共查询到20条相似文献,搜索用时 0 毫秒
1.
Isolation and characterization of the beta and epsilon subunit genes of mouse muscle acetylcholine receptor 总被引:10,自引:0,他引:10
The genes coding for the beta and epsilon subunits of the mouse muscle nicotinic acetylcholine receptor (nAChR) were mapped by Southern blot analysis, and the entire loci for both genes cloned. The results indicate that they are single-copy genes. Both were sequenced to determine their size and structural organization. The beta subunit gene spans approximately 8 kilobases and is organized into 11 exons. A region containing cysteines, which are thought to form a disulfide bond and which are highly conserved, is encoded by one exon in all muscle acetylcholine receptor genes with the exception of the beta subunit gene, where it is split into two exons. The epsilon subunit gene spans 4.3 kilobases and contains 12 exons; it has the same structure as the gamma and delta nAChR genes. The intron-exon boundaries and exonic organization of the five known nAChR genes were compared. The analysis showed that the first 4 exons and the last exon of all muscle and brain nAChR subunit genes have the same boundaries, with the exception of a nAChR-related gene in Drosophila. 相似文献
2.
Osaka H Malany S Molles BE Sine SM Taylor P 《The Journal of biological chemistry》2000,275(8):5478-5484
alpha-Neurotoxins bind with high affinity to alpha-gamma and alpha-delta subunit interfaces of the nicotinic acetylcholine receptor. Since this high affinity complex likely involves a van der Waals surface area of approximately 1200 A(2) and 25-35 residues on the receptor surface, analysis of side chains should delineate major interactions and the orientation of bound alpha-neurotoxin. Three distinct regions on the gamma subunit, defined by Trp(55), Leu(119), Asp(174), and Glu(176), contribute to alpha-toxin affinity. Of six charge reversal mutations on the three loops of Naja mossambica mossambica alpha-toxin, Lys(27) --> Glu, Arg(33) --> Glu, and Arg(36) --> Glu in loop II reduce binding energy substantially, while mutations in loops I and III have little effect. Paired residues were analyzed by thermodynamic mutant cycles to delineate electrostatic linkages between the six alpha-toxin charge reversal mutations and three key residues on the gamma subunit. Large coupling energies were found between Arg(33) at the tip of loop II and gammaLeu(119) (-5.7 kcal/mol) and between Lys(27) and gammaGlu(176) (-5.9 kcal/mol). gammaTrp(55) couples strongly to both Arg(33) and Lys(27), whereas gammaAsp(174) couples minimally to charged alpha-toxin residues. Arg(36), despite strong energetic contributions, does not partner with any gamma subunit residues, perhaps indicating its proximity to the alpha subunit. By analyzing cationic, neutral and anionic residues in the mutant cycles, interactions at gamma176 and gamma119 can be distinguished from those at gamma55. 相似文献
3.
Signal-transducing G-proteins are heterotrimers composed of GTP-binding alpha subunits in association with a tightly bound complex of beta and gamma subunits. While the alpha subunits are recognized as a family of diverse structures, beta and gamma subunits have also been found as heterogeneous isoforms. To investigate the diversity and tissue specificity of the beta gamma complexes, we have examined homogeneous oligomeric G-proteins from a variety of sources. The beta and gamma subunits isolated from the major-abundance G-proteins from bovine brain, bovine retina, rabbit liver, human placenta, and human platelets were purified and subjected to biochemical and immunological analysis. Protease mapping and immune recognition revealed an identical profile for each of the two distinctly migrating beta isoforms (beta 36 and beta 35) regardless of tissue or G-protein origin. Digestion with V8 protease revealed four distinct, clearly resolved terminal fragments for beta 36 and two for beta 35. Trypsin and chymotrypsin digestion yielded numerous bands, but again each form had a unique profile with no tissue specificity. Tryptic digestion was found to be conformationally specific with the most resistant structure being the native beta gamma complex. With increasing trypsin, the complex was digested but in a pattern distinct from that for denatured beta. In contrast to the two highly homologous beta structures, examination of this set of proteins revealed at least six distinct gamma peptides. Two unique gamma peptides were found in bovine retinal Gt and three gamma peptides in samples of bovine brain derived Go/Gi. Human placental and platelet Gi samples each contained a unique gamma.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
Electron microscopic evidence for the assembly of soluble pentameric extracellular domains of the nicotinic acetylcholine receptor 总被引:2,自引:0,他引:2
Exploitation of soluble extracellular domains (ECDs) of the nicotinic acetylcholine receptor may provide a route to crystallographic studies aimed at exploring the structure and function of the intact receptor. The first step towards this goal is to manufacture and isolate soluble fragments that fold and assemble to form a functionally relevant complex. The baculovirus insect cell expression system was used to co-express soluble ECDs of all four muscle-type nicotinic acetylcholine receptor subunits (alpha, beta, gamma & delta-ECD) from Torpedo. Protein complexes were purified using either the conformationally sensitive monoclonal antibody mAb35, specific for a folded alpha subunit, or a NiNTA affinity resin, specific for a polyhistidine tag engineered on the delta-ECD. Western blotting with subunit specific antibodies confirmed the co-expression of each ECD and furthermore, indicated that the alpha, beta and gamma-ECDs were being co-purified with the polyhistidine-tagged delta-ECD. Chemical cross-linking was used to show that these co-purified proteins had indeed interacted specifically to form soluble oligomeric complexes. A low-resolution, three-dimensional image of these purified complexes, composed only of ECDs, was obtained by electron microscopy. They were shown to resemble the extracellular vestibule of the native receptor, having the same pseudo-pentameric symmetry, size and shape. Expression of incomplete sets of the four nicotinic acetylcholine receptor ECDs did not yield detectable complexes. 相似文献
5.
Interaction of p72syk with the gamma and beta subunits of the high-affinity receptor for immunoglobulin E, Fc epsilon RI. 总被引:6,自引:1,他引:6 下载免费PDF全文
L Shiue J Green O M Green J L Karas J P Morgenstern M K Ram M K Taylor M J Zoller L D Zydowsky J B Bolen et al. 《Molecular and cellular biology》1995,15(1):272-281
Activation of protein tyrosine kinases is one of the initial events following aggregation of the high-affinity receptor for immunoglobulin E (Fc epsilon RI) on RBL-2H3 cells, a model mast cell line. The protein tyrosine kinase p72syk (Syk), which contains two Src homology 2 (SH2) domains, is activated and associates with phosphorylated Fc epsilon RI subunits after receptor aggregation. In this report, we used Syk SH2 domains, expressed in tandem or individually, as fusion proteins to identify Syk-binding proteins in RBL-2H3 lysates. We show that the tandem Syk SH2 domains selectively associate with tyrosine-phosphorylated forms of the gamma and beta subunits of Fc epsilon RI. The isolated carboxy-proximal SH2 domain exhibited a significantly higher affinity for the Fc epsilon RI subunits than did the amino-proximal domain. When in tandem, the Syk SH2 domains showed enhanced binding to phosphorylated gamma and beta subunits. The conserved tyrosine-based activation motifs contained in the cytoplasmic domains of the gamma and beta subunits, characterized by two YXXL/I sequences in tandem, represent potential high-affinity binding sites for the dual SH2 domains of Syk. Peptide competition studies indicated that Syk exhibits a higher affinity for the phosphorylated tyrosine activation motif of the gamma subunit than for that of the beta subunit. In addition, we show that Syk is the major protein in RBL-2H3 cells that is affinity isolated with phosphorylated peptides corresponding to the phosphorylated gamma subunit motif. These data suggest that Syk associates with the gamma subunit of the high-affinity receptor for immunoglobulin E through an interaction between the tandem SH2 domains of SH2 domains of Syk and the phosphorylated tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Fc epsilon RI tyrosine activation motif of the gamma subunit and that Syk may be the major signaling protein that binds to Dc epsilon tyrosine activation motifs in RBL-2H3 cells. 相似文献
6.
Psaridi-Linardaki L Mamalaki A Remoundos M Tzartos SJ 《The Journal of biological chemistry》2002,277(30):26980-26986
The N-terminal extracellular domain (amino acids 1-210; halpha-(1-210)) of the alpha subunit of the human muscle nicotinic acetylcholine receptor (AChR), bearing the binding sites for cholinergic ligands and the main immunogenic region, the major target for anti-AChR antibodies in patients with myasthenia gravis, was expressed in the yeast, Pichia pastoris. The recombinant protein was water-soluble and glycosylated, and fast protein liquid chromatography analysis showed it to be a monomer. halpha-(1-210) bound (125)I-alpha-bungarotoxin with a high affinity (K(d) = 5.1 +/- 2.4 nm), and this binding was blocked by unlabeled d-tubocurarine and gallamine (K(i) approximately 7.5 mm). Interestingly, (125)I-alpha-bungarotoxin binding was markedly impaired by in vitro deglycosylation of halpha-(1-210). Several monoclonal antibodies that show partial or strict conformation-dependent binding to the AChR were able to bind to halpha-(1-210), as did antibodies from a large proportion of myasthenic patients. These results suggest that the extracellular domain of the human AChR alpha subunit expressed in P. pastoris has an apparently near native conformation. The correct folding of the recombinant protein, together with its relatively high expression yield, makes it suitable for structural studies on the nicotinic acetylcholine receptor and for use as an autoantigen in myasthenia gravis studies. 相似文献
7.
Heungrok Park Hana Im Young Jun Kang Myeong-Hee Yu Hyo Jeong Hong 《Biotechnology letters》2000,22(20):1611-1617
The extracellular domain (edMpl) of human thrombopoietin (TPO) receptor, c-Mpl was expressed in Escherichia coli by changing some nucleotides before and after the translation initiation codon. The mutations increased the expression by approx. 15-fold. The inclusion bodies were solubilized in 8 M guanidine-HCl under reducing conditions and refolded using a glutathione-redox system. The monomeric form of edMpl was purified to near homogeneity by two successive steps of ion-exchange chromatography using DEAE-Sephacel and Mono Q columns. The purified monomeric edMpl inhibited the TPO-dependent cell proliferation, suggesting that it was binding to TPO. Also, antisera raised against the edMpl bound specifically to the soluble receptor secreted by mammalian cells. 相似文献
8.
Alpha and beta subunits of the nicotinic acetylcholine receptor contain covalently bound lipid 总被引:8,自引:0,他引:8
Labeling of the BC3H1 muscle-like cell line with [3H] palmitate, followed by immunoprecipitation of the acetylcholine receptor, indicated that the alpha and beta subunits of the receptor contain covalently bound fatty acid. After acid hydrolysis, fatty acid methyl esters could be recovered from the isolated [3H]palmitate-labeled alpha subunit. Treatment of differentiated BC3H1 cells with cerulenin, an inhibitor of fatty acid and sterol synthesis and fatty acid acylation of proteins, resulted in a 50% inhibition in expression of the acetylcholine receptor on the cell surface under conditions where there was minimal inhibition of protein synthesis. We conclude that this previously undetected post-translational modification may play a role in assembly and/or surface expression of the acetylcholine receptor. 相似文献
9.
Nicotinic acetylcholine receptors (nAChRs) are ligand-gated cation channels that are responsible for cell communication via the neurotransmitter acetylcholine. The predominant nAChR subtype in the mammalian brain with a high affinity for nicotine is composed of α4 and β2 subunits. This nAChR subtype is responsible for addiction to nicotine and is thought to be implicated in Alzheimer and Parkinson diseases and therefore presents an important target for drug design. In an effort to obtain water-soluble, ligand-binding domains of the human α4β2 nAChR for structural studies, we expressed the extracellular domains (ECDs) of these subunits in the eukaryotic expression system Pichia pastoris. The wild-type ECDs and their mutants containing the more hydrophilic Cys-loop from the snail acetylcholine-binding protein (individually expressed or coexpressed) did not demonstrate any specific interaction with ligands. We then linked the mutated ECDs with the 24-amino acid peptide (AGS)(8) and observed that the β2-24-α4 ECD concatamer, but not the α4-24-β2 one, exhibited very satisfactory water solubility and ligand binding properties. The (125)I-epibatidine and [(3)H]nicotine bound to β2-24-α4 with dissociation constants (K(d)) of 0.38 and 19 nm, respectively, close to the published values for the intact α4β2 AChR. In addition, (125)I-epibatidine binding was blocked by nicotine, cytisine, acetylcholine, and carbamylcholine with inhibition constants (K(i)) of 20.64, 3.24, 242, and 2,254 nm, respectively. Interestingly, deglycosylation of the concatamer did not affect its ligand binding properties. Furthermore, the deglycosylated β2-24-α4 ECD existed mainly in monomeric form, thus forming an appropriate material for structural studies and possibly for pharmacological evaluation of novel α4β2 nAChR-specific agonists. 相似文献
10.
The cytoplasmic C-terminal domains (CTs) of the NR1 and NR2 subunits of the NMDA receptor have been implicated in its anchoring to the subsynaptic cytoskeleton. Here, we used affinity chromatography with glutathione S-transferase-NR1-CT and -NR2B-CT fusion proteins to identify novel binding partner(s) of these NMDA receptor subunits. Upon incubation with rat brain cytosolic protein fraction, both NR1-CT and NR2B-CT, but not glutathione S-transferase, specifically bound tubulin. The respective fusion proteins also bound tubulin purified from brain, suggesting a direct interaction between the two binding partners. In tubulin polymerization assays, NR1-CT and NR2B-CT significantly decreased the rate of microtubule formation without destabilizing preformed microtubules. Moreover, only minor fractions of either fusion protein coprecipitated with the newly formed microtubules. Consistent with these findings, ultrastructural analysis of the newly formed microtubules revealed a limited association only with the CTs of the NR1 and NR2B. These data suggest a direct interaction of the NMDA receptor channel subunit CTs and tubulin dimers or soluble forms of tubulin. The efficient modulation of microtubule dynamics by the NR1 and NR2 cytoplasmic domains suggests a functional interaction of the receptor and the subsynaptic cytoskeletal network that may play a role during morphological adaptations, as observed during synaptogenesis and in adult CNS plasticity. 相似文献
11.
To facilitate structural studies of the ligand binding region from the nicotinic acetylcholine receptor (nAChR), we have developed methods for the high-level expression and purification of an important functional portion of the N-terminal extracellular domain (ECD) of the alpha-subunit. Two soluble receptor fragments comprising residues 143-210 of the Torpedo californica alpha-subunit were expressed in E. coli: alphaT68His6, which contains a histidine tag, and alphaT68M1, which includes the first transmembrane region, M1, of the alpha-subunit. Both proteins demonstrate saturable, high-affinity alpha-bungarotoxin (Bgtx) binding with an apparent equilibrium KD (3 nM) that is comparable to the affinities reported for preparations comprising the entire alpha-subunit ECD. These results demonstrate that the ECD determinants required for Bgtx recognition of the alpha-subunit are entirely specified by residues 143-210. The binding of small ligands was demonstrated in competition assays with 125I-Bgtx yielding KI values of 58 and 105 microM for d-tubocurarine and nicotine, respectively. Circular dichroism (CD) analysis of monomeric alphaT68His6 protein revealed considerable secondary structure. Furthermore, a cooperative, two-state folding transition was observed upon urea denaturation. To circumvent concentration-dependent aggregation of the alphaT68His6 protein at the millimolar concentrations needed for NMR study, we utilized the M1 transmembrane domain to anchor the recombinant receptor fragment onto membrane-mimicking micelles. Monodispersed preparations of alphaT68M1 in dodecylphosphocholine micelles demonstrate high-affinity Bgtx binding and considerable secondary structure by CD. The structural features revealed in the CD profile appear to undergo a cooperative, two-state folding transition upon thermal denaturation. Initial NMR studies suggest that micellar preparations of the alphaT68M1 fragment are amenable to further high-resolution heteronuclear NMR analysis. 相似文献
12.
Goldsmith PK Fan GF Ray K Shiloach J McPhie P Rogers KV Spiegel AM 《The Journal of biological chemistry》1999,274(16):11303-11309
We purified the extracellular domain (ECD) of the human calcium receptor (hCaR) from the medium of HEK-293 cells stably transfected with a hCaR cDNA containing an isoleucine 599 nonsense mutation. A combination of lectin, anion exchange, and gel permeation chromatography yielded milligram quantities of >95% pure protein from 15 liters of starting culture medium. The purified ECD ran as an approximately 78-kDa protein on SDS-polyacrylamide gel electrophoresis and was found to be a disulfide-linked dimer. Its NH2-terminal sequence, carbohydrate content, and CD spectrum were defined. Tryptic proteolysis studies showed two major sites accessible to cleavage. These studies provide new insights into the structure of the hCaR ECD. Availability of purified ECD protein should permit further structural studies to help define the mechanism of Ca2+ activation of this G protein-coupled receptor. 相似文献
13.
Purification and characterization of a soluble bioactive amino-terminal extracellular domain of the human thyrotropin receptor 总被引:2,自引:0,他引:2
Cornelis S Uttenweiler-Joseph S Panneels V Vassart G Costagliola S 《Biochemistry》2001,40(33):9860-9869
The amino-terminal ectodomain of the human TSH receptor has been expressed at the surface of CHO cells as a glycosylphosphatidylinositol-anchored molecule containing a 10-residue histidine tag close to its C terminus. The soluble ectodomain could be released from the cells by treatment with a glycosylphosphatidylinositol-phospholipase C and purified to apparent homogeneity by cobalt-Sepharose chromatography. Two nanomoles of material was obtained, which was suitable for analysis by mass spectrometry. This allowed the identification of four out of the six potential N-glycosylation sites as being effectively glycosylated. A proportion of the purified soluble ectodomain displayed specific binding of (125)I-labeled TSH, allowing for the first time performance of classical saturation binding experiments. Two classes of high-affinity binding sites were identified: site A, K(d) 0.014 nM; site B, K(d) 0.83 nM. The significance of site A, whose affinity is much higher than for the holoreceptor at the surface of intact cells, remains to be clarified. The purified ectodomain was capable of inhibiting efficiently the thyroid stimulating activity of immunoglobulins from patients with Graves' disease. It allowed computation of the amounts of these immunoglobulins in patient's serum, giving values up to 10 microg/mL. Contrary to all currently available assays, the soluble ectodomain of the TSH receptor purified in a functionally competent conformation allows direct studies of its interactions with TSH and autoantibodies and opens the way to structural studies. 相似文献
14.
M H Perrin W H Fischer K S Kunitake A G Craig S C Koerber L A Cervini J E Rivier J C Groppe J Greenwald S M?ller Nielsen W W Vale 《The Journal of biological chemistry》2001,276(34):31528-31534
The first extracellular domain (ECD-1) of the corticotropin releasing factor (CRF) type 1 receptor, (CRFR1), is important for binding of CRF ligands. A soluble protein, mNT-CRFR1, produced by COS M6 cells transfected with a cDNA encoding amino acids 1--119 of human CRFR1 and modified to include epitope tags, binds a CRF antagonist, astressin, in a radioreceptor assay using [(125)I-d-Tyr(0)]astressin. N-terminal sequencing of mNT-CRFR1 showed the absence of the first 23 amino acids of human CRFR1. This result suggests that the CRFR1 protein is processed to cleave a putative signal peptide corresponding to amino acids 1--23. A cDNA encoding amino acids 24--119 followed by a FLAG tag, was expressed as a thioredoxin fusion protein in Escherichia coli. Following thrombin cleavage, the purified protein (bNT-CRFR1) binds astressin and the agonist urocortin with high affinity. Reduced, alkylated bNT-CRFR1 does not bind [(125)I-D-Tyr(0)]astressin. Mass spectrometric analysis of photoaffinity labeled bNT-CRFR1 yielded a 1:1 complex with ligand. Analysis of the disulfide arrangement of bNT-CRFR1 revealed bonds between Cys(30) and Cys(54), Cys(44) and Cys(87), and Cys(68) and Cys(102). This arrangement is similar to that of the ECD-1 of the parathyroid hormone receptor (PTHR), suggesting a conserved structural motif in the N-terminal domain of this family of receptors. 相似文献
15.
Expression of the human activin type I and II receptor extracellular domains in Pichia pastoris 总被引:2,自引:0,他引:2
Methods for the expression in Pichia pastoris and purification of the human activin receptor type I and II extracellular domains (ARIa/ARIb-ECDs, ARIIA/ARIIB-ECDs) are described. Key experimental aspects are also documented of the vector transformation methodology and the binding characteristics of these ECDs with activin A and inhibin. The cDNA constructs for these ECDs contained a C-terminal His6-tag with either the native signal (N) or the yeast alpha mating factor (alphaMF) sequence and were introduced into the pPICZ expression vector either as a single-copy or as a four-copy expression cassette. Hyper-resistant transformants (zeo(R): 500 microg/mL) generated from the cassette containing a single copy of the expression vector gave the stronger signal intensity with a DNA dot-blot screening assay. These transformants also produced higher quantities of the corresponding recombinant protein compared to transformants using the four-copy cassette vector. All receptor-ECD proteins expressed were found to be heterogeneously glycosylated, whereby the ARIIA-ECD and ARIIB-ECD had undergone two Asn-linked glycosylation events and the ARIb-ECD a single event. By SDS-PAGE, the de-glycosylated proteins migrated larger than the expected core size, indicating that they may have undergone O-linked glycosylation. Biacore-based procedures with the glycosylated and de-glycosylated ARIIA-ECD were employed to determine the kinetic and equilibrium binding parameters for the interaction with activin A and inhibin. The glycosylated ARIIA-ECD bound to activin A with a KD of 11.9 nM and inhibin with a KD of 21.1 nM. Although glycosylation of ARIIA-ECD was not strictly required for high affinity interactions with activin A or inhibin, it markedly improved the overall stability of the ARIIA-ECD. 相似文献
16.
Characterization of acetylcholine receptor subunits in developing and in denervated mammalian muscle 总被引:2,自引:0,他引:2
We have used subunit-specific antibodies to identify and to characterize partially the alpha, beta, gamma, and delta subunits of rat skeletal muscle acetylcholine receptor (AChR) on immunoblots. The alpha subunit of rat muscle is a single band of 42 kDa, whereas the beta subunit has an apparent molecular mass of 48 kDa. Both alpha and beta subunits are glycosylated and contain one or more N-linked oligosaccharide chains that are sensitive to endoglycosidase H digestion. The gamma and delta subunits, on the other hand, each appear as doublets on immunoblots, with apparent molecular masses of 52 kDa (gamma), 48 kDa (gamma') and 58 kDa (delta), 53 kDa (delta'), respectively. In each case, the two bands are structurally related and the lower band is probably the partial degradation product of the corresponding upper band. Each of the four gamma and delta polypeptides is N-glycosylated and contains both endoglycosidase H-sensitive and endoglycosidase H-resistant oligosaccharides. When the AChRs purified from embryonic, neonatal, adult, and denervated adult rat muscles were compared, no differences in the mobilities of alpha, beta, or delta subunits on sodium dodecyl sulfate gels were detected among them, either with or without endoglycosidase treatment. The gamma subunits, which were present in AChRs purified from neonatal, embryonic, or denervated rat muscles, were also identical; no gamma subunit was detected, however, in AChRs of normal adult rat muscle. 相似文献
17.
We demonstrated previously the involvement of a nicotinic acetylcholine receptor containing an alpha7 subunit in the human sperm acrosome reaction (a modified exocytotic event essential to fertilization). Here we report the presence in human sperm of alpha7, alpha9, alpha3, alpha5, and beta4 nicotinic acetylcholine receptor subunits and the following proteins known to be associated with the receptor in the somatic cell: rapsyn and the tyrosine kinases c-SRC and FYN. The alpha7 subunit appears to exist as a homomer in the posterior post-acrosomal and neck regions of sperm and is probably linked to the cytoskeleton via rapsyn. The alpha3, alpha5, and beta4 subunits are present in the sperm flagellar mid-piece of sperm and possibly exist as alpha3alpha5beta4 and/or alpha3beta4 channels. The alpha9 subunit is present in the sperm mid-piece. We detected the FYN and c-SRC tyrosine kinases in the flagellar mid-piece region. Both co-precipitated only with the nicotinic acetylcholine receptor beta4 subunit. Immunolocalization with a C-terminal SRC kinase antibody, which recognizes several members of SRC kinase family, detected a SRC kinase co-localized with the alpha7 subunit in the neck region of sperm. Immunoprecipitation studies with that antibody demonstrated that the alpha7 subunit is associated with a SRC kinase. Antagonists of tyrosine phosphorylation inhibited the acetylcholine-initiated acrosome reaction, suggesting the involvement of a SRC kinase in the acrosome reaction. 相似文献
18.
BiP forms stable complexes with unassembled subunits of the acetylcholine receptor in transfected COS cells and in C2 muscle cells 下载免费PDF全文
We have investigated the role of the immunoglobulin-binding protein (BiP) in the folding and assembly of subunits of the acetylcholine receptor (AChR) in COS cells and in C2 muscle cells. Immunoprecipitation in COS cells showed that alpha, beta, and delta subunits are associated with BiP. In the case of the alpha subunit, which first folds to acquire toxin-binding activity and is then assembled with the other subunits to form the AChR, BiP was associated only with a form that is unassembled and does not bind alpha-bungarotoxin. Similar results were found in C2 cells. Although the alpha and beta subunits of the AChR are minor membrane proteins in C2 cells, they were prominent among the proteins immunoprecipitated by antibodies to BiP, suggesting that BiP could play a role in their maturation or folding. In pulse-chase experiments in C2 cells, however, labeled alpha subunit formed a stable complex with BiP that was first detected after most of the alpha subunit had acquired toxin-binding activity and whose amount continued to increase for several hours. These kinetics are not compatible with a role for the BiP complex in the folding or assembly pathway of the AChR, and suggest that BiP is associated with a misfolded form of the subunit that is slowly degraded. 相似文献
19.
Cloning and sequence analysis of human genomic DNA encoding gamma subunit precursor of muscle acetylcholine receptor 总被引:14,自引:0,他引:14
S Shibahara T Kubo H J Perski H Takahashi M Noda S Numa 《European journal of biochemistry》1985,146(1):15-22
The limited proteolysis of human low-molecular-mass kininogen by kallikrein from tissue sources has been studied. Porcine pancreatic kallikrein applied in catalytic amounts split the kininogen molecule (apparent mass 68 kDa) with the release of lysyl-bradykinin (1 kDa). This generated a nicked kininogen molecule with a heavy chain and light chain interconnected via disulfide bridging. Following reductive cleavage of the disulfide bonds, the heavy chain of apparent mass 62 kDa was isolated by preparative sodium dodecyl sulfate electrophoresis, and the light chain of 5 kDa by reversed-phase high-performance liquid chromatography. The light chain was found to be composed of 38 amino acids with a single half-cystine residue. Amino-terminal sequence analysis revealed that the light chain is derived from the carboxy terminus of the kininogen molecule [Lottspeich et al. (1984) Eur. J. Biochem. 142, 227-232]. Immunological characterization of the isolated L chain indicated that it harbours antigenic site(s) unique for low-Mr kininogen as well as sites common to high-Mr and low-Mr kininogen. 相似文献
20.
The transmembrane domains of the nicotinic acetylcholine receptor contain alpha-helical and beta structures. 总被引:3,自引:0,他引:3 下载免费PDF全文
The transmembrane domain of the nicotinic acetylcholine receptor (nAChR) from Torpedo californica electric tissue contains both alpha-helical and beta structures. The secondary structure was investigated by Fourier transform infrared (FTIR) spectroscopy after the extramembrane moieties of the protein from the extracellular and intracellular sides of the membrane were removed by proteolysis using proteinase K. The secondary structure composition of this membrane structure was: alpha-helical 50%, beta structure and turns 40%, random 10%. The alpha-helices are shown to be oriented with respect to the membrane plane in a way allowing them to span the membrane, while no unidirectional structure for the beta structures was observed. These findings contradict previous secondary structure models based on hydropathy plots alone. 相似文献