首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Detection of copy number variation in the human genome is important for identifying naturally occurring copy number polymorphisms as well as alterations that underlie various human diseases, including cancer. Digital karyotyping uses short sequence tags derived from specific genomic loci to provide a quantitative and high-resolution view of copy number changes on a genome-wide scale. Genomic tags are obtained using a combination of enzymatic digests and isolation of short DNA sequences. Individual tags are linked into ditags, concatenated, cloned and sequenced. Tags are matched to reference genome sequences and digital enumeration of groups of neighboring tags provides quantitative copy number information along each chromosome. Digital karyotyping libraries can be generated in about a week, and library sequencing and data analysis require several additional weeks.  相似文献   

2.

Background

Molecular alterations critical to development of cancer include mutations, copy number alterations (amplifications and deletions) as well as genomic rearrangements resulting in gene fusions. Massively parallel next generation sequencing, which enables the discovery of such changes, uses considerable quantities of genomic DNA (> 5 ug), a serious limitation in ever smaller clinical samples. However, a commonly available microarray platforms such as array comparative genomic hybridization (array CGH) allows the characterization of gene copy number at a single gene resolution using much smaller amounts of genomic DNA. In this study we evaluate the sensitivity of ultra-dense array CGH platforms developed by Agilent, especially that of the 1 million probe array (1 M array), and their application when whole genome amplification is required because of limited sample quantities.

Methods

We performed array CGH on whole genome amplified and not amplified genomic DNA from MCF-7 breast cancer cells, using 244 K and 1 M Agilent arrays. The ADM-2 algorithm was used to identify micro-copy number alterations that measured less than 1 Mb in genomic length.

Results

DNA from MCF-7 breast cancer cells was analyzed for micro-copy number alterations, defined as measuring less than 1 Mb in genomic length. The 4-fold extra resolution of the 1 M array platform relative to the less dense 244 K array platform, led to the improved detection of copy number variations (CNVs) and micro-CNAs. The identification of intra-genic breakpoints in areas of DNA copy number gain signaled the possible presence of gene fusion events. However, the ultra-dense platforms, especially the densest 1 M array, detect artifacts inherent to whole genome amplification and should be used only with non-amplified DNA samples.

Conclusions

This is a first report using 1 M array CGH for the discovery of cancer genes and biomarkers. We show the remarkable capacity of this technology to discover CNVs, micro-copy number alterations and even gene fusions. However, these platforms require excellent genomic DNA quality and do not tolerate relatively small imperfections related to the whole genome amplification.  相似文献   

3.

Background  

Array comparative genomic hybridization (CGH) is a technique which detects copy number differences in DNA segments. Complete sequencing of the human genome and the development of an array representing a tiling set of tens of thousands of DNA segments spanning the entire human genome has made high resolution copy number analysis throughout the genome possible. Since array CGH provides signal ratio for each DNA segment, visualization would require the reassembly of individual data points into chromosome profiles.  相似文献   

4.
Comparative genomic hybridization (CGH) is a modified in situ hybridization technique which allows detection and mapping of DNA sequence copy differences between two genomes in a single experiment. In CGH analysis, two differentially labelled genomic DNA (study and reference) are co-hybridized to normal metaphase spreads. Chromosomal locations of copy number changes in the DNA segments of the study genome are revealed by a variable fluorescence intensity ratio along each target chromosome. Since its development, CGH has been applied mostly as a research tool in the field of cancer cytogenetics to identify genetic changes in many previously unknown regions. CGH may also have a role in clinical cytogenetics for detection and identification of unbalanced chromosomal abnormalities.  相似文献   

5.
6.
Diagnostic genome profiling in mental retardation   总被引:16,自引:0,他引:16       下载免费PDF全文
Mental retardation (MR) occurs in 2%-3% of the general population. Conventional karyotyping has a resolution of 5-10 million bases and detects chromosomal alterations in approximately 5% of individuals with unexplained MR. The frequency of smaller submicroscopic chromosomal alterations in these patients is unknown. Novel molecular karyotyping methods, such as array-based comparative genomic hybridization (array CGH), can detect submicroscopic chromosome alterations at a resolution of 100 kb. In this study, 100 patients with unexplained MR were analyzed using array CGH for DNA copy-number changes by use of a novel tiling-resolution genomewide microarray containing 32,447 bacterial artificial clones. Alterations were validated by fluorescence in situ hybridization and/or multiplex ligation-dependent probe amplification, and parents were tested to determine de novo occurrence. Reproducible DNA copy-number changes were present in 97% of patients. The majority of these alterations were inherited from phenotypically normal parents, which reflects normal large-scale copy-number variation. In 10% of the patients, de novo alterations considered to be clinically relevant were found: seven deletions and three duplications. These alterations varied in size from 540 kb to 12 Mb and were scattered throughout the genome. Our results indicate that the diagnostic yield of this approach in the general population of patients with MR is at least twice as high as that of standard GTG-banded karyotyping.  相似文献   

7.
Current cytogenetic methods (e.g., G-banding and multicolor chromosomal painting) allow detection of translocation events but lack the resolution to (a) locate the breakpoints precisely at the chromosome band level or (b) discriminate balanced translocations from translocations with copy number alterations not previously reported, or imperfectly balanced translocations. In this study, we demonstrate that cytogenetically balanced translocations are in fact frequently associated with segmental gain or loss of DNA. The recent development of a whole genome tiling path BAC array has enabled tiling resolution analysis of genomic segmental copy number status. Combining tiling resolution BAC array comparative genomic hybridization (array CGH) with G-Banding analysis and multicolor chromosomal painting approaches such as spectral karyotyping (SKY) facilitates high-resolution mapping of genomic alterations associated with imperfectly balanced translocations. Using a refined version of our CGH array we have deduced the copy number status throughout the genomes of three cytogenetically well-characterized prostate cancer cell lines (PC3, DU145, LNCaP) to determine whether translocations are associated with focal gains and losses of DNA. At 78 kb tiling resolution we identified the boundaries of 170, 80, and 34 known and novel copy number alterations (CNA) in these cell line genomes, respectively. Thirty-three of the 36 known translocations (92%, P < 0.001) in DU145 were associated with segmental CNA. Likewise, 80% (P < 0.001) of the known translocations showed association in LNCaP. Although many translocation breakpoints exhibit segmental alteration in PC3, the pattern of chromosomal rearrangements is too complex for use in comprehensive association with CNA boundaries. Our results reveal that imperfectly balanced translocations in tumor genomes are a phenomenon that occurs at frequencies much higher than previously demonstrated. Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

8.
Fan B  Dachrut S  Coral H  Yuen ST  Chu KM  Law S  Zhang L  Ji J  Leung SY  Chen X 《PloS one》2012,7(4):e29824

Background

Genomic instability with frequent DNA copy number alterations is one of the key hallmarks of carcinogenesis. The chromosomal regions with frequent DNA copy number gain and loss in human gastric cancer are still poorly defined. It remains unknown how the DNA copy number variations contributes to the changes of gene expression profiles, especially on the global level.

Principal Findings

We analyzed DNA copy number alterations in 64 human gastric cancer samples and 8 gastric cancer cell lines using bacterial artificial chromosome (BAC) arrays based comparative genomic hybridization (aCGH). Statistical analysis was applied to correlate previously published gene expression data obtained from cDNA microarrays with corresponding DNA copy number variation data to identify candidate oncogenes and tumor suppressor genes. We found that gastric cancer samples showed recurrent DNA copy number variations, including gains at 5p, 8q, 20p, 20q, and losses at 4q, 9p, 18q, 21q. The most frequent regions of amplification were 20q12 (7/72), 20q12–20q13.1 (12/72), 20q13.1–20q13.2 (11/72) and 20q13.2–20q13.3 (6/72). The most frequent deleted region was 9p21 (8/72). Correlating gene expression array data with aCGH identified 321 candidate oncogenes, which were overexpressed and showed frequent DNA copy number gains; and 12 candidate tumor suppressor genes which were down-regulated and showed frequent DNA copy number losses in human gastric cancers. Three networks of significantly expressed genes in gastric cancer samples were identified by ingenuity pathway analysis.

Conclusions

This study provides insight into DNA copy number variations and their contribution to altered gene expression profiles during human gastric cancer development. It provides novel candidate driver oncogenes or tumor suppressor genes for human gastric cancer, useful pathway maps for the future understanding of the molecular pathogenesis of this malignancy, and the construction of new therapeutic targets.  相似文献   

9.
Copy number variations (CNVs) in the human genome are conventionally detected using high-throughput scanning technologies, such as comparative genomic hybridization and high-density single nucleotide polymorphism (SNP) microarrays, or relatively low-throughput techniques, such as quantitative polymerase chain reaction (PCR). All these approaches are limited in resolution and can at best distinguish a twofold (or 50%) difference in copy number. We have developed a new technology to study copy numbers using a platform known as the digital array, a nanofluidic biochip capable of accurately quantitating genes of interest in DNA samples. We have evaluated the digital array's performance using a model system, to show that this technology is exquisitely sensitive, capable of differentiating as little as a 15% difference in gene copy number (or between 6 and 7 copies of a target gene). We have also analyzed commercial DNA samples for their CYP2D6 copy numbers and confirmed that our results were consistent with those obtained independently using conventional techniques. In a screening experiment with breast cancer and normal DNA samples, the ERBB2 gene was found to be amplified in about 35% of breast cancer samples. The use of the digital array enables accurate measurement of gene copy numbers and is of significant value in CNV studies.  相似文献   

10.
Cancer genomes frequently contain somatic copy number alterations (SCNA) that can significantly perturb the expression level of affected genes and thus disrupt pathways controlling normal growth. In melanoma, many studies have focussed on the copy number and gene expression levels of the BRAF, PTEN and MITF genes, but little has been done to identify new genes using these parameters at the genome-wide scale. Using karyotyping, SNP and CGH arrays, and RNA-seq, we have identified SCNA affecting gene expression ('SCNA-genes') in seven human metastatic melanoma cell lines. We showed that the combination of these techniques is useful to identify candidate genes potentially involved in tumorigenesis. Since few of these alterations were recurrent across our samples, we used a protein network-guided approach to determine whether any pathways were enriched in SCNA-genes in one or more samples. From this unbiased genome-wide analysis, we identified 28 significantly enriched pathway modules. Comparison with two large, independent melanoma SCNA datasets showed less than 10% overlap at the individual gene level, but network-guided analysis revealed 66% shared pathways, including all but three of the pathways identified in our data. Frequently altered pathways included WNT, cadherin signalling, angiogenesis and melanogenesis. Additionally, our results emphasize the potential of the EPHA3 and FRS2 gene products, involved in angiogenesis and migration, as possible therapeutic targets in melanoma. Our study demonstrates the utility of network-guided approaches, for both large and small datasets, to identify pathways recurrently perturbed in cancer.  相似文献   

11.
Only few selected cancer cells drive tumor progression and are responsible for therapy resistance. Their specific genomic characteristics, however, are largely unknown because high-resolution genome analysis is currently limited to DNA pooled from many cells. Here, we describe a protocol for array comparative genomic hybridization (array CGH), which enables the detection of DNA copy number changes in single cells. Combining a PCR-based whole genome amplification method with arrays of highly purified BAC clones we could accurately determine known chromosomal changes such as trisomy 21 in single leukocytes as well as complex genomic imbalances of single cell line cells. In single T47D cells aberrant regions as small as 1–2 Mb were identified in most cases when compared to non-amplified DNA from 106 cells. Most importantly, in single micrometastatic cancer cells isolated from bone marrow of breast cancer patients, we retrieved and confirmed amplifications as small as 4.4 and 5 Mb. Thus, high-resolution genome analysis of single metastatic precursor cells is now possible and may be used for the identification of novel therapy target genes.  相似文献   

12.
Breast cancer is a widespread disease in Japan and across the world. Breast cancer cells, as well as most other types of cancer cells, have diverse chromosomal aberrations. Clarifying the character of these chromosomal aberrations should contribute to the development of more suitable therapies, along with the predictions of metastasis and prognosis. Twenty-four breast cancer cell lines were analyzed by bacterial artificial chromosome (BAC) array comparative genomic hybridization (CGH). The array slide contained duplicate spots of 4030 BAC clone DNAs covering the entire human genome with 1 Mbp resolution. In all 24 breast cancer cell lines, frequent and significant amplifications as well as deletions were detected by BAC array CGH. Common DNA copy number gains, detected in 60% (above 15 cell lines) of the 24 breast cancer cell lines were found in 76 BAC clones, located at 1q, 5p, 8q, 9p, 16p, 17q, and 20q. Moreover, common DNA copy number loss was detected in 136 BAC clones, located at 1q, 2q, 3p, 4p, 6q, 8p, 9p, 11p, 13q, 17p, 18q, 19p, Xp, and Xq. The DNA copy number abnormalities found included abnormality of the well-known oncogene cMYC (8q24.21); however, most of them were not reported to relate to breast cancer. BAC array CGH has great potential to detect DNA copy number abnormalities, and has revealed that breast cancer cell lines have substantial heterogeneity.  相似文献   

13.
Genome-wide profiling of gene amplification and deletion in cancer   总被引:3,自引:0,他引:3  
Kashiwagi H  Uchida K 《Human cell》2000,13(3):135-141
Accumulations of genetic changes in somatic cells induce phenotypic transformations leading to cancer. Among these genetic changes, gene amplification and deletion are most frequently observed in several kinds of cancers. Amplification of oncogene and/or deletion of tumor suppressor gene, together with dysfunction of the gene by point mutation, are the main causes of cancer. Genome-wide analysis of amplification and deletion of genes in cancers is basic to resolving the mechanisms of carcinogenesis. Comparative genomic hybridization (CGH) developed in 1992 has been utilized to identify DNA copy number abnormalities in various kind of cancers and several reports have shown its usefulness in screening of the genes involved in carcinogenesis, and also in the identification of prognostic factors in cancer. We have shown that 1q23 gain is associated with neuroblastomas that are resistant to aggressive treatment, and have poor prognosis, and 1q and 13q gains are possibly related to drug resistance in ovarian cancers. Recently, the "rough draft" of the human genome was reported and we are ready to utilize the vast information on genomic sequences in cancer research. Moreover, microarray technology enables us to analyze more than ten thousand genes at a time and revealed genetic abnormalities in cancers at a genome-wide level. By combination of microarray and CGH, a powerful screening method for oncogenes and tumor suppressor genes in cancers, called array-CGH, has been developed by several groups. In this article, we overview these genome-wide analytical methods, CGH and array-CGH, and discuss their potential in molecular characterization of cancers.  相似文献   

14.
Multiple regions of the genome are often amplified during breast cancer development and progression, as evidenced in a number of published studies by comparative genomic hybridization (CGH). However, only relatively few target genes for such amplifications have been identified. Here, we indicate how small-scale commercially available cDNA and CGH microarray formats combined with the tissue microarray technology enable rapid identification of putative amplification target genes as well as analysis of their clinical significance. According to CGH, the SUM-52 breast cancer cell line harbors several high-level DNA amplification sites, including the 10q26 chromosomal region where the fibroblast growth factor receptor 2 (FGFR2) gene has been localized. High level amplification of FGFR2 in SUM-52 was identified using CGH analysis on a microarray of BAC clones. A cDNA microarray survey of 588 genes showed >40-fold overexpression of FGFR2. Finally, a tissue microarray based FISH analysis of 750 uncultured primary breast cancers demonstrated in vivo amplification of the FGFR2 gene in about 1% of the tumors. In conclusion, three consecutive microarray (CGH, cDNA and tissue) experiments revealed high-level amplification and overexpression of the FGFR2 in a breast cancer cell line, but only a low frequency of involvement in primary breast tumors. Applied to a genomic scale with larger arrays, this strategy should facilitate identification of the most important target genes for cytogenetic rearrangements, such as DNA amplification sites detected by conventional CGH. Figures on http://www.esacp.org/acp/2001/22-4/heiskanen.htm  相似文献   

15.
Comprehensive genome wide analyses of single cells became increasingly important in cancer research, but remain to be a technically challenging task. Here, we provide a protocol for array comparative genomic hybridization (aCGH) of single cells. The protocol is based on an established adapter-linker PCR (WGAM) and allowed us to detect copy number alterations as small as 56 kb in single cells. In addition we report on factors influencing the success of single cell aCGH downstream of the amplification method, including the characteristics of the reference DNA, the labeling technique, the amount of input DNA, reamplification, the aCGH resolution, and data analysis. In comparison with two other commercially available non-linear single cell amplification methods, WGAM showed a very good performance in aCGH experiments. Finally, we demonstrate that cancer cells that were processed and identified by the CellSearch® System and that were subsequently isolated from the CellSearch® cartridge as single cells by fluorescence activated cell sorting (FACS) could be successfully analyzed using our WGAM-aCGH protocol. We believe that even in the era of next-generation sequencing, our single cell aCGH protocol will be a useful and (cost-) effective approach to study copy number alterations in single cells at resolution comparable to those reported currently for single cell digital karyotyping based on next generation sequencing data.  相似文献   

16.
Yi Y  Mirosevich J  Shyr Y  Matusik R  George AL 《Genomics》2005,85(3):401-412
Microarray technology can be used to assess simultaneously global changes in expression of mRNA or genomic DNA copy number among thousands of genes in different biological states. In many cases, it is desirable to determine if altered patterns of gene expression correlate with chromosomal abnormalities or assess expression of genes that are contiguous in the genome. We describe a method, differential gene locus mapping (DIGMAP), which aligns the known chromosomal location of a gene to its expression value deduced by microarray analysis. The method partitions microarray data into subsets by chromosomal location for each gene interrogated by an array. Microarray data in an individual subset can then be clustered by physical location of genes at a subchromosomal level based upon ordered alignment in genome sequence. A graphical display is generated by representing each genomic locus with a colored cell that quantitatively reflects its differential expression value. The clustered patterns can be viewed and compared based on their expression signatures as defined by differential values between control and experimental samples. In this study, DIGMAP was tested using previously published studies of breast cancer analyzed by comparative genomic hybridization (CGH) and prostate cancer gene expression profiles assessed by cDNA microarray experiments. Analysis of the breast cancer CGH data demonstrated the ability of DIGMAP to deduce gene amplifications and deletions. Application of the DIGMAP method to the prostate data revealed several carcinoma-related loci, including one at 16q13 with marked differential expression encompassing 19 known genes including 9 encoding metallothionein proteins. We conclude that DIGMAP is a powerful computational tool enabling the coupled analysis of microarray data with genome location.  相似文献   

17.
The development of high-throughput screening methods such as array-based comparative genome hybridization (array CGH) allows screening of the human genome for copy-number changes. Current array CGH strategies have limits of resolution that make detection of small (less than a few tens of kilobases) gains or losses of genomic DNA difficult to identify. We report here a significant improvement in the resolution of array CGH, with the development of an array platform that utilizes single-stranded DNA array elements to accurately measure copy-number changes of individual exons in the human genome. Using this technology, we screened 31 patient samples across an array containing a total of 162 exons for five disease genes and detected copy-number changes, ranging from whole-gene deletions and duplications to single-exon deletions and duplications, in 100% of the cases. Our data demonstrate that it is possible to screen the human genome for copy-number changes with array CGH at a resolution that is 2 orders of magnitude higher than that previously reported.  相似文献   

18.
BACKGROUND: Array-based comparative genomic hybridization (aCGH) enables genome-wide quantitative delineation of genomic imbalances. A high-resolution contig array was developed specifically for chromosome 8q because this chromosome arm is frequently altered in many human cancers. METHODS: A minimal tiling path contig of 702 8q-specific bacterial artificial chromosome (BAC) clones was generated with a novel computational tool (BAC Contig Assembler). BAC clones were amplified by degenerative oligonucleotide primer (DOP) polymerase chain reaction and subsequently printed onto glass slides. For validation of the array DNA samples of gastroesophageal and prostate cancer cell lines, and chronic myeloid leukemia specimens were used, which were previously characterized by multicolor fluorescence in situ hybridization and conventional CGH. RESULTS: Single and double copy gains were confidently demonstrated with the 8q array. Single copy loss and high-level amplifications were accurately detected and confirmed by bicolor fluorescence in situ hybridization experiments. The 8q array was further tested with paraffin-embedded prostate cancer specimens. In these archival specimens, the copy number changes were confirmed. In fresh and archival samples, additional alterations were disclosed. In comparison with conventional CGH, the resolution of the detected changes was much improved, which was demonstrated by an amplicon of 0.7 Mb and a deletion of 0.6 Mb, both spanned by only six BAC clones. CONCLUSIONS: A comprehensive array is presented, which provides a high-resolution method for mapping copy number alterations on chromosome 8q.  相似文献   

19.
Array-based comparative genomic hybridization (aCGH) using bacterial artificial chromosomes (BAC) is a powerful method to analyze DNA copy number aberrations of the entire human genome. In fact, CGH and aCGH have revealed various DNA copy number aberrations in numerous cancer cells and cancer cell lines examined so far. In this report, BAC aCGH was applied to evaluate the stability or instability of cell lines. Established cell lines have greatly contributed to advancements in not only biology but also medical science. However, cell lines have serious problems, such as alteration of biological properties during long-term cultivation. Firstly, we investigated two cancer cell lines, HeLa and Caco-2. HeLa cells, established from a cervical cancer, showed significantly increased DNA copy number alterations with passage time. Caco-2 cells, established from a colon cancer, showed no remarkable differences under various culture conditions. These results indicate that BAC aCGH can be used for the evaluation and validation of genomic stability of cultured cells. Secondly, BAC aCGH was applied to evaluate and validate the genomic stabilities of three patient's mesenchymal stem cells (MSCs), which were already used for their treatments. These three MSCs showed no significant differences in DNA copy number aberrations over their entire chromosomal regions. Therefore, BAC aCGH is highly recommended for use for a quality check of various cells before using them for any kind of biological investigation or clinical application.  相似文献   

20.
Chromosomal amplifications and deletions are critical components of tumorigenesis and DNA copy-number variations also correlate with changes in mRNA expression levels. Genome-wide microarray comparative genomic hybridization (CGH) has become an important method for detecting and mapping chromosomal changes in tumors. Thus, the ability to detect twofold differences in fluorescent intensity between samples on microarrays depends on the generation of high-quality labeled probes. To enhance array-based CGH analysis, a random prime genomic DNA labeling method optimized for improved sensitivity, signal-to-noise ratios, and reproducibility has been developed. The labeling system comprises formulated random primers, nucleotide mixtures, and notably a high concentration of the double mutant exo-large fragment of DNA polymerase I (exo-Klenow). Microarray analyses indicate that the genomic DNA-labeled templates yield hybridization signals with higher fluorescent intensities and greater signal-to-noise ratios and detect more positive features than the standard random prime and conventional nick translation methods. Also, templates generated by this system have detected twofold differences in gene copy number between male and female genomic DNA and identified amplification and deletions from the BT474 breast cancer cell line in microarray hybridizations. Moreover, alterations in gene copy number were routinely detected with 0.5 microg of genomic DNA starting sample. The method is flexible and performs efficiently with different fluorescently labeled nucleotides. Application of the optimized CGH labeling system may enhance the resolution and sensitivity of array-based CGH analysis in cancer and medical genetic studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号