ATP, synaptic vesicles have an ATP-dependent Ca2+ uptake system; they transiently accumulate Ca2+ after a brief period of stimulation. Those vesicles that are docked close to Ca2+ channels are therefore in the best position to control the profile and dynamics of the Ca2+ microdomains. Thus, vesicles and their whole set of associated proteins (SNAREs and others) are essential for the regulation of the release mechanism in which the mediatophore seems to play a key role.  相似文献   

13.
The effect of ionic permeability changes on acetylcholine (ACh) release from isolated cholinergic synaptic vesicles of Torpedo was studied using a chemiluminescent method for continuous ACh detection. Vesicles rendered freely permeable to potassium by valinomycin lost most of their ACh content in K+ media, if the accompanying anion was permeant; it thus appeared that ACh leakage occurred as the result of internal osmotic changes. Upon addition of ionophores that catalyse monovalent cation/H+ exchange (gramicidin D or a mixture of valinomycin plus protonophore FCCP), a rapid but transient ACh release was observed. Surprisingly, nigericin which also catalyses K+/H+ exchange, had no effect on ACh release. The divalent cation ionophore A23187 promoted ACh release only when calcium (and not magnesium) was introduced into the external medium in a millimolar concentration range. As the simultaneous addition of the protonophore FCCP and A23187 decreased this calcium-dependent ACh leakage, a releasing effect of A23187 through Ca2+/H+ exchange is suspected. The present results emphasise the role of internal protons for ACh retention inside synaptic vesicles.  相似文献   

14.
The rate of translocation of newly synthesized acetylcholine (ACh) from the presynaptic cytosol of Torpedo electric organ nerve terminals into synaptic vesicles and the extent to which ACh release from these neurons is mediated by a vesicular mechanism were investigated. For this purpose the compound 2(4-phenylpiperidino)cyclohexanol (AH5183), which inhibits the active transport of ACh into isolated cholinergic synaptic vesicles, was employed. Preincubation of purified Torpedo nerve terminals (synaptosomes) with AH5183 does not affect the intraterminal synthesis of [3H]ACh but results in a marked inhibition (85%) of its Ca2+-dependent K+-evoked release. By contrast, the evoked release of the endogenous nonlabeled ACh is not affected by this compound. When AH5183 is added during radiolabeling, it causes a progressively smaller inhibition of [3H]ACh release which is completely abolished if the drug is added after the preparation has been labeled. These findings suggest that most of the newly synthesized synaptosomal [3H]ACh (85%) is released by a vesicular mechanism and that some [3H]ACh (15%) may be released by a different process. The translocation of cytosolic [3H]ACh into the synaptic vesicles was monitored by determining the time course of the loss of susceptibility of [3H]ACh release to AH5183. It was found not to be coupled kinetically to [3H]ACh synthesis and to lag behind it. The nature of the intraterminal processes underlying this lag is discussed.  相似文献   

15.
Cholinergic synaptic vesicles were isolated from the electric organs of the electric eel (Electrophorus electricus) and the electric catfish (Malapterurus electricus) as well as from the diaphragm of the rat by density gradient centrifugation followed by column chromatography on Sephacryl-1000. This was verified by both biochemical and electron microscopic criteria. Differences in size between synaptic vesicles from the various tissue sources were reflected by their elution pattern from the Sephacryl column. Specific activities of acetylcholine (ACh; in nmol/mg of protein) of chromatography-purified vesicle fractions were 36 (electric eel), 2 (electric catfish), and 1 (rat diaphragm). Synaptic vesicles from all three sources contained ATP in addition to ACh (molar ratios of ACh/ATP, 9-12) as well as binding activity for an antibody raised against Torpedo cholinergic synaptic vesicle proteoglycan. Synaptic vesicles from rat diaphragm contained binding activity for the monoclonal antibody asv 48 raised against a rat brain 65-kilodalton synaptic vesicle protein. Antibody asv 48 binding was absent from electric eel and electric catfish synaptic vesicles. These antibody binding results, which were obtained by a dot blot assay on isolated vesicles, directly correspond to the immunocytochemical results demonstrating fluorescein isothiocyanate staining in the respective nerve terminals. Our results imply that ACh, ATP, and proteoglycan are common molecular constituents of motor nerve terminal-derived synaptic vesicles from Torpedo to rat. In addition to ACh, both ATP and proteoglycan may play a specific role in the process of cholinergic signal transmission.  相似文献   

16.
Acetylcholine (ACh), which is synthesized from choline (Ch), is believed to hold a central place in signaling mechanisms within the central nervous system (CNS) of cuttlefish (Sepia officinalis) and other coleoid cephalopods. Although the main elements required for cholinergic function have been identified in cephalopods, the transmembrane translocation events promoting the release of ACh and the uptake of Ch remain largely unsolved. The ACh release and Ch uptake were quantitatively studied through the use of in vitro chemiluminescence and isotopic methods on a subcellular fraction enriched in synaptic nerve endings (synaptosomes) isolated from cuttlefish optic lobe. The ACh release evoked by K+ depolarization was found to be very high (0.04 pmol ACh.s(-1).mg(-1) protein). In response to stimulation by veratridine, a secretagogue (a substance that induces secretion) that targets voltage-gated Na+ channels, the release rate and the total amount of ACh released were significantly lower, by 10-fold, than the response induced by KCl. The high-affinity uptake of choline was also very high (31 pmol Ch.min(-1).mg(-1) protein). The observed ACh release and Ch uptake patterns are in good agreement with published data on preparations characterized by high levels of ACh metabolism, adding further evidence that ACh acts as a neurotransmitter in cuttlefish optic lobe.  相似文献   

17.
Retrograde Inhibition of Transmitter Release by ATP   总被引:9,自引:7,他引:2  
Abstract: After labelling ACh tissue stores in Torpedo electric organ prisms with radioactive acetate, the release of ACh and ATP triggered by electrical stimulation or KCI depolarization was measured in the same perfusate samples. The luciferin-luciferase reaction for ATP was first counted, then the radioactive content of the sample determined. Further evidence showing that ATP release resulted from postsynaptic transmitter action was that carbachol could induce the release of ATP. A dose-response curve was obtained. Curare or α-bungarotoxin block the release of ATP elicited by carbachol. When triggered by KCI depolarization the increased efflux of ACh and ATP returned to low levels in spite of the maintained depolarization. After two successive KCI depolarizations, it was possible to dissociate the release of both substances. The efflux of ATP was exhausted while ACh release was maintained. If the second KCI depolarization was delayed ATP release recovered, but the release kinetics of ACh and ATP were sustained. The exhaustion of endogenous ATP release or the action of exogenous ATP had little or no effect on the release of ACh triggered by KCI depolarization. On the contrary, the release of ACh induced by electrical stimulation was sensitive to the action of adenine nucleotides, and a quantitative estimation of the inhibition of ACh release by ATP and adenosine could be made. At the onset of stimulation ATP release predominated, being gradually replaced by adenosine, which can be reuptaken. This would terminate the inhibitory action of the nucleotide. Carbachol inhibits evoked ACh release, while the effect of α-bungarotoxin was to increase spontaneous ACh release. These effects could be respectively mediated by an increased or a reduced release of ATP resulting from the postsynaptic action of ACh agonists or antagonists. However, a direct presynaptic effect of these substances is not excluded. It seems possible that the action of ATP on ACh release can be explained through its inhibition of the depolarization-evoked Ca2+ entry.  相似文献   

18.
Abstract: These experiments investigate the release of transmitter from the perfused superior cervical ganglia of cats induced by ouabain in the absence or presence of 2-(4-phenylpiperidino)cyclohexanol (vesamicol), a blocker of acetylcholine (ACh) uptake. Ouabain, perfused through the ganglia, released ACh in a Ca2+-dependent way. Vesamicol caused some inhibition of the release of ACh by ouabain; however, under this condition, the Na+, K+-ATPase inhibitor released five times more transmitter than did preganglionic stimulation at 5 Hz. Also, when ganglia exposed to vesamicol were depleted of the impulse-releasable pool of ACh, subsequent perfusion with ouabain released ACh, and this included ACh newly synthesized in the presence of vesamicol; this phenomenon could be inhibited by the lack of Ca2+ and presence of EGTA, and was completely abolished by perfusion with a medium containing 18 mM Mg2+. To test whether the release of this vesamicol-insensitive Ca2+-dependent pool by ouabain is associated with a decrease in the number of synaptic vesicles, ganglia treated with the ATPase inhibitor after the depletion of the impulse-releasable pool of ACh were fixed for electron microscopy. In the presence of Ca2+, coincident with the release of the vesamicol-insensitive pool of ACh, nerve terminals were almost depleted of synaptic vesicles; ganglia treated similarly, but with medium containing 18 mM Mg2+ instead of Ca2+, were not depleted of synaptic vesicles. These results suggest that ouabain releases a vesamicol-insensitive pool of ACh from the sympathetic ganglion and also support the notion that this compartment is vesicular and its exocytosis depends on extracellular Ca2+. It is suggested that empty-vesicle recycling in the presence of vesamicol restricts mobilization of full vesicles to release sites.  相似文献   

19.
We examined the effects of two drugs, AH5183 and cetiedil, demonstrated to be potent inhibitors of acetylcholine (ACh) transport by isolated synaptic vesicles on cholinergic functions in Torpedo synaptosomes. AH5183 exhibited a high specificity toward vesicular ACh transport, whereas cetiedil was shown to inhibit both high-affinity choline uptake and vesicular ACh transport. Choline acetyltransferase was not affected by either drug. High external choline concentrations permitted us to overcome cetiedil inhibition of high-affinity choline transport, and thus synthesis of [14C]ACh in treated preparations was similar to that in controls. We then tested evoked ACh release in drug-treated synaptosomes under conditions where ACh translocation into the vesicles was blocked. We observed that ACh release was impaired only in cetiedil-treated preparations; synaptosomes treated with AH5183 behaved like the controls. Thus, this comparative study on isolated nerve endings allowed us to dissociate two steps in drug action: upstream, where both AH5183 and cetiedil are efficient blockers of the vesicular ACh translocation, and downstream, where only cetiedil is able to block the ACh release process.  相似文献   

20.
The effects of several phospholipase A2 neurotoxins from snake venoms were examined on purely cholinergic synaptosomes from Torpedo electric organ. The noncatalytic component A of crotoxin had no effect, whereas its phospholipase component B, used alone or complexed to component A, elicited a rapid and dose-dependent acetylcholine (ACh) release and a depolarization of the preparation. Subsequent ACh release evoked by high K+ levels or calcium ionophore was identical to the control after the action of component A but reduced after the action of crotoxin or of component B. These effects were not observed when the phospholipase A2 activity of the toxin was blocked either by replacing Ca2+ by Ba2+ (respectively, activator and inhibitor of phospholipase A2) or by alkylation of component B with p-bromophenacyl bromide. beta-Bungarotoxin, another very potent phospholipase A2 neurotoxin, induced release of little ACh, did not affect ionophore-evoked ACh release, but significantly reduced depolarization-induced ACh release. The single-chain phospholipase A2 neurotoxin agkistrodotoxin behaved like crotoxin component B. A nonneurotoxic phospholipase A2 from mammalian pancrease induced release of an amount of ACh similar to that released by crotoxin but did not affect the evoked responses. The obvious differences in effect of the various neurotoxins suggest that they exert their specific actions on the excitation-secretion coupling process at different sites or by different mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号