首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Whole cell patch clamp and intracellular Ca(2+) transients in trout atrial cardiomyocytes were used to quantify calcium release from the sarcoplasmic reticulum (SR) and examine its dependency on the Ca(2+) trigger source. Short depolarization pulses (2-20 ms) elicited large caffeine-sensitive tail currents. The Ca(2+) carried by the caffeine-sensitive tail current after a 2-ms depolarization was 0.56 amol Ca(2+)/pF, giving an SR Ca(2+) release rate of 279 amol Ca(2+). pF(-1). s(-1) or 4.3 mM/s. Depolarizing cells for 10 ms to different membrane potentials resulted in a local maximum of SR Ca(2+) release, intracellular Ca(2+) transient, and cell shortening at 10 mV. Although 100 microM CdCl(2) abolished this local maximum, it had no effect on SR Ca(2+) release elicited by a depolarization to 110 or 150 mV, and the SR Ca(2+) release was proportional to the membrane potential in the range -50 to 150 mV with 100 microM CdCl(2). Increasing the intracellular Na(+) concentration ([Na(+)]) from 10 to 16 mM enhanced SR Ca(2+) release but reduced cell shortening at all membrane potentials examined. In the absence of TTX, SR Ca(2+) release was potentiated with 16 mM but not 10 mM pipette [Na(+)]. Comparison of the total sarcolemmal Ca(2+) entry and the Ca(2+) released from the SR gave a gain factor of 18.6 +/- 7.7. Nifedipine (Nif) at 10 microM inhibited L-type Ca(2+) current (I(Ca)) and reduced the time integral of the tail current by 61%. The gain of the Nif-sensitive SR Ca(2+) release was 16.0 +/- 4.7. A 2-ms depolarization still elicited a contraction in the presence of Nif that was abolished by addition of 10 mM NiCl(2). The gain of the Nif-insensitive but NiCl(2)-sensitive SR Ca(2+) release was 14.8 +/- 7.1. Thus both reverse-mode Na(+)/Ca(2+) exchange (NCX) and I(Ca) can elicit Ca(2+) release from the SR, but I(Ca) is more efficient than reverse-mode NCX in activating contraction. This difference may be due to extrusion of a larger fraction of the Ca(2+) released from the SR by reverse-mode NCX rather than a smaller gain for NCX-induced Ca(2+) release.  相似文献   

2.
We have used the whole cell configuration of the patch-clamp technique to measure sarcolemmal Ca(2+) transport by the Na(+)/Ca(2+) exchanger (NCX) and its contribution to the activation and relaxation of contraction in trout atrial myocytes. In contrast to mammals, cell shortening continued, increasing at membrane potentials above 0 mV in trout atrial myocytes. Furthermore, 5 microM nifedipine abolished L-type Ca(2+) current (I(Ca)) but only reduced cell shortening and the Ca(2+) carried by the tail current to 66 +/- 5 and 67 +/- 6% of the control value. Lowering of the pipette Na(+) concentration from 16 to 10 or 0 mM reduced Ca(2+) extrusion from the cell from 2.5 +/- 0.2 to 1.0 +/- 0.2 and 0.5 +/- 0.06 amol/pF. With 20 microM exchanger inhibitory peptide (XIP) in the patch pipette Ca(2+) extrusion 20 min after patch break was 39 +/- 8% of its initial value. With 16, 10, and 0 mM Na(+) in the pipette, the sarcoplasmic reticulum (SR) Ca(2+) content was 47 +/- 4, 29 +/- 6, and 10 +/- 3 amol/pF, respectively. Removal of Na(+) from or inclusion of 20 microM XIP in the pipette gradually eliminated the SR Ca(2+) content. Whereas I(Ca) was the same at -10 or +10 mV, Ca(2+) extrusion from the cell and the SR Ca(2+) content at -10 mV were 65 +/- 7 and 80 +/- 4% of that at +10 mV. The relative amount of Ca(2+) extruded by the NCX (about 55%) and taken up by the SR (about 45%) was, however, similar with depolarizations to -10 and +10 mV. We conclude that modulation of the NCX activity critically determines Ca(2+) entry and cell shortening in trout atrial myocytes. This is due to both an alteration of the transsarcolemmal Ca(2+) transport and a modulation of the SR Ca(2+) content.  相似文献   

3.
Postmyocardial infarction (MI) rat myocytes demonstrated depressed Na(+)/Ca(2+) exchange (NCX1) activity, altered contractility, and intracellular Ca(2+) concentration ([Ca(2+)](i)) transients. We investigated whether NCX1 downregulation in normal myocytes resulted in contractility changes observed in MI myocytes. Myocytes infected with adenovirus expressing antisense (AS) oligonucleotides to NCX1 had 30% less NCX1 at 3 days and 66% less NCX1 at 6 days. The half-time of relaxation from caffeine-induced contracture was twice as long in ASNCX1 myocytes. Sarcoplasmic reticulum (SR) Ca(2+)-ATPase abundance, SR Ca(2+) uptake, resting membrane potential, action potential amplitude and duration, L-type Ca(2+) current density and cell size were not affected by ASNCX1 treatment. At extracellular Ca(2+) concentration ([Ca(2+)](o)) of 5 mM, ASNCX1 myocytes had significantly lower contraction and [Ca(2+)](i) transient amplitudes and SR Ca(2+) contents than control myocytes. At 0.6 mM [Ca(2+)](o), contraction and [Ca(2+)](i) transient amplitudes and SR Ca(2+) contents were significantly higher in ASNCX1 myocytes. At 1.8 mM [Ca(2+)](o), contraction and [Ca(2+)](i) transient amplitudes were not different between control and ASNCX1 myocytes. This pattern of contractile and [Ca(2+)](i) transient abnormalities in ASNCX1 myocytes mimics that observed in rat MI myocytes. We conclude that downregulation of NCX1 in adult rat myocytes resulted in decreases in both Ca(2+) influx and efflux during a twitch. We suggest that depressed NCX1 activity may partly account for the contractile abnormalities after MI.  相似文献   

4.
The phosphoinositide 3-kinase (PI3K) inhibitor LY-294002 decreased steady-state contraction in neonatal rat ventricular myocytes (NRVM). To determine whether the effect on steady-state contraction could be due to decreased intracellular Ca(2+) content, Ca(2+) content was assessed with fluorescent plate reader analysis by using the caffeine-releasable Ca(2+) stores as an index of sarcoplasmic reticulum (SR) Ca(2+) content. Caffeine-releasable Ca(2+) content was diminished in a dose-dependent manner with LY-294002, suggesting that the decrease in steady-state contraction was due to diminished intracellular Ca(2+) content. Activation of the L-type Ca(2+) channel by BAY K 8644 was attenuated by LY-294002, suggesting the effect of LY-294002 is to reduce Ca(2+) influx at this channel. To investigate whether additional proteins involved in excitation-contraction (EC) coupling are likewise regulated by PI3K activity, the effects of compounds acting at sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA2a), the ryanodine receptor, and the Na/Ca exchanger (NCX) were compared with LY-294002. Inhibition of SERCA2a by thapsigargin increased basal Ca(2+) levels in contrast to LY-294002, indicating that SERCA2a activity is sustained in the presence of LY-294002. Ryanodine decreased SR Ca(2+) content. The additive effect with coadministration of LY-294002 could be attributed to a decrease in Ca(2+) influx at the L-type Ca(2+) channel. The NCX inhibitor Ni(2+) was used to investigate whether the decrease in intracellular Ca(2+) content with LY-294002 could be due to inhibition of the NCX reverse-mode activity. The minimal effect of LY-294002 with Ni(2+) suggests that the primary effect of LY-294002 on EC coupling occurs through inhibition of PI3K-mediated L-type Ca(2+) channel activity.  相似文献   

5.
Myocytes from the failing myocardium exhibit depressed and prolonged intracellular Ca(2+) concentration ([Ca(2+)](i)) transients that are, in part, responsible for contractile dysfunction and unstable repolarization. To better understand the molecular basis of the aberrant Ca(2+) handling in heart failure (HF), we studied the rabbit pacing tachycardia HF model. Induction of HF was associated with action potential (AP) duration prolongation that was especially pronounced at low stimulation frequencies. L-type calcium channel current (I(Ca,L)) density (-0.964 +/- 0.172 vs. -0.745 +/- 0.128 pA/pF at +10 mV) and Na(+)/Ca(2+) exchanger (NCX) currents (2.1 +/- 0.8 vs. 2.3 +/- 0.8 pA/pF at +30 mV) were not different in myocytes from control and failing hearts. The amplitude of peak [Ca(2+)](i) was depressed (at +10 mV, 0.72 +/- 0.07 and 0.56 +/- 0.04 microM in normal and failing hearts, respectively; P < 0.05), with slowed rates of decay and reduced Ca(2+) spark amplitudes (P < 0.0001) in myocytes isolated from failing vs. control hearts. Inhibition of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA)2a revealed a greater reliance on NCX to remove cytosolic Ca(2+) in myocytes isolated from failing vs. control hearts (P < 0.05). mRNA levels of the alpha(1C)-subunit, ryanodine receptor (RyR), and NCX were unchanged from controls, while SERCA2a and phospholamban (PLB) were significantly downregulated in failing vs. control hearts (P < 0.05). alpha(1C) protein levels were unchanged, RyR, SERCA2a, and PLB were significantly downregulated (P < 0.05), while NCX protein was significantly upregulated (P < 0.05). These results support a prominent role for the sarcoplasmic reticulum (SR) in the pathogenesis of HF, in which abnormal SR Ca(2+) uptake and release synergistically contribute to the depressed [Ca(2+)](i) and the altered AP profile phenotype.  相似文献   

6.
Ontogeny of Ca2+-induced Ca2+ release in rabbit ventricular myocytes   总被引:2,自引:0,他引:2  
It is commonly accepted that L-type Ca(2+) channel-mediated Ca(2+)-induced Ca(2+) release (CICR) is the dominant mode of excitation-contraction (E-C) coupling in the adult mammalian heart and that there is no appreciable CICR in neonates. However, we have observed that cell contraction in the neonatal heart was significantly decreased after sarcoplasmic reticulum (SR) Ca(2+) depletion with caffeine. Therefore, the present study investigated the developmental changes of CICR in rabbit ventricular myocytes at 3, 10, 20, and 56 days of age. We found that the inhibitory effect of the L-type Ca(2+) current (I(Ca)) inhibitor nifedipine (Nif; 15 microM) caused an increasingly larger reduction of Ca(2+) transients on depolarization in older age groups [from approximately 15% in 3-day-old (3d) myocytes to approximately 90% in 56-day-old (56d) myocytes]. The remaining Ca(2+) transient in the presence of Nif in younger age groups was eliminated by the inhibition of Na(+)/Ca(2+) exchanger (NCX) with the subsequent addition of 10 microM KB-R7943 (KB-R). Furthermore, Ca(2+) transients were significantly reduced in magnitude after the depletion of SR Ca(2+) with caffeine in all age groups, although the effect was significantly greater in the older age groups (from approximately 40% in 3d myocytes up to approximately 70% in 56d myocytes). This SR Ca(2+)-sensitive Ca(2+) transient in the earliest developmental stage was insensitive to Nif but was sensitive to the subsequent addition of KB-R, indicating the presence of NCX-mediated CICR that decreased significantly with age (from approximately 37% in 3d myocytes to approximately 0.5% in 56d myocytes). In contrast, the I(Ca)-mediated CICR increased significantly with age (from approximately 10% in 3d myocytes to approximately 70% in 56d myocytes). The CICR gain as estimated by the integral of the CICR Ca(2+) transient divided by the integral of its Ca(2+) transient trigger was smaller when mediated by NCX ( approximately 1.0 for 3d myocytes) than when mediated by I(Ca) ( approximately 3.0 for 56d myocytes). We conclude that the lower-efficiency NCX-mediated CICR is a predominant mode of CICR in the earliest developmental stages that gradually decreases as the more efficient L-type Ca(2+) channel-mediated CICR increases in prominence with ontogeny.  相似文献   

7.
While it has been reported that a sparse sarcoplasmic reticulum (SR) and a low SR Ca(2+) pump density exist at birth, we and others have recently shown that significant amounts of Ca(2+) are stored in the neonatal rabbit heart SR. Here we try to determine developmental changes in SR Ca(2+) loading mechanisms and Ca(2+) pump efficacy in rabbit ventricular myocytes. SR Ca(2+) loading (load(SR)) and k(0.5) (Ca(2+) concentration at half-maximal SR Ca(2+) uptake) were higher and lower, respectively, in younger age groups. Inhibition of the L-type calcium current (I(Ca)) with 15 microM nifedipine dramatically reduced load(SR) in older but not in younger age groups. In contrast, subsequent inhibition of the Na(+)/Ca(2+) exchanger (NCX) with 10 microM KB-R7943 strongly reduced load(SR) in the younger but not the older age groups. Accordingly, the time integral of the inward NCX current (tail I(NCX)) elicited on repolarization was highly sensitive to nifedipine in the older groups and sensitive to KB-R7943 in the younger groups. Interestingly, slow SR loading took place in the presence of both nifedipine and KB-R7943 in all age groups, although it was less prominent in the older groups. We conclude that the SR loading capacity at the earliest postnatal stages is at least as large as that of adult myocytes. However, reverse-mode NCX plays a prominent role in SR Ca(2+) loading at early postnatal stages while I(Ca) is the main source of SR Ca(2+) loading at late postnatal and adult stages.  相似文献   

8.
Abnormal release of Ca(2+) from sarcoplasmic reticulum (SR) via the cardiac ryanodine receptor (RyR2) may contribute to contractile dysfunction in heart failure (HF). We previously demonstrated that RyR2 macromolecular complexes from HF rat were significantly more depleted of FK506 binding protein (FKBP12.6). Here we assessed expression of key Ca(2+) handling proteins and measured SR Ca(2+) content in control and HF rat myocytes. Direct measurements of SR Ca(2+) content in permeabilized cardiac myocytes demonstrated that SR luminal [Ca(2+)] is markedly lowered in HF (HF: DeltaF/F(0) = 26.4+/-1.8, n=12; control: DeltaF/F(0) = 49.2+/-2.9, n=10; P<0.01). Furthermore, we demonstrated that the expression of RyR2 associated proteins (including calmodulin, sorcin, calsequestrin, protein phosphatase 1, protein phosphatase 2A), Ca(2+) ATPase (SERCA2a), PLB phosphorylation at Ser16 (PLB-S16), PLB phosphorylation at Thr17 (PLB-T17), L-type Ca(2+) channel (Cav1.2) and Na(+)- Ca(2+) exchanger (NCX) were significantly reduced in rat HF. Our results suggest that systolic SR reduced Ca(2+) release and diastolic SR Ca(2+) leak (due to defective protein-protein interaction between RyR2 and its associated proteins) along with reduced SR Ca(2+) uptake (due to down-regulation of SERCA2a, PLB-S16 and PLB-T17), abnormal Ca(2+) extrusion (due to down-regulation of NCX) and defective Ca(2+) -induced Ca(2+) release (due to down-regulation of Cav1.2) could contribute to HF.  相似文献   

9.
MCI-154对大鼠心肌细胞的变力作用   总被引:1,自引:1,他引:0  
Chen HZ  Cui XL  Zhao HC  Zhao LY  Lu JY  Wu BW 《生理学报》2004,56(3):301-305
钙增敏剂具有正性肌力作用,同时不增加细胞内钙浓度,因此可避免导致心律失常和最终心肌细胞死亡的钙超载。然而大部分钙增敏剂对心肌舒张功能有损害作用。MCI-154是一种钙增敏剂,但不损害舒张功能。为阐明其变力作用机制,我们应用离子成像技术研究了MCI-154对分离的单个大鼠心室肌细胞钙瞬变和收缩的影响,利用膜片钳技术观察了MCI-154对大鼠心室肌细胞L-型钙电流和Na^ /Ca^2 交换电流的影响。结果表明:(1)MCI-154在1μmol/L至100μmol/L的浓度范围内对L-型钙电流(ICa-L)无直接影响:(2)MCI-154在轻微增加钙瞬变幅度和缩短心肌钙瞬变TR50和TR90的情况下,呈剂量依赖性地增加大鼠心室肌细胞的缩短;(3)MCI-154剂量依赖性地增加正常大鼠心室肌细胞的Na^ /Ca^2 交换电流。这些结果提示:MCI-154不仅剂量依赖性地发挥了正性变力作用,对舒张功能也没有损害作用,明显不同于其它钙增敏剂,而且还轻微改善了大鼠心室肌细胞的舒张。其对内向Na^ /Ca^2 交换电流的激动作用会加快钙内流,导致TR50和TR90的缩短,提示MCI-154是通过正向Na^ /Ca^2 交换改善舒张功能的。  相似文献   

10.
Expression and activity of cardiac Na(+)/Ca(2+) exchanger (NCX1) are altered in many disease states. We engineered mice in which the phosphomimetic phospholemman S68E mutant (inhibits NCX1 but not Na(+)-K(+)-ATPase) was constitutively overexpressed in a cardiac-specific manner (conS68E). At 4-6 wk, conS68E mice exhibited severe bradycardia, ventricular arrhythmias, increased left ventricular (LV) mass, decreased cardiac output (CO), and ~50% mortality compared with wild-type (WT) littermates. Protein levels of NCX1, calsequestrin, ryanodine receptor, and α(1)- and α(2)-subunits of Na(+)-K(+)-ATPase were similar, but sarco(endo)plasmic reticulum Ca(2+)-ATPase was lower, whereas L-type Ca(2+) channels were higher in conS68E hearts. Resting membrane potential and action potential amplitude were similar, but action potential duration was dramatically prolonged in conS68E myocytes. Diastolic intracellular Ca(2+) ([Ca(2+)](i)) was higher, [Ca(2+)](i) transient and maximal contraction amplitudes were lower, and half-time of [Ca(2+)](i) transient decline was longer in conS68E myocytes. Intracellular Na(+) reached maximum within 3 min after isoproterenol addition, followed by decline in WT but not in conS68E myocytes. Na(+)/Ca(2+) exchange, L-type Ca(2+), Na(+)-K(+)-ATPase, and depolarization-activated K(+) currents were decreased in conS68E myocytes. At 22 wk, bradycardia and increased LV mass persisted in conS68E survivors. Despite comparable baseline CO, conS68E survivors at 22 wk exhibited decreased chronotropic, inotropic, and lusitropic responses to isoproterenol. We conclude that constitutive overexpression of S68E mutant was detrimental, both in terms of depressed cardiac function and increased arrhythmogenesis.  相似文献   

11.
Agonist-induced contraction of airway smooth muscle (ASM) can be triggered by an elevation in the intracellular Ca(2+) concentration, primarily through the release of Ca(2+) from the sarcoplasmic reticulum (SR). The refilling of the SR is integral for subsequent contractions. It has been suggested that Ca(2+) entry via store-operated cation (SOC) and receptor-operated cation channels may facilitate refilling of the SR. Indeed, depletion of the SR activates substantial inward SOC currents in ASM that are composed of both Ca(2+) and Na(+). Accumulation of Na(+) within the cell may regulate Ca(2+) handling in ASM by forcing the Na(+)/Ca(2+) exchanger (NCX) into the reverse mode, leading to the influx of Ca(2+) from the extracellular domain. Since depletion of the SR activates substantial inward Na(+) current, it is conceivable that the reverse mode of the NCX may contribute to the intracellular Ca(2+) pool from which the SR is refilled. Indeed, successive contractions of bovine ASM, evoked by various agonists (ACh, histamine, 5-HT, caffeine) were significantly reduced upon removal of extracellular Na(+); whereas contractions evoked by KCl were unchanged by Na(+) depletion. Ouabain, a selective inhibitor of the Na(+)/K(+) pump, had no effect on the reductions observed under normal and zero-Na(+) conditions. KB-R7943, a selective inhibitor of the reverse mode of the NCX, significantly reduced successive contractions induced by all agonists without altering KCl responses. Furthermore, KB-R7943 abolished successive caffeine-induced Ca(2+) transients in single ASM cells. Together, these data suggest a role for the reverse mode of the NCX in refilling the SR in ASM following Ca(2+) mobilization.  相似文献   

12.
The functional consequences of overexpression of rat heart Na+/Ca2+ exchanger (NCX1) were investigated in adult rat myocytes in primary culture. When maintained under continued electrical field stimulation conditions, cultured adult rat myocytes retained normal contractile function compared with freshly isolated myocytes for at least 48 h. Infection of myocytes by adenovirus expressing green fluorescent protein (GFP) resulted in >95% infection as ascertained by GFP fluorescence, but contraction amplitude at 6-, 24-, and 48-h postinfection was not affected. When they were examined 48 h after infection, myocytes infected by adenovirus expressing both GFP and NCX1 had similar cell sizes but exhibited significantly altered contraction amplitudes and intracellular Ca2+ concentration ([Ca2+]i) transients, and lower resting and diastolic [Ca2+]i when compared with myocytes infected by the adenovirus expressing GFP alone. The effects of NCX1 overexpression on sarcoplasmic reticulum (SR) Ca2+ content depended on extracellular Ca2+ concentration ([Ca2+]o), with a decrease at low [Ca2+]o and an increase at high [Ca2+]o. The half-times for [Ca2+]i transient decline were similar, suggesting little to no changes in SR Ca2+-ATPase activity. Western blots demonstrated a significant (P < or = 0.02) threefold increase in NCX1 but no changes in SR Ca2+-ATPase and calsequestrin abundance in myocytes 48 h after infection by adenovirus expressing both GFP and NCX1 compared with those infected by adenovirus expressing GFP alone. We conclude that overexpression of NCX1 in adult rat myocytes incubated at high [Ca2+]o resulted in enhanced Ca2+ influx via reverse NCX1 function, as evidenced by greater SR Ca2+ content, larger twitch, and [Ca2+]i transient amplitudes. Forward NCX1 function was also increased, as indicated by lower resting and diastolic [Ca2+]i.  相似文献   

13.
Intracellular Na(+)-concentration, [Na(+)](i) modulates excitation-contraction coupling of cardiac myocytes via the Na(+)/Ca(2+) exchanger (NCX). In cardiomyocytes from rainbow trout (Oncorhyncus mykiss), whole cell patch-clamp studies have shown that Ca(2+) influx via reverse-mode NCX contributes significantly to contraction when [Na(+)](i) is 16 mM but not 10 mM. However, physiological [Na(+)](i) has never been measured. We recorded [Na(+)](i) using the fluorescent indicator sodium-binding benzofuran isophthalate in freshly isolated atrial and ventricular myocytes from rainbow trout. We examined [Na(+)](i) at rest and during increases in contraction frequency across three temperatures that span those trout experience in nature (7, 14, and 21 degrees C). Surprisingly, we found that [Na(+)](i) was not different between atrial and ventricular cells. Furthermore, acute temperature changes did not affect [Na(+)](i) in resting cells. Thus, we report a resting in vivo [Na(+)](i) of 13.4 mM for rainbow trout cardiomyocytes. [Na(+)](i) increased from rest with increases in contraction frequency by 3.2, 4.7, and 6.5% at 0.2, 0.5, and 0.8 Hz, respectively. This corresponds to an increase of 0.4, 0.6, and 0.9 mM at 0.2, 0.5, and 0.8 Hz, respectively. Acute temperature change did not significantly affect the contraction-induced increase in [Na(+)](i). Our results provide the first measurement of [Na(+)](i) in rainbow trout cardiomyocytes. This surprisingly high [Na(+)](i) is likely to result in physiologically significant Ca(2+) influx via reverse-mode NCX during excitation-contraction coupling. We calculate that this Ca(2+)-source will decrease with the action potential duration as temperature and contraction frequency increases.  相似文献   

14.
Previous studies on myocytes isolated from rat hearts 3 wk after myocardial infarction (MI) demonstrated increased cell length, reduced Na(+)/Ca(2+) exchange (NCX1) activity, altered contractility, and intracellular Ca(2+) concentration ([Ca(2+)](i)) transients. In the present study, we investigated whether NCX1 overexpression in MI myocytes would restore contraction and [Ca(2+)](i) transients to normal. When myocytes were placed in culture under continued electrical-field stimulation conditions, differences in contraction amplitudes and cell lengths between sham and MI myocytes were preserved for at least 48 h. Infection of both sham and MI myocytes by adenovirus expressing green fluorescent protein resulted in >95% infection, as evidenced by green fluorescent protein fluorescence, but contraction amplitudes at 6-, 24-, and 48-h postinfection were not affected. NCX1 overexpression in MI myocytes resulted in lower diastolic [Ca(2+)](i) levels at all extracellular Ca(2+) concentrations ([Ca(2+)](o)) examined, suggesting enhanced forward NCX1 activity. At 5 mM [Ca(2+)](o), subnormal contraction and [Ca(2+)](i) transient amplitudes in MI myocytes (compared with sham myocytes) were restored toward normal levels by overexpressing NCX1. At 0.6 mM [Ca(2+)](o), supranormal contraction and [Ca(2+)](i) transient amplitudes in MI myocytes (compared with sham myocytes) were lowered by NCX1 overexpression. We conclude that overexpression of NCX1 in MI myocytes was effective in improving contractile dysfunction, most likely because of enhancement of both Ca(2+) efflux and influx during a cardiac cycle. We suggest that decreased NCX1 activity may play an important role in contractile abnormalities in postinfarction myocytes.  相似文献   

15.
DMA增加正常大鼠心肌细胞钙瞬变和收缩   总被引:13,自引:5,他引:8  
Cui XL  Chen HZ  Wu DM  Wu BW 《生理学报》2002,54(3):219-224
实验观察了钠氢交换或钠钙交换抑制剂 5 (N ,N 二甲基 )氨氯吡咪 (DMA)对正常和心肌肥厚大鼠分离心室肌细胞钙瞬变和细胞收缩的影响。通过负载荧光染料Fura 2 /Am ,应用离子影像分析系统 (IonImagingSystem)同步测定离体大鼠心肌细胞钙瞬变和细胞长度。结果表明 :DMA 10 μmol/L分别使钙瞬变和细胞缩短从对照组的 2 0 9.6 0± 5 4.96和 3.0 7± 0 .97μm增加到 2 38.5 0± 80 .41和 4.0 7± 1.0 2 μm (P <0 .0 5 ,n =7)。应用特异性反向钠钙交换阻断剂KB R7943可完全阻断DMA的激动作用。DMA还可使尼卡地平抑制L 型钙通道后的钙瞬变和细胞收缩增加。在肥厚心肌细胞 ,DMA表现出相同的药理作用 ,但对钙瞬变和细胞缩短的刺激作用更强。结果表明 :DMA可通过反向钠钙交换途径增加正常和肥厚大鼠心肌细胞钙瞬变和细胞收缩 ,且对肥厚心肌细胞的影响比对正常心肌细胞大。  相似文献   

16.
To elucidate the roles of sarcoplasmic reticulum (SR) Ca(2+) cycling and Na(+)/Ca(2+) exchanger (NCX) in sinoatrial node (SAN) pacemaking, we have applied stability and bifurcation analyses to a coupled-clock system model developed by Maltsev and Lakatta (Am J Physiol Heart Circ Physiol 296: H594-H615, 2009). Equilibrium point (EP) at which the system is stationary (i.e., the oscillatory system fails to function), periodic orbit (limit cycle), and their stability were determined as functions of model parameters. The stability analysis to detect bifurcation points confirmed crucial importance of SR Ca(2+) pumping rate constant (P(up)), NCX density (k(NCX)), and L-type Ca(2+) channel conductance for the system function reported in previous parameter-dependent numerical simulations. We showed, however, that the model cell does not exhibit self-sustained automaticity of SR Ca(2+) release at any clamped voltage and therefore needs further tuning to reproduce oscillatory local Ca(2+) release and net membrane current reported experimentally at -10 mV. Our further extended bifurcation analyses revealed important novel features of the pacemaker system that go beyond prior numerical simulations in relation to the roles of SR Ca(2+) cycling and NCX in SAN pacemaking. Specifically, we found that 1) NCX contributes to EP instability and enhancement of robustness in the full system during normal spontaneous action potential firings, while stabilizing EPs to prevent sustained Ca(2+) oscillations under voltage clamping; 2) SR requires relatively large k(NCX) and subsarcolemmal Ca(2+) diffusion barrier (i.e., subspace) to contribute to EP destabilization and enhancement of robustness; and 3) decrementing P(up) or k(NCX) decreased the full system robustness against hyperpolarizing loads because EP stabilization and cessation of pacemaking were observed at the lower critical amplitude of hyperpolarizing bias currents, suggesting that SR Ca(2+) cycling contributes to enhancement of the full system robustness by modulating NCX currents and promoting EP destabilization.  相似文献   

17.
Previous studies have shown lower systolic intracellular Ca(2+) concentrations ([Ca(2+)](i)) and reduced sarcoplasmic reticulum (SR)-releasable Ca(2+) contents in myocytes isolated from rat hearts 3 wk after moderate myocardial infarction (MI). Ca(2+) entry via L-type Ca(2+) channels was normal, but that via reverse Na(+)/Ca(2+) exchange was depressed in 3-wk MI myocytes. To elucidate mechanisms of reduced SR Ca(2+) contents in MI myocytes, we measured SR Ca(2+) uptake and SR Ca(2+) leak in situ, i.e., in intact cardiac myocytes. For sham and MI myocytes, we first demonstrated that caffeine application to release SR Ca(2+) and inhibit SR Ca(2+) uptake resulted in a 10-fold prolongation of half-time (t(1/2)) of [Ca(2+)](i) transient decline compared with that measured during a normal twitch. These observations indicate that early decline of the [Ca(2+)](i) transient during a twitch in rat myocytes was primarily mediated by SR Ca(2+)-ATPase and that the t(1/2) of [Ca(2+)](i) decline is a measure of SR Ca(2+) uptake in situ. At 5.0 mM extracellular Ca(2+), systolic [Ca(2+)](i) was significantly (P 相似文献   

18.
In the locomotor muscle of the pelagic tunicate Doliolum, both the sarcoplasmic reticulum (SR) and the transverse-tubular (T-tubular) system are absent. The mechanism of excitation-contraction (E-C) coupling was studied in single muscle fibres enzymatically dissociated from Doliolum denticulatum. Whole cell voltage clamp experiments demonstrated an inward ionic current associated with membrane depolarisation. This current was blocked by 5 mmol.l(-1)Co(2+), a calcium current blocker, and suppressed by nifedipine, a specific L-type calcium channel blocker. An increase in the external K(+) concentration to 200 mmol.l(-1) (K(+)-depolarisation) induced a rise in the intracellular Ca(2+) level detected with fluo-3, a Ca(2+)-sensitive dye. However, when 5-10 mmol.l(-1) Co(2+) or 10-15 micro mol.l(-1) nifedipine was present in the external solution, K(+)-depolarisation did not induce a rise in the intracellular Ca(2+) level. Externally applied 5-10 mmol.l(-1) caffeine or 20 micro mol.l(-1) ryanodine had no effect on the intracellular Ca(2+) level. K(+)-depolarisation induced a rise in the intracellular Ca(2+) level in the presence of caffeine or ryanodine. Replacement of external Na(+) with Li(+) increased intracellular Ca(2+) levels. Our results show that contraction of the locomotor muscle in Doliolum is solely due to the influx of Ca(2+) through L-type calcium channels, and that relaxation is due to extrusion of Ca(2+) by Na(+)/Ca(2+) exchange across the sarcolemma.  相似文献   

19.
Phospholemman (PLM) expression was increased in rat hearts after myocardial infarction (MI). Overexpression of PLM in normal adult rat cardiac myocytes altered contractile function and cytosolic Ca(2+) concentration ([Ca(2+)](i)) homeostasis in a manner similar to that observed in post-MI myocytes. In this study, we tested whether PLM downregulation in normal adult rat myocytes resulted in contractility and [Ca(2+)](i) transient changes opposite to those observed in post-MI myocytes. Compared with control myocytes infected with adenovirus (Adv) expressing green fluorescent protein (GFP) alone, myocytes infected with Adv expressing both GFP and rat antisense PLM (rASPLM) had 23% less PLM protein (P < 0.012) at 3 days, but no differences were found in sarcoplasmic reticulum (SR) Ca(2+)-ATPase, Na(+)/Ca(2+) exchanger (NCX1), Na(+)-K(+)-ATPase, and calsequestrin levels. SR Ca(2+) uptake and whole cell capacitance were not affected by rASPLM treatment. Relaxation from caffeine-induced contracture was faster, and NCX1 current amplitudes were higher in rASPLM myocytes, indicating that PLM downregulation enhanced NCX1 activity. In native rat cardiac myocytes, coimmunoprecipitation experiments indicated an association of PLM with NCX1. At 0.6 mM [Ca(2+)](o), rASPLM myocytes had significantly (P < 0.003) lower contraction and [Ca(2+)](i) transient amplitudes than control GFP myocytes. At 5 mM [Ca(2+)](o), both contraction and [Ca(2+)](i) transient amplitudes were higher in rASPLM myocytes. This pattern of contractile and [Ca(2+)](i) transient behavior in rASPLM myocytes was opposite to that observed in post-MI rat myocytes. We conclude that downregulation of PLM in normal rat cardiac myocytes enhanced NCX1 function and affected [Ca(2+)](i) transient and contraction amplitudes. We suggest that PLM downregulation offers a potential therapeutic strategy for ameliorating contractile abnormalities in MI myocytes.  相似文献   

20.
(Na(+)+K(+))-ATPase (NKA) mediates positive inotropy in the heart. Extensive studies have demonstrated that the reverse-mode Na(+)/Ca(2+)-exchanger (NCX) plays a critical role in increasing intracellular Ca(2+) concentration through the inhibition of NKA-induced positive inotropy by cardiac glycosides. Little is known about the nature of the NCX functional mode in the activation of NKA-induced positive inotropy. Here, we examined the effect of an NKA activator SSA412 antibody on (45)Ca influx in isolated rat myocytes and found that KB-R7943, a NCX reverse-mode inhibitor, fails to inhibit the activation of NKA-induced (45)Ca influx, suggesting that the Ca(2+) influx via the reverse-mode NCX does not mediate this process. Nifedipine, an L-type Ca(2+) channel (LTCC) inhibitor, completely blocks the activation of NKA-induced (45)Ca influx, suggesting that the LTCC is responsible for the moderate increase in intracellular Ca(2+). In contrast, the inhibition of NKA by ouabain induces 4.7-fold (45)Ca influx compared with the condition of activation of NKA. Moreover, approximately 70% of ouabain-induced (45)Ca influx was obstructed by KB-R7943 and only 30% was impeded by nifedipine, indicating that both the LTCC and the NCX contribute to the rise in intracellular Ca(2+) and that the NCX reverse-mode is the major source for the (45)Ca influx induced by the inhibition of NKA. This study provides direct evidence to demonstrate that the activation of NKA-induced Ca(2+) increase is independent of the reverse-mode NCX and pinpoints a mechanistic distinction between the activation and inhibition of the NKA-mediated Ca(2+) influx path ways in cardiomyocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号