首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Synthesis of dinucleoside polyphosphates catalyzed by firefly luciferase.   总被引:2,自引:0,他引:2  
In the presence of ATP, luciferin (LH2), Mg2+ and pyrophosphatase, the firefly (Photinus pyralis) luciferase synthesizes diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A) through formation of the E-LH2-AMP complex and transfer of AMP to ATP. The maximum rate of the synthesis is observed at pH 5.7. The Km values for luciferin and ATP are 2-3 microM and 4 mM, respectively. The synthesis is strictly dependent upon luciferin and a divalent metal cation. Mg2+ can be substituted with Zn2+, Co2+ or Mn2+, which are about half as active as Mg2+, as well as with Ni2+, Cd2+ or Ca2+, which, at 5 mM concentration, are 12-20-fold less effective than Mg2+. ATP is the best substrate of the above reaction, but it can be substituted with adenosine 5'-tetraphosphate (p4A), dATP, and GTP, and thus the luciferase synthesizes the corresponding homo-dinucleoside polyphosphates:diadenosine 5',5"'-P1,P5-pentaphosphate (Ap5A), dideoxyadenosine 5',5"'-P1,P4-tetraphosphate (dAp4dA) and diguanosine 5',5"'-P1,P4-tetraphosphate (Gp4G). In standard reaction mixtures containing ATP and a different nucleotide (p4A, dATP, adenosine 5'-[alpha,beta-methylene]-triphosphate, (Ap[CH2]pp), (S')-adenosine-5'-[alpha-thio]triphosphate [Sp)ATP[alpha S]) and GTP], luciferase synthesizes, in addition to Ap4A, the corresponding hetero-dinucleoside polyphosphates, Ap5A, adenosine 5',5"'-P1,P4-tetraphosphodeoxyadenosine (Ap4dA), diadenosine 5',5"'-P1,P4-[alpha,beta-methylene] tetraphosphate (Ap[CH2]pppA), (Sp-diadenosine 5',5"'-P1,P4-[alpha-thio]tetraphosphate [Sp)Ap4A[alpha S]) and adenosine-5',5"'-P1,P4-tetraphosphoguanosine (Ap4G), respectively. Adenine nucleotides, with at least a 3-phosphate chain and with an intact alpha-phosphate, are the preferred substrates for the formation of the enzyme-nucleotidyl complex. Nucleotides best accepting AMP from the E-LH2-AMP complex are those which contain at least a 3-phosphate chain and an intact terminal pyrophosphate moiety. ADP or other NDP are poor adenylate acceptors as very little diadenosine 5',5"'-P1,P3-triphosphate (Ap3A) or adenosine-5',5"'-P1,P3-triphosphonucleosides (Ap3N) are formed. In the presence of NTP (excepting ATP), luciferase is able to split Ap4A, transferring the resulting adenylate to NTP, to form hetero-dinucleoside polyphosphates. In the presence of PPi, luciferase is also able to split Ap4A, yielding ATP. The cleavage of Ap4A in the presence of Pi or ADP takes place at a very low rate. The synthesis of dinucleoside polyphosphates, catalyzed by firefly luciferase, is compared with that catalyzed by aminoacyl-tRNA synthetases and Ap4A phosphorylase.  相似文献   

2.
Diadenosine oligophosphates (Ap(n)A) have been proposed as intracellular and extracellular signaling molecules in animal cells. The ratio of diadenosine 5',5'-P1,P3-triphosphate to diadenosine 5',5'-P1,P4-tetraphosphate (Ap3A/Ap4A) is sensitive to the cellular status and alters when cultured cells undergo differentiation or are treated with interferons. In cells undergoing apoptosis induced by DNA topoisomerase II inhibitor VP16, the concentration of Ap3A decreases significantly while that of Ap4A increases. Here, we have examined the effects of exogenously added Ap3A and Ap4A on apoptosis and morphological differentiation. Penetration of Ap(n)A into cells was achieved by cold shock. Ap4A at 10 microM induced programmed cell death in human HL60, U937 and Jurkat cells and mouse VMRO cells and this effect appeared to require Ap4A breakdown as hydrolysis-resistant analogues of Ap4A were inactive. On its own, Ap3A induced neither apoptosis nor cell differentiation but did display strong synergism with the protein kinase C activators 12-deoxyphorbol-13-O-phenylacetate and 12-deoxyphorbol-13-O-phenylacetate-20-acetate in inducing differentiation of HL60 cells. We propose that Ap4A and Ap3A are physiological antagonists in determination of the cellular status: Ap4A induces apoptosis whereas Ap3A is a co-inductor of differentiation. In both cases, the mechanism of signal transduction remains unknown.  相似文献   

3.
This review summarizes our knowledge of analogs and derivatives of diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A), the most extensively studied member of the dinucleoside 5',5"'-P1,Pn-polyphosphate (NpnN) family. After a short discussion of enzymes that may be responsible for the accumulation and degradation of Np4)N's in the cell, this review focuses on chemically and/or enzymatically produced analogs and their practical applications. Particular attention is paid to compounds that have aided the study of enzymes involved in the metabolism of Ap4A (Np4N'). Certain Ap4A analogs were alternative substrates of Ap4A-degrading enzymes and/or acted as enzyme inhibitors, some other helped to establish enzyme mechanisms, increased the sensitivity of certain enzyme assays or produced stable enzyme:ligand complexes for structural analysis.  相似文献   

4.
Simanshu DK  Savithri HS  Murthy MR 《Proteins》2008,70(4):1379-1388
Propionate kinase catalyses the last step in the anaerobic breakdown of L-threonine to propionate in which propionyl phosphate and ADP are converted to propionate and ATP. Here we report the structures of propionate kinase (TdcD) in the native form as well as in complex with diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) by X-ray crystallography. Structure of TdcD obtained after cocrystallization with ATP showed Ap4A bound to the active site pocket suggesting the presence of Ap4A synthetic activity in TdcD. Binding of Ap4A to the enzyme was confirmed by the structure determination of a TdcD-Ap4A complex obtained after cocrystallization of TdcD with commercially available Ap4A. Mass spectroscopic studies provided further evidence for the formation of Ap4A by propionate kinase in the presence of ATP. In the TdcD-Ap4A complex structure, Ap4A is present in an extended conformation with one adenosine moiety present in the nucleotide binding site and other in the proposed propionate binding site. These observations tend to support direct in-line transfer of phosphoryl group during the kinase reaction.  相似文献   

5.
Diadenosine polyphosphates (ApnAs) act as extracellular signaling molecules in a broad variety of tissues. They were shown to be hydrolyzed by surface-located enzymes in an asymmetric manner, generating AMP and Apn-1 from ApnA. The molecular identity of the enzymes responsible remains unclear. We analyzed the potential of NPP1, NPP2, and NPP3, the three members of the ecto-nucleotide pyrophosphatase/phosphodiesterase family, to hydrolyze the diadenosine polyphosphates diadenosine 5',5"'-P1,P3-triphosphate (Ap3A), diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A), and diadenosine 5',5"'-P1,P5-pentaphosphate, (Ap5A), and the diguanosine polyphosphate, diguanosine 5',5"'-P1,P4-tetraphosphate (Gp4G). Each of the three enzymes hydrolyzed Ap3A, Ap4A, and Ap5A at comparable rates. Gp4G was hydrolyzed by NPP1 and NPP2 at rates similar to Ap4A, but only at half this rate by NPP3. Hydrolysis was asymmetric, involving the alpha,beta-pyrophosphate bond. ApnA hydrolysis had a very alkaline pH optimum and was inhibited by EDTA. Michaelis constant (Km) values for Ap3A were 5.1 micro m, 8.0 micro m, and 49.5 micro m for NPP1, NPP2, and NPP3, respectively. Our results suggest that NPP1, NPP2, and NPP3 are major enzyme candidates for the hydrolysis of extracellular diadenosine polyphosphates in vertebrate tissues.  相似文献   

6.
Tandem synthetic-biosynthetic procedures were used to prepare two novel fluorescent labelled affinity probes for diadenosine-5',5'-P1,P4-tetraphosphate (Ap4A)-binding studies. These compounds (dial-mant-Ap4A and azido-mant-Ap4A) are shown to clearly distinguish known Ap4A-binding proteins from Escherichia coli (LysU and GroEL) and a variety of other control proteins. Successful labelling of chaperonin GroEL appears to be allosteric with respect to the well-characterized adenosine 5'-triphosphate (ATP)-binding site, suggesting that GroEL possesses a distinct Ap4A-binding site.  相似文献   

7.
The APA1 gene in Saccharomyces cerevisiae encodes Ap4A phosphorylase I, the catabolic enzyme for diadenosine 5',5"'-P1,P4-tetraphosphate (Ap4A). APA1 has been inserted into a multicopy plasmid and into a centromeric plasmid with a GAL1 promoter. Enhanced expression of APA1 via the plasmids resulted in 10- and 90-fold increases in Ap4A phosphorylase activity, respectively, as assayed in vitro. However, the intracellular concentration of Ap4A exhibited increases of 2- and 15-fold, respectively, from the two different plasmids. Intracellular Ap4A increased 3- to 20-fold during growth on galactose of a transformant with APA1 under the control of the GAL1 promoter. Intracellular adenosine 5'-P1-tetraphospho-P4-5"'-guanosine (Ap4G) and diguanosine 5',5"'-P1,P4-tetraphosphate (Gp4G) also increased in the transformant under these conditions. The chromosomal locus of APA1 has been disrupted in a haploid strain. The Ap4A phosphorylase activity decreased by 80% and the intracellular Ap4A concentration increased by a factor of five in the null mutant. These results with the null mutant agree with previous results reported by Plateau et al. (P. Plateau, M. Fromant, J.-M. Schmitter, J.-M. Buhler, and S. Blancquet, J. Bacteriol. 171:6437-6445, 1989). The paradoxical increase in Ap4A upon enhanced expression of APA1 indicates that the metabolic consequences of altered gene expression may be more complex than indicated solely by assay of enzymatic activity of the gene product.  相似文献   

8.
Diadenosine polyphosphates (diadenosine 5',5'-P(1),P(n)-polyphosphate (Ap(n)A)) are 5'-5'-phosphate-bridged dinucleosides that have been proposed to act as signaling molecules in a variety of biological systems. Isothermal titration calorimetry was used to measure the affinities of a variety of metal cations for ATP, diadenosine 5',5'-P(1),P(3)-triphosphate (Ap(3)A), diadenosine 5',5'-P(1),P(4)-tetraphosphate (Ap(4)A), and diadenosine 5',5'-P(1),P(5)-pentaphosphate (Ap(5)A). The binding of Mg(2+), Ca(2+), and Mn(2+) to ATP is shown to take place with the beta,gamma-phosphates (primary site) and be endothermic in character. The binding of Ni(2+), Cd(2+), and Zn(2+) to ATP is found to take place at both the primary site and at a secondary site identified as N-7 of the adenine ring. Binding to this second site is exothermic in character. Generally, the binding of metal cations to diadenosine polyphosphates involves a similar primary site to ATP. No exothermic binding events are identified. Critically, the binding of Zn(2+) to diadenosine polyphosphates proves to be exceptional. This appears to involve a very high affinity association involving the N-7 atoms of both adenine rings in each Ap(n)A, as well as the more usual endothermic association with the phosphate chain. The high affinity association is also endothermic in character. A combination of NMR and CD evidence is provided in support of the calorimetry data demonstrating chemical shift changes and base stacking disruptions entirely consistent with N-7 bridging interactions. N-7 bridging interactions are entirely reversible, as demonstrated by EDTA titration. Considering the effects of Zn(2+) on a wide variety of dinucleoside polyphosphate-metabolizing enzymes, we examine the possibility of Zn(2+) acting as an atomic switch to control the biological function of the diadenosine polyphosphates.  相似文献   

9.
Asymmetric diadenosine 5',5'-P(1),P(4)-tetraphosphate (Ap(4)A) hydrolases play a major role in maintaining homeostasis by cleaving the metabolite diadenosine tetraphosphate (Ap(4)A) back into ATP and AMP. The NMR solution structures of the 17-kDa human asymmetric Ap(4)A hydrolase have been solved in both the presence and absence of the product ATP. The adenine moiety of the nucleotide predominantly binds in a ring stacking arrangement equivalent to that observed in the x-ray structure of the homologue from Caenorhabditis elegans. The binding site is, however, markedly divergent to that observed in the plant/pathogenic bacteria class of enzymes, opening avenues for the exploration of specific therapeutics. Binding of ATP induces substantial conformational and dynamic changes that were not observed in the C. elegans structure. In contrast to the C. elegans homologue, important side chains that play a major role in substrate binding do not have to reorient to accommodate the ligand. This may have important implications in the mechanism of substrate recognition in this class of enzymes.  相似文献   

10.
J Lüthje  J Baringer  A Ogilvie 《Blut》1985,51(6):405-413
The effects on platelet aggregation of diadenosine triphosphate (Ap3A) and diadenosine tetraphosphate (Ap4A), both of which are stored in and released from platelet granules, have been studied in unfractionated human blood using a microscopic platelet-count ratio method. Ap3A at submicromolar concentrations induces platelet aggregation whereas the homologue dinucleotide Ap4A has disaggregating potency. In the concentration range between 10(-7) to 10(-5) M, Ap3A has been found to be as effective as ADP in triggering aggregate formation. These results confirm and essentially extend our recent findings with platelet-rich plasma that Ap3A is able to trigger platelet aggregation by a slow release of ADP from Ap3A which is catalyzed by a plasma hydrolase. Formation of platelet aggregates was also followed kinetically using a turbidometric method which has been developed for this purpose. In contrast to ADP which very rapidly induces a transient state of aggregation, the effect of Ap3A occurs much more slowly but induces the same maximum of aggregation. The duration of the Ap3A stimulus, however, is longer than that of ADP pointing to a potential physiological function of Ap3A as a "masked" source for ADP.  相似文献   

11.
Previous data on the accumulation of diadenosine 5',5"'-P1,P3-triphosphate (Ap3A) in cells in response to various physiological factors raised the issue of identification of Ap3A binding proteins as potential targets for Ap3A. Ap3A binding proteins were isolated from a human leukocyte lysate by affinity chromatography through Ap3A-aga-rose. Two proteins, gelsolin and plasminogen activator inhibitor-1 (PAI-1), were tentatively identified by in-gel tryptic digestion and mass fingerprint analysis by MALDI-TOF mass spectrometry. The ability of the pure proteins to bind Ap3A was confirmed. Scatchard analysis of [3H]Ap3A binding data yielded dissociation constants of 0.3 microM for gelsolin and 4.1 microM for PAI-1. Binding was saturable at 0.78 mol Ap3A/mol of gelsolin and 0.68 mol Ap3A/mol PAI-1. The binding was non-covalent and insensitive to the presence of divalent metal ions. In neither case was binding affected by a 100-fold molar excess of ATP, ADP and AMP or Ap4A, suggesting a high degree of specificity for Ap3A. Ap3A produced significant effects on cell morphology when added at 10 microM to reversibly permeabilized CEM-SS cells, suggesting that it might influence cytoskeletal disruption by activating gelsolin. Ap3A added externally to HL60 promyelocytic cells reduced the inhibitory effect of PAI-1 on VP16-induced apoptosis. These findings provide new information about intra- and extracellular targets of Ap3A.  相似文献   

12.
Asymmetrical diadenosine 5',5'-P(1)P(4) tetraphosphate (Ap(4)A) hydrolases are key enzymes controlling the in vivo concentration of Ap(4)A--an important signaling molecule involved in regulation of DNA replication and repair, signaling in stress response and apoptosis. Sequence homologies indicate that the genome of the model plant Arabidopsis thaliana contains at least three open reading frames encoding presumptive Ap(4)A hydrolases: At1g30110, At3g10620, and At5g06340. In this work we present efficient overexpression and detailed biochemical characteristics of the AtNUDX25 protein encoded by the At1g30110 gene. Aided by the determination of the binding constants of Mn(Ap(4)A) and Mg(Ap(4)A) complexes using isothermal titration calorimetry (ITC) we show that AtNUDX25 preferentially hydrolyzes Ap(4)A in the form of a Mn(2+) complex.  相似文献   

13.
4-Coumarate:coenzyme A ligase (4CL) is known to activate cinnamic acid derivatives to their corresponding coenzyme A esters. As a new type of 4CL-catalyzed reaction, we observed the synthesis of various mono- and diadenosine polyphosphates. Both the native 4CL2 isoform from Arabidopsis (At4CL2 wild type) and the At4CL2 gain of function mutant M293P/K320L, which exhibits the capacity to use a broader range of phenolic substrates, catalyzed the synthesis of adenosine 5'-tetraphosphate (p(4)A) and adenosine 5'-pentaphosphate when incubated with MgATP(-2) and tripolyphosphate or tetrapolyphosphate (P(4)), respectively. Diadenosine 5',5',-P(1),P(4)-tetraphosphate represented the main product when the enzymes were supplied with only MgATP(2-). The At4CL2 mutant M293P/K320L was studied in more detail and was also found to catalyze the synthesis of additional dinucleoside polyphosphates such as diadenosine 5',5'-P(1),P(5)-pentaphosphate and dAp(4)dA from the appropriate substrates, p(4)A and dATP, respectively. Formation of Ap(3)A from ATP and ADP was not observed with either At4CL2 variant. In all cases analyzed, (di)adenosine polyphosphate synthesis was either strictly dependent on or strongly stimulated by the presence of a cognate cinnamic acid derivative. The At4CL2 mutant enzyme K540L carrying a point mutation in the catalytic center that is critical for adenylate intermediate formation was inactive in both p(4)A and diadenosine 5',5',-P(1),P(4)-tetraphosphate synthesis. These results indicate that the cinnamoyl-adenylate intermediate synthesized by At4CL2 not only functions as an intermediate in coenzyme A ester formation but can also act as a cocatalytic AMP-donor in (di)adenosine polyphosphate synthesis.  相似文献   

14.
Terminal deoxynucleotidyltransferase (TdT) exhibits strong sensitivity to ATP and its dinucleotide analogues, Ap2A, Ap3A, Ap4A, Ap5A and Ap6A. Similar to ATP, all of the dinucleotides appear to be competitive inhibitors of TdT catalysis with respect to substrate deoxynucleoside triphosphates and effectively block the UV-mediated substrate cross-linking to TdT. Among the various dinucleotides, Ap5A and Ap6A (diadenosine 5'-5' penta- and hexaphosphate, respectively) are significantly more effective than dinucleotides containing 2, 3 or 4 phosphate backbones. Furthermore, Ap5A is found to be the only dinucleotide which has reactivity at both substrate- and primer-binding domains in TdT.  相似文献   

15.
Ap4A levels in sperms, eggs and different developmental stages of sea urchin (Psammechinus miliaris) and (Xenopus laevis) were determined by a method based on ATP measurement with luciferin/luciferase after splitting diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) into ATP and AMP. Appreciable storage pools of Ap4A were found in unfertilized eggs of Psammechinus and Xenopus as well as in sea urchin sperms. The actual Ap4A concentration of 28 microM in sperm represents the highest Ap4A level so far observed in eukaryotic cells. Upon fertilization an instant onset of de novo synthesis of Ap4A was demonstrated. Ap4A levels during early embryogenesis of P. miliaris and X. laevis (2.5-4 microM) are higher than those in exponentially growing mammalian culture cells and mammalian fetuses. Microinjection of Ap4A into unfertilized eggs of Psammechinus miliaris caused a 3-7 fold increase of DNA synthesis in comparison with mock-injected eggs.  相似文献   

16.
It is known that the interferon-inducible 2',5'-oligoadenylate synthetase can catalyze the 2'-adenylation of various diadenosine polyphosphates. However, catabolism of those 2'-adenylated compounds has not been investigated so far. This study shows that the mono- and bis-adenylated (or mono- and bis-deoxyadenylated) diadenosine triphosphates are not substrates of the human Fhit (fragile histidine triad) protein, which acts as a typical dinucleoside triphosphate hydrolase (EC 3.6.1.29). In contrast, the diadenosine tetraphosphate counterparts are substrates for the human (asymmetrical) Ap(4)A hydrolase (EC 3.6.1.17). The relative rates of the hydrolysis of 0.15 mM AppppA, (2'-pdA)AppppA, and (2'-pdA)AppppA(2"'-pdA) catalyzed by the latter enzyme were determined as 100:232:38, respectively. The asymmetrical substrate was hydrolyzed to ATP + (2'-pdA)AMP (80%) and to (2'-pdA)ATP + AMP (20%). The human Fhit protein, for which Ap(4)A is a poor substrate, did not degrade the 2'-adenylated diadenosine tetraphosphates either. The preference of the interferon-inducible 2'-5' oligoadenylate synthetase to use Ap(3)A over Ap(4)A as a primer for 2'-adenylation and the difference in the recognition of the 2'-adenylated diadenosine triphosphates versus the 2'-adenylated diadenosine tetraphosphates by the dinucleoside polyphosphate hydrolases described here provide a mechanism by which the ratio of the 2'-adenylated forms of the signalling molecules, Ap(3)A and Ap(4)A, could be regulated in vivo.  相似文献   

17.
The diadenine nucleotides diadenosine 5',5"-P1,P3-triphosphate (Ap3A) and diadenosine 5',5"-P1,P4-tetraphosphate (Ap4A) can be released from platelets and were shown to act as long-lived signal molecules. Accordingly, we studied their potential effect on hepatic metabolism. In isolated perfused rat liver, Ap3A and Ap4A increase the portal pressure, lead to a transient net release of Ca2+, complex net K+ movement across the liver plasma membrane and stimulate hepatic glucose output and 14CO2 production from [1-14C]glutamate. These responses resemble that obtained with extracellular ATP. This and studies on the additivity of ATP and Ap4A effects suggest similar mechanisms mediating the ATP and diadenine nucleotide effects in the liver. Ap3A and Ap4A increased the activity of glycogen phosphorylase a in isolated hepatocyte suspensions by about 100%, pointing to a direct effect of these nucleotides on hepatic parenchymal cells. A response of hepatic non-parenchymal cells to diadenine nucleotide infusion is suggested by a marked stimulation of thromboxane and prostaglandin D2 release from perfused liver. Studies with the thromboxane A2 receptor antagonist BM 13.177 (20 microM) show that the pressure and glucose response to the diadenine nucleotides is partially mediated by this thromboxane formation. Studies with retrograde and sequential liver perfusions suggest a less efficient degradation of the diadenine nucleotides during a single liver passage compared to extracellular ATP. The data suggest that Ap3A and Ap4A are potential regulators of hepatic hemodynamics and metabolism, involving complex interactions between hepatic parenchymal cells and hepatic non-parenchymal cells, including eicosanoids as signal molecules.  相似文献   

18.
The gene encoding diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A) phosphorylase from yeast was isolated from a lambda gt11 library. The DNA sequence of the coding region was determined, and more than 90% of the deduced amino acid sequence was confirmed by peptide sequencing. The Ap4A phosphorylase gene (APA1) is unique in the yeast genome. Disruption experiments with this gene, first, supported the conclusion that, in vivo, Ap4A phosphorylase catabolizes the Ap4N nucleotides (where N is A, C, G, or U) and second, revealed the occurrence of a second Ap4A phosphorylase activity in yeast cells. Finally, evidence is provided that the APA1 gene product is responsible for most of the ADP sulfurylase activity in yeast extracts.  相似文献   

19.
Purified phenylalanyl-tRNA synthetases present in chloroplasts, mitochondria and cytoplasm of green and bleached Euglena gracilis strains, respectively, are able to synthesize diadenosine 5',5'-P1,P4-tetraphosphate (Ap4A). Ap4A synthesis is strictly dependent on zinc ions. This is the first evidence that chloroplasts should be able to synthesize Ap4A. Synthesis of Ap4A by phenylalanyl-tRNA synthetases of the three compartments of a plant cell or by other enzymes such as Ap4A phosphorylase is discussed.  相似文献   

20.
We examined whether human cardiac tissue contains diadenosine polyphosphates and investigated their physiological role. Extracts from human cardiac tissue from transplant recipients were fractionated by size exclusion-, affinity-, anion exchange- and reversed-phase chromatography. MALDI-MS analysis of two absorbing fractions revealed molecular masses of 676.2 Da and 756.0 Da. The UV spectra of both fractions were identical to that of adenosine. Postsource decay MALDI mass spectrometry indicated that the molecules with a mass of 676.2 Da and 757.0 Da contained AMP and ATP, respectively. As shown by enzymatic cleavage, both molecules consist of two adenosines interconnected by either two or three phosphates in 5'-positions of the riboses. Two substances can be identified as 5',5"'-P1,P2-diphosphate (Ap2A) and 5',5"'-P1, P3-triphosphate (Ap3A). Ap2A and Ap3A, together with ATP and ADP, are stored in myocardial-specific granules in biologically active concentrations. In the isolated perfused rat heart, Ap2A and Ap3A caused dose-dependent coronary vasodilations. In myocardial preparations, Ap2A and Ap3A attenuated the effect of isoproterenol, exerting a negative inotropic effect. The calcium current of guinea pig ventricular myocytes, stimulated by isoproterenol, was also attenuated by Ap2A and Ap3A. The presence of Ap2A and Ap3A in cardiac-specific granules and the actions of these substances on the myocardium and coronary vessels indicate a role for these substances as endogenous modulators of myocardial functions and coronary perfusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号