首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Obesity and cancer: pathophysiological and biological mechanisms   总被引:2,自引:0,他引:2  
Excess body weight (overweight and obesity) is characterized by chronic hyperinsulinaemia and insulin resistance, and is implicated both in cancer risk and cancer mortality. The list of cancers at increased risk of development in an "obesogenic" environment include common adult cancers such as endometrium, post-menopausal breast, colon and kidney, but also less common malignancies such as leukaemia, multiple myeloma, and non-Hodgkin's lymphoma. The pathophysiological and biological mechanisms underpinning these associations are only starting to be understood. Insulin resistance is at the heart of many, but there are several other candidate systems including insulin-like growth factors, sex steroids, adipokines, obesity-related inflammatory markers, the nuclear factor kappa beta (NF-kappa B) system and oxidative stresses. With such as diversity of obesity-related cancers, it is unlikely that there is a "one system fits all" mechanism. While public health strategies to curb the spread of the obesity epidemic appear ineffective, there is a need to better understand the processes linking obesity and cancer as a pre-requisite to the development of new approaches to the prevention and treatment of obesity-related cancers.  相似文献   

2.
Diabetes mellitus (DM), a disease with almost 350 million people affected worldwide, will be the seventh leading cause of death by 2030. Diabetic patients develop various types of complications, among them an increased rate of malignancies. Studies reported the strong correlation between DM and several cancer types, of which colon and kidney cancers are the most common. Hyperinsulinemia, the high insulin blood level characteristic of early diabetes type 2, was identified as a risk factor for cancer development. In previous studies, we showed that an elevated insulin level can induce oxidative stress, resulting in DNA damage in colon cells in vitro and in kidney cells in vitro and in vivo. In the present study, we elucidate the signaling pathway of insulin-mediated genotoxicity, which is effective through oxidative stress induction in colon and kidney. The signaling mechanism is starting by phosphorylation of the insulin and insulin-like growth factor-1 receptors, followed by activation of phosphatidylinositide 3-kinase (PI3K), which in turn activates AKT. Subsequently, mitochondria and nicotinamide adenine dinucleotide phosphate oxidase (NADPH) isoforms (Nox1 and Nox4 in colon and kidney, respectively) are activated for reactive oxygen species (ROS) production, and the resulting excess ROS can attack the DNA, causing DNA oxidation. We conclude that hyperinsulinemia represents an important risk factor for cancer initiation or progression as well as a target for cancer prevention in diabetic patients.  相似文献   

3.
Insulin resistance is defined as a clinical state in which a normal or elevated insulin level produces an attenuated biologic response. Specifically, the biologic response most studied is insulin-stimulated glucose disposal, yet the precise cellular mechanism responsible is not yet known. However, the presence of insulin resistance is observed many years before the onset of clinical hyperglycemia and the diagnosis of Type 2 diabetes. Insulin resistance at this stage appears to be significantly associated with a clustering of cardiovascular risk factors predisposing the individual to accelerated cardiovascular disease. An overview of insulin resistance and the associated clinical insulin resistant state will be discussed.  相似文献   

4.
《Endocrine practice》2010,16(5):864-873
ObjectiveTo review the epidemiologic studies that describe the relationships among diabetes, obesity, and cancer; animal studies that have helped to decipher the mechanisms of cancer development; and some of the therapeutic targets undergoing investigation.MethodsAn electronic search was performed of Medline, Scopus, Google Scholar, and ClinicalTrials.gov to identify English-language articles and studies published from 1995 through 2010 relating to obesity, insulin, insulinlike growth factors, diabetes mellitus, and cancer.ResultsEpidemiologic studies have reported that diabetes and obesity are linked to an increased risk of certain cancers in association with higher levels of insulin, C-peptide, and insulinlike growth factor 1. Animal models have demonstrated that increased insulin, insulinlike growth factor 1, and insulinlike growth factor 2 signaling can enhance tumor growth, while inhibiting this signaling can reduce tumorigenesis. Therapies that target insulin and insulinlike growth factor 1 signaling pathways have been developed and are currently in clinical trials to treat cancer.ConclusionsInsulin, insulinlike growth factor 1, and insulinlike growth factor 2 signaling through the insulin receptor and the insulinlike growth factor 1 receptor can induce tumorigenesis, accounting to some extent for the link between diabetes, obesity, and cancer. Knowledge of these pathways has enhanced our understanding of tumor development and allowed for the discovery of novel cancer treatments. (Endocr Pract. 2010;16:864-873)  相似文献   

5.
Epidemiology studies revealed the connection between several types of cancer and type 2 diabetes (T2D) and suggested that T2D is both a symptom and a risk factor of pancreatic cancer. High level of circulating insulin (hyperinsulinemia) in obesity has been implicated in promoting aggressive types of cancers. Insulin resistance, a symptom of T2D, pressures pancreatic β-cells to increase insulin secretion, leading to hyperinsulinemia, which in turn leads to a gradual loss of functional β-cell mass, thus indicating a fine balance and interplay between β-cell function and mass. While the mechanisms of these connections are unclear, the mTORC1-Akt signaling pathway has been implicated in controlling β-cell function and mass, and in mediating the link of cancer and T2D. However, incomplete understating of how the pathway is regulated and how it integrates body metabolism has hindered its efficacy as a clinical target. The IQ motif containing GTPase activating protein 1 (IQGAP1)-Exocyst axis is a growth factor- and nutrient-sensor that couples cell growth and division. Here we discuss how IQGAP1-Exocyst, through differential interactions with Rho-type of small guanosine triphosphatases (GTPases), acts as a rheostat that modulates the mTORC1-Akt and MAPK signals, and integrates β-cell function and mass with insulin signaling, thus providing a molecular mechanism for cancer initiation in diabetes. Delineating this regulatory pathway may have the potential of contributing to optimizing the efficacy and selectivity of future therapies for cancer and diabetes.  相似文献   

6.
Insulin resistance is a risk factor for colon cancer, but it is not clear which of its metabolic sequelae are involved. The objective of this study was to determine whether increased adiposity and elevated circulating lipids commonly seen in insulin resistance promote colon carcinogenesis independent of changes in insulin. We made use of muscle-specific insulin receptor knockout (MIRKO) mice that exhibit elevated serum triglycerides (TG), free fatty acids (FFA), and fat mass but have similar body weights, circulating glucose, and insulin and insulin sensitivity to their wild-type littermates used as controls. Seven-week-old male MIRKO mice and controls received four weekly intraperitoneal injections of either 5 mg/kg azoxymethane (AOM) to induce aberrant crypt foci (ACF) or 10 mg/kg AOM to induce tumors and were killed at 24 or 40 wk of age, respectively. The MIRKO mice displayed hyperinsulinemia at 7 wk of age and reduced insulin sensitivity at 16 wk of age compared with controls. The previously reported MIRKO phenotype developed between 16 and 24 wk of age. By 40 wk of age, however, MIRKO mice were again insulin resistant. ACF development did not differ between MIRKO mice and controls, but MIRKO mice developed significantly fewer colon tumors. Our results suggest that circulating TG and FFA are not promoters of colon tumor development. Indeed, we show that the cumulative effects of the metabolic changes that occur with knockout of the insulin receptor in muscle are associated with reduced susceptibility to colon tumorigenesis.  相似文献   

7.
The insulin resistance-colon cancer hypothesis, stating that insulin resistance may be associated with the development of colorectal cancer, represents a significant advance in colon cancer, as it emphasizes the potential for this cancer to become a modifiable disease. The fact that the incidence of insulin resistance has been increasing in the United States and much of the rest of the Western world where colon cancer remains the second leading cause of cancer death makes the exploration of the interrelationship of these conditions a subject of high priority. Here, we review the salient features of insulin resistance, defined as impaired biological response to the action of insulin. Recent epidemiological studies, evaluating potential associations between colon cancer risk and diabetes mellitus, dietary intake and metabolic factors, and IGF levels in several clinical settings, provide strong support of the insulin resistance-colon cancer hypothesis (without establishing causality). Mechanistically, insulin resistance has been associated with hyperinsulinemia, increased levels of growth factors including IGF-1, and alterations in NF-kappaB and peroxisome proliferator-activated receptor signaling, which may promote colon cancer through their effects on colonocyte kinetics. It is a reasonable expectation that in the not too distant future, critical interventions to the already mapped molecular sequence of events, which link two apparently disparate entities, combined with lifestyle changes could abrogate the development of colon cancer.  相似文献   

8.
9.
Progress in preventing atherosclerotic coronary artery disease (CAD) has been stalled by the epidemic of type 2 diabetes. Further advances in this area demand a thorough understanding of how two major features of type 2 diabetes, insulin resistance and hyperglycemia, impact atherosclerosis. Insulin resistance is associated with systemic CAD risk factors, but increasing evidence suggests that defective insulin signaling in atherosclerotic lesional cells also plays an important role. The role of hyperglycemia in CAD associated with type 2 diabetes is less clear. Understanding the mechanisms whereby type 2 diabetes exacerbates CAD offers hope for new therapeutic strategies to prevent and treat atherosclerotic vascular disease.  相似文献   

10.
11.
Insulin withdrawal induces apoptosis via a free radical-mediated mechanism   总被引:1,自引:0,他引:1  
Diabetes is characterized by chronic hyperglycemia as well as insulin deficiency or resistance. However, the majority of research has focused on the consequences of hyperglycemia in development of diabetic complications, whereas the effects of insulin deficiency or resistance, independent of hyperglycemia, have received little attention. Since insulin is a well known cytoprotective factor, we hypothesized that its removal could significantly impact cell survival. To examine this possibility, cultured neonatal cardiomyocytes were subjected to insulin withdrawal and examined for apoptosis. Insulin deficient cells succumbed to apoptosis, an effect associated with impaired PI3-kinase/Akt signaling and reduction in the Bcl-2 to Bax ratio. Perhaps more importantly, superoxide generation was altered in cells subjected to insulin withdrawal. Removal of insulin caused a significant increase in reactive oxygen species production and resulted in oxidative mitochondrial DNA damage the latter effect is associated with impaired expression of mitochondrially encoded proteins that make up the electron transport chain. Significantly, the effects of insulin withdrawal could be mitigated by treatment with the antioxidant, Tiron. Collectively, these data demonstrate that insulin deficiency leads to apoptosis and suggest a role for oxidative mitochondrial DNA damage in this cascade.  相似文献   

12.
Nutrition, insulin, insulin-like growth factors and cancer.   总被引:9,自引:0,他引:9  
The incidence of colon, pancreatic, and kidney cancers, as well as aggressive prostate cancer in men, and breast and endometrial cancer in women is invariably high in Western countries. Nutritional and related factors have been typically implicated. This review presents a model integrating nutrition, insulin and IGF-1 physiology ("bioactive" IGF-1), and carcinogenesis based on the following: (1) insulin and the IGF-1 axis function in an integrated fashion to promote cell growth and survival; (2) chronic exposure to these growth properties enhances carcinogenesis; (3) factors that influence bioactive IGF-1 will affect cancer risk. The model presented here summarizes the data that chronic exposure to high levels of insulin and IGF-1 may mediate many of the risk factors for some cancers that are high in Western populations. This hypothesis may help explain some of the epidemiologic patterns observed for these cancers, both from a cross-national perspective and within populations. Of particular importance is that some of relevant factors are modifiable through nutritional and lifestyle interventions. Out of a variety of perspectives presented, nutritional manipulation through the insulin pathway may be more feasible than attempting to influence total IGF-1 concentrations, which are determined largely by growth hormone. Further study is required to test these conclusions.  相似文献   

13.
There is evidence, both in vitro and in vivo, that receptor tyrosine kinases play a key role in the formation and progression of human cancer. In particular, the insulin-like growth factor receptor (IGF-IR), a tyrosine kinase receptor for IGF-I and IGF-II, has been well documented in cell culture, animal studies, and humans to play a role in malignant transformation, progression, protection from apoptosis, and metastasis. In addition, the hormone insulin (which is very closely related to the IGFs) and its tyrosine kinase receptor (the IR, which is very closely related to the IGR-IR) have been documented both in vitro and in vivo to play a key role in cancer biology. Indeed, several epidemiological studies have shown that insulin resistance status, characterized by hyperinsulinaemia, is associated with an increased risk for a number of malignancies, including carcinomas of the breast, prostate, colon and kidney. Recent data have elucidated some molecular mechanisms by which IR is involved in cancer. IR is over-expressed in several human malignancies. Interestingly, one of the two IR isoform (IR-A) is especially over-expressed in cancer. IR-A is the IR foetal isoform and has the peculiar characteristic to bind not only insulin but also IGF-II. In addition, the IR contributes to formation of hybrid receptors with the IGF-IR (HR). By binding to hybrid receptors, insulin may stimulate specific IGF-IR signalling pathways. Over-expression of IR-A is, therefore, a major mechanism of IGF system over-activation in cancer. In this respect, IR-A isoform and hybrid receptors should be regarded as potential molecular targets, in addition to IGF-IR, for novel anti-cancer therapy. These findings may have important implications for both the prevention and treatment of common human malignancies. They underline the concept that hyperinsulinaemia, associated with insulin resistance and obesity, should be treated by changes in life style and/or pharmacological approaches to avoid an increased risk for cancer. Moreover, native insulin and insulin analogue administration should be carefully evaluated in terms of the possible increase in cancer risk.  相似文献   

14.
15.
《Autophagy》2013,9(12):1842-1844
Alzheimer disease (AD) is sometimes referred to as type III diabetes because of the shared risk factors for the two disorders. Insulin resistance, one of the major components of type II diabetes mellitus (T2DM), is a known risk factor for AD. Insulin resistance increases amyloid-β peptide (Aβ) generation, but the exact mechanism underlying the linkage of insulin resistance to increased Aβ generation in the brain is unknown. In this study, we investigated the effect of insulin resistance on amyloid β (A4) precursor protein (APP) processing in mice fed a high-fat diet (HFD), and diabetic db/db mice. We found that insulin resistance promotes Aβ generation in the brain via altered insulin signal transduction, increased BACE1/β-secretase and γ-secretase activities, and accumulation of autophagosomes. Using an in vitro model of insulin resistance, we found that defects in insulin signal transduction affect autophagic flux by inhibiting the mechanistic target of rapamycin (MTOR) pathway. The insulin resistance-induced autophagosome accumulation resulted in alteration of APP processing through enrichment of secretase proteins in autophagosomes. We speculate that the insulin resistance that underlies the pathogenesis of T2DM might alter APP processing through autophagy activation, which might be involved in the pathogenesis of AD. Therefore, we propose that insulin resistance-induced autophagosome accumulation becomes a potential linker between AD and T2DM.  相似文献   

16.
Alzheimer disease (AD) is sometimes referred to as type III diabetes because of the shared risk factors for the two disorders. Insulin resistance, one of the major components of type II diabetes mellitus (T2DM), is a known risk factor for AD. Insulin resistance increases amyloid-β peptide (Aβ) generation, but the exact mechanism underlying the linkage of insulin resistance to increased Aβ generation in the brain is unknown. In this study, we investigated the effect of insulin resistance on amyloid β (A4) precursor protein (APP) processing in mice fed a high-fat diet (HFD), and diabetic db/db mice. We found that insulin resistance promotes Aβ generation in the brain via altered insulin signal transduction, increased BACE1/β-secretase and γ-secretase activities, and accumulation of autophagosomes. Using an in vitro model of insulin resistance, we found that defects in insulin signal transduction affect autophagic flux by inhibiting the mechanistic target of rapamycin (MTOR) pathway. The insulin resistance-induced autophagosome accumulation resulted in alteration of APP processing through enrichment of secretase proteins in autophagosomes. We speculate that the insulin resistance that underlies the pathogenesis of T2DM might alter APP processing through autophagy activation, which might be involved in the pathogenesis of AD. Therefore, we propose that insulin resistance-induced autophagosome accumulation becomes a potential linker between AD and T2DM.  相似文献   

17.
Diets high in fish and curcumin are associated with a decreased risk of CRC. Insulin resistance and obesity are associated with increased CRC risk and higher reoccurrence rates. We utilized cell culture to determine if dietary compounds could reduce insulin-induced cell proliferation comparing the response in normal and metastatic colon epithelial cells. We treated model normal murine colon epithelial cells (YAMC) and adenocarcinoma cells (MC38) with docosahexaenoic acid (DHA) or curcumin alone and then co-treatments of the diet-derived compound and insulin were combined. Cell proliferation was stimulated with insulin (1 ug/mL) to model insulin resistance in obesity. Despite the presence of insulin, proliferation was reduced in the MC38 cells treated with 10 μM curcumin (p<0.001) and 50 μM DHA (p<0.001). Insulin stimulated MAPK and MEK phosphorylation was inhibited by DHA and curcumin in MC38 cancer cells. Here we show that curcumin and DHA can block insulin-induced colon cancer cell proliferation in vitro via a MEK mediated mechanism.  相似文献   

18.
19.
Colorectal cancer is often lethal when invasion and/or metastasis occur. Tumor progression to the metastatic phenotype is mainly dependent on tumor cell invasiveness. Secondary bile acids, particularly deoxycholic acid (DCA), are implicated in promoting colon cancer growth and progression. Whether DCA modulates beta-catenin and promotes colon cancer cell growth and invasiveness remains unknown. Because beta-catenin and its target genes urokinase-type plasminogen activator receptor (uPAR) and cyclin D1 are overexpressed in colon cancers, and are linked to cancer growth, invasion, and metastasis, we investigated whether DCA activates beta-catenin signaling and promotes colon cancer cell growth and invasiveness. Our results show that low concentrations of DCA (5 and 50 microM) significantly increase tyrosine phosphorylation of beta-catenin, induce urokinase-type plasminogen activator, uPAR, and cyclin D1 expression and enhance colon cancer cell proliferation and invasiveness. These events are associated with a substantial loss of E-cadherin binding to beta-catenin. Inhibition of beta-catenin with small interfering RNA significantly reduced DCA-induced uPAR and cyclin D1 expression. Blocking uPAR with a neutralizing antibody significantly suppressed DCA-induced colon cancer cell proliferation and invasiveness. These findings provide evidence for a novel mechanism underlying the oncogenic effects of secondary bile acids.  相似文献   

20.
Geminin is a potent inhibitor of origin assembly and re-replication in multicellular eukaryotes and is a negative regulator of DNA replication during the cell cycle. Thus, it was proposed as an inhibitor of cell proliferation and as a potential tumor suppressor gene. However, the protein was found specifically expressed in proliferating lymphocytes and epithelial cells and up-regulated in several malignancies. Therefore, geminin is now regarded as an oncogene but its role in tumor development remains unknown. In this study, we evaluated by Western blot analysis the expression of geminin in a series of human cancer cell lines of various histogenetic origin and in a series of human primary colon, rectal, and breast cancers. Expression of geminin was variable in different cell lines and not related to the expression level of the corresponding mRNA. Moreover, geminin was expressed at higher level in 56% and 58% of colon and rectal cancers, respectively, compared with the corresponding adjacent normal mucosa. A high expression of geminin was also detected by immunohistochemistry in 60% of human primary breast cancers. We also transfected a full-length geminin cDNA in a human non-tumorigenic and a cancer breast cell lines and obtained derivatives expressing high levels of the protein. Geminin overexpression stimulated cell cycle progression and proliferation in both normal and cancer cells and increased the anchorage--independent growth of breast cancer cells. These results demonstrate that expression of geminin is frequently deregulated in tumor cells and might play an important role in the regulation of cell growth in both normal and malignant cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号