首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The localization of adenylate cyclase activity in the fungiform,foliate and circumvallate papillae of rats, rabbits, cats anddogs was determined histochemically using an incubation mediumwith a high pH. Light-microscopic study showed that adenylatecyclase activity is localized not only at the apex of tastebuds but also in other tissues, such as the von Ebner's glandsand the blood vessels or capillaries. The adenylate cyclaseactivity at the apex of taste buds was detectable in all thetaste papillae of rats, rabbits, cats and dogs except for thefungiform papillae of rabbits, though the amount of reactionproduct varied in different papillae. Electron-microscopic studyshowed that the number and density, as well as the size, ofsmall round-shaped electron-dense granules caused by the precipitationof lead with imidodiphosphate at the apex of taste buds arelow in the circumvallate papillae of cats compared with thosein the foliate papillae of rabbits. This may explain the resultthat the amount of reaction product varied in different papillae.  相似文献   

2.
Cyclic AMP content, adenylate cyclase (EC 4.6.1.1) activity and phosphodiesterase I (EC 3.1.4.1) activity of the hind leg skeletal muscle and cardiac muscle in 60- and 150-day-old normal and myopathic (UM-X7.1) hamsters were examined. In 60-day-old myopathic animals, cardiac cyclic AMP levels were higher and phosphodiesterase I activity was lower, without any changes in the basal adenylate cyclase activity, whereas in 150-day-old myopathic hamsters, cardiac cyclic AMP and basal adenylate cyclase activity were lower, without any changes in the homogenate phosphodiesterase I activity. On the other hand, basal adenylate cyclase and phosphodiesterase I activities in the skeletal muscle homogenate from 60- and 150-day-old myopathic animals were not different from the normal values but the skeletal muscle cyclic AMP levels were significantly less in 60-day-old myopathic hamsters only. The plasma cyclic AMP levels in 60-day-old myopathic hamsters, unlike 150-day-old myopathic animals, were higher than the normal. Although these results reveal differences in myopathic cardiac and skeletal muscles, it is concluded that changes in adenylate cyclase-cyclic AMP system in myopathy are dependent upon the degree of disease.  相似文献   

3.
In order to clarify the role of the system that generates and degrades cyclic AMP during the initiation of motility of trout sperm, short-term changes in levels of intraspermatozoal cyclic AMP, adenylate cyclase, and phosphodiesterase were measured. Levels of cyclic AMP and the activity of adenylate cyclase increased and reached a maximum level 1 sec after transfer of sperm to K+-free medium, where they became motile, and then decreased rapidly. However, there were no changes in either parameter in sperm which remained immotile in K+-rich medium. In addition, an increase in the activity of phosphodiesterase was observed 4 sec later than the increase in levels of cyclic AMP and adenylate cyclase. These findings suggest that a very rapid change in the level of intracellular cyclic AMP occurs within 1 sec, at the moment of spawning, by the activation of adenylate cyclase and phosphodiesterase, and regulates the initiation of trout sperm motility.  相似文献   

4.
1. The cyclic AMP phosphodiesterase in homogenates of the submaxillary gland and pancreas was found to be associated mainly with the 300,000 times g supernatant fraction. A Lineweaver-Burk plot showed a high-affinity (Km app. = 1.6 muM) and a low-affinity (Km app. greater than 100muM) component for the cyclic AMP substrate. The enzyme was magnesium dependent, and strongly inhibited by papaverine, theophylline and caffeine. Cyclic GMP inhibited cyclic AMP phosphodiesterase, but only in concentrations greatly exceeding that of the cyclic AMP. Calcium did not alter the activity of the enzyme. The activity of the submaxillary cyclic AMP phosphodiesterase was not influenced by noradrenaline, dopamine, histamine, 5-hydroxytryptamine or gamma-amino butyric acid, and that of the pancreatic enzyme by acetylcholine, pancreozymin or secretin. 2. Adenylate cyclases from guinea-pig submaxillary gland and cat pancreas are particulate enzymes. The highest specific activity was recovered from the 1500 times g pellet. Guineo-pig submaxillary adenylate cyclase was activated by fluoride, noradrenaline, isoprenaline and adrenaline. The noradrenaline activation was blocked by the beta-adrenoceptor blocker, propranolol, but not by the alphs-adrenoceptor blocker, phentolamine. Neither acetylcholine nor carbachol had any effect on the adenylate cyclase activity. The apparent Km value for the 10- minus 4 M noradrenaline activated adenylate cyclase activity was completely aboliched by 5 mM calcium. Cat pancreatic adenylate cyclase was clearly and consistently activated by secretin, but not by pancreozymin or carbachol.  相似文献   

5.
Salivary-gland homogenates contain 5-hydroxytryptamine-stimulated adenylate cyclase. Half-maximal stimulation was obtained with 0.1 microM-5-hydroxytryptamine in the presence of added guanine nucleotides. Gramine antagonized the stimulation of cyclase caused by 5-hydroxytryptamine. In the presence of hormone, guanosine 5'-[gamma-thio]triphosphate produced a marked activation of adenylate cyclase activity. Stimulation of adenylate cyclase by forskolin or fluoride did not require the addition of guanine nucleotides or hormone. In the presence of EGTA, Ca2+ produced a biphasic activation of cyclase activity. Ca2+ at 1-100 microM increased activity, whereas 2000 microM-Ca2+ inhibited cyclase activity. The neuroleptic drugs trifluoperazine and chlorpromazine non-specifically inhibited adenylate cyclase activity even in the absence of Ca2+. The cyclic AMP phosphodiesterase activity in homogenates was not affected by Ca2+ or exogenous calmodulin. This enzyme was also inhibited by trifluoperazine in the absence of Ca2+. These results indicate that Ca2+ elevates adenylate cyclase activity, but had no effect on cyclic AMP phosphodiesterase of salivary-gland homogenates.  相似文献   

6.
Treatment of cultured SV40-transformed normal rat kidney cells with the drug, 2-pyridine carboxylic acid, results in a pronounced potentiation in the ability of isoproterenol, prostaglandin E1, and cholera toxin to elevate cyclic AMP levels. With isoproterenol, the initial rate of cyclic AMP accumulation and the maximum cyclic AMP attainable are increased, and also the time of maximum cyclic AMP is prolonged. GTP-dependent adenylate cyclase activities are potentiated in crude membranes from the treated cells, but no evidence for alterations in cyclic nucleotide phosphodiesterase or release of cyclic AMP into the medium could be demonstrated. Results show that augmented adenylate cyclase activity alone, without changes in phosphodiesterase, can lead to dramatic alterations in cyclic AMP accumulation in response to cyclase agonists.  相似文献   

7.
The concentration of adenosine 3',5'-monophosphate (cyclic AMP) and the activity of adenylate cyclase were determined for the first time in conjuncation with cyclic 3',5'-nucleotide phosphodiesterase (phosphodiesterase) during the growth cycle of Tetrahymena pyriformis. High levels of cyclic AMP observed during early exponential and late stationary phases were associated with elevated adenylate cyclase and decreased phosphodiesterase activities. Adenylate cyclase and cyclic AMP were decreased and phosphodiesterase was increased in cells grown in glucose-supplemented medium. In contrast to findings in mammalian liver, cyclic AMP was decreased during active gluconeogenesis in Tetrahymena. This suggests a different modulation of carbohydrate metabolism in the two species. The results illustrate that both the content of cyclic AMP and its action as a regulatory agent in Tetrahymena are uniquely suited to the metabolism of this organism.  相似文献   

8.
The level of adenosine 3',5'-monophosphate (cyclic AMP) in the eggs of the sea urchin, Anthocidaris crassispina, was found to change periodically after fertilization. The minimum and maximum levels of cyclic AMP were 1.0 X 10(-7)M and 1.5 X 10(-6)M, respectively. The activity of adenylate cyclase in a 105 000 X g precipitate reached a plateau at 20 min after fertilization and stayed constant for at least 2 h. It was also found that 1.0 mM CaCl2 increased the activity of adenylate cyclase in the same precipitate from unfertilized eggs. In contrast, phosphodiesterase activity changed periodically and correlated with cyclic AMP levels in the eggs. Up to a concentration of 1.5 X 10(-6)M cyclic AMP, phosphodiesterase activity was low, but it became activated when the level of cyclic AMP rose beyond this level. These results indicate that the change in the intracellular level of cyclic AMP is regulated mainly by the change in phosphodiesterase activity.  相似文献   

9.
The validity of using the binding-protein method for determining cyclic AMP in purified and partially purified extracts of Phaseolus tissues has been examined and confirmed. Measurement of cyclic AMP concentration by binding-protein gave similar results to those obtained by direct spectrophotometry of purified extracts. A cyclic AMP binding-protein and adenylate cyclase were demonstrated in Phaseolus extracts. Isolated intact chloroplasts were shown to possess adenylate cyclase activity but persistent cyclic AMP phosphodiesterase activity obviated quantitative assessment.  相似文献   

10.
The variations in the concentrations of intra- and extracellular cyclic AMP and in he specific activities of adenylate cyclase (EC 4.6.1.1) and cyclic AMP phosphodiesterase (EC 3.1.4.17) have been monitored in synchronized cultures of Nocardia restricta, a prokaryote belonging to the group of Actinomycetes. At the beginning of the cell cycle, during a first period of RNA and protein synthesis, there is an increasing synthesis of adenylate cyclase which can be suppressed in the presence of chloramphenicol or rifampicin. Simultaneously, the specific activity of cyclic AMP phosphodiesterase decreases and the concentrations of intra- and extracellular cyclic AMP rise. After the end of DNA replication, during a second period of RNA and protein synthesis, the specific activity of cyclic AMP phosphodiesterase increases; during the same time, the specific activity of adenylate cyclase and the level of intracellular cyclic AMP drop. It appears that the overall metabolism of cyclic AMP is coordinated so that the cyclic AMP level will be high at the beginning of DNA replication and will fall thereafter. The results are discussed in comparison with known data about the variations of cyclic AMP during the cell cycle of mammalian cells in cultures.  相似文献   

11.
12.
The phorbol ester TPA (12-O-tetradecanoyl phorbol-13-acetate) causes a dose-dependent inhibition of the glucagon-stimulated adenylate cyclase activity expressed in plasma membranes isolated from TPA-treated hepatocytes. However, no observable inhibitory effect of TPA on adenylate cyclase activity was observed in cells which had been exposed to glucagon for 5 min, prior to isolation, to desensitise adenylate cyclase. The degree of inhibition of adenylate cyclase elicited by both glucagon desensitisation and TPA treatment of hepatocytes was identical. Pre-treatment of hepatocytes with TPA was also found to prevent glucagon from blocking insulin's activation of the peripheral plasma membrane cyclic AMP phosphodiesterase in intact hepatocytes. TPA treatment also inhibited the ability of cholera toxin to activate the peripheral cyclic AMP phosphodiesterase in intact hepatocytes. It is suggested that in these particular instances TPA and glucagon elicit mutually exclusive processes rather than TPA mimicking glucagon desensitisation per se.  相似文献   

13.
The ability of glucagon (10 nM) to increase hepatocyte intracellular cyclic AMP concentrations was reduced markedly by the tumour-promoting phorbol ester TPA (12-O-tetradecanoyl phorbol-13-acetate). The half-maximal inhibitory effect occurred at 0.14 ng/ml TPA. This action occurred in the presence of the cyclic AMP phosphodiesterase inhibitor isobutylmethylxanthine (1 mM) indicating that TPA inhibited glucagon-stimulated adenylate cyclase activity. TPA did not affect either the binding of glucagon to its receptor or ATP concentrations within the cell. TPA did inhibit the increase in intracellular cyclic AMP initiated by the action of cholera toxin (1 microgram/ml) under conditions where phosphodiesterase activity was blocked. TPA did not inhibit glucagon-stimulated adenylate cyclase activity in a broken plasma membrane preparation unless Ca2+, phosphatidylserine and ATP were also present. It is suggested that TPA exerts its inhibitory effect on adenylate cyclase through the action of protein kinase C. This action is presumed to be exerted at the point of regulation of adenylate cyclase by guanine nucleotides.  相似文献   

14.
Adenylate cyclase and cyclic AMP phosphodiesterase activitiesin the foliate papillae of rabbit were studied by means of electronmicroscopic histochemistry using slightly modified proceduresof Howell and Whitfield (1972) and Florendo et al. (1971), respectively.The reaction products of both the enzyme activities were localizedon the surface membrane of the microvilli of the type I tastebud cells (dark cells). The results suggest that a cyclic nucleotidesystem is involved in the transduction process of taste organs.  相似文献   

15.
In isolated guinea pig gastric mucous and enriched parietal cells it was tested whether or not cyclic AMP in response to histamine stimulation might reach concentrations sufficiently high to activate an intracellular cyclic AMP-dependent protein kinase and thereby mediate the acid response. Although histamine stimulated parietal cell adenylate cyclase to a greater extent than mucous cell adenylate cyclase, cyclic AMP levels in response to maximal histamine stimulation reached higher levels in mucous than in parietal cells. This had to be attributed to a five times higher phosphodiesterase activity in parietal cell than in mucous cell populations. In the absence of the phosphodiesterase inhibitor isobutylmethylxanthine exposure of the cells to histamine only in mucous cells produced an increase in cyclic AMP-dependent protein kinase activity ratio, but not in parietal cells. Dibutyryl-cyclic AMP induced cyclic AMP accumulation in parietal cell populations was compared to dibutyryl-cyclic AMP induced H+ secretion, as measured by 14C-aminopyrine uptake. A maximal acid response was associated with an intracellular cyclic AMP level of approximately 300 pmol/10(6) cells, which was never reached by maximal histamine stimulation even not in the presence of the phosphodiesterase inhibitor. It is concluded that activation of the parietal cell cyclic AMP-dependent protein kinase is one way for stimulating H+ secretion, but that the acid response elicited by histamine requires another intracellular pathway.  相似文献   

16.
Treatment of hepatocytes with islet activating protein (pertussis toxin) from Bordetella pertussis blocked the ability of insulin to inhibit adenylate cyclase activity both in broken plasma membranes and in intact hepatocytes. Such treatment of intact hepatocytes with pertussis toxin did not prevent insulin from activating the peripheral plasma membrane cyclic AMP phosphodiesterase although it did inhibit the ability of insulin to activate the 'dense-vesicle' cyclic AMP phosphodiesterase. The ability of glucagon pretreatment of hepatocytes to block insulin's activation of the plasma membrane cyclic AMP phosphodiesterase was abolished in pertussis toxin-treated hepatocytes. It is suggested that the ability of insulin to manipulate cyclic AMP concentrations by inhibiting adenylate cyclase and activating the plasma membrane and 'dense-vesicle' cyclic AMP phosphodiesterases involves interactions with the guanine nucleotide regulatory protein system occurring in liver plasma membranes.  相似文献   

17.
Particulate cell fractions of mycelium of Mucor rouxii contain adenylate cyclase activity which can be partially solubilized by 2% Lubrol PX. The enzyme requires Mn2+ and its activity is not modified by NaF or guanosine nucleotides. Mycelial extracts also contain cyclic adenosine 3′:5′-monophosphate phosphodiesterase activity, 60% of which is soluble. This activity shows characteristic low Km (1 μm) for cyclic AMP and does not hydrolyze cyclic guanosine 3′:5′-monophosphate. It requires Mn2+ ions for maximal activity and is not inhibited by methylxanthines or activated by imidazole. Both enzymatic activities vary during the aerobic life cycle of the fungus. The spores have the highest levels of adenylate cyclase and cAMP phosphodiesterase, which decrease during the aerobic development. At the round cell stage, phosphodiesterase activity reaches 40% of the activity of the spores and varies only slightly thereafter. At this stage the specific activity of adenylate cyclase is 25% of the activity of ungerminated spores, and from this stage on, the activity increases up to the end of the logarithmic phase. Intracellular levels of cyclic AMP have been measured during aerobic germination. The variations of the intracellular level are tentatively explained by unequal variations in the activities of adenylate cyclase and cyclic AMP phosphodiesterase. A continuous increase of the extracellular cyclic AMP level during aerobic development has also been found, which cannot be accounted for solely by variations in the cyclase and diesterase activities.  相似文献   

18.
Most tissues contain multiple forms of cyclic nucleotide phosphodiesterases (3':5'-cyclic-nucleotide 5' nucleotidohydrolase, EC 3.1.4.17). Consequently, in most, if not in all, tissues, substrate-velocity curves deviate from Michaelian kinetics and exhibit an apparent negative co-operativity. We have studied the possible theoretical consequences of this property on the quantitative features of cyclic AMP accumulation in response to activation of adenylate cyclase. Negative co-operativity of phosphodiesterases tends to generate a "positively co-operative" cyclic AMP accumulation curve. It amplifies the stimulation of cyclic AMP accumulation as compared with the stimulation of cyclic AMP synthesis. It enhances the sensitivity of cyclic AMP accumulation to slight variation of phosphodiesterase maximal velocity. It tends to shift the cyclic AMP accumulation curve to higher concentrations of stimulator as compared with the adenylate cyclase activation curve. This accounts for much of the data in the literature of hormonal effects on phosphodiesterase activity. It shows that the characteristics of cyclic nucleotide phosphodiesterases are as important as those of adenylate cyclase in determining the response of the system.  相似文献   

19.
Glucagon (10nM) prevented insulin (10nM) from activating the plasma-membrane cyclic AMP phosphodiesterase. This effect of glucagon was abolished by either PIA [N6-(phenylisopropyl)adenosine] (100nM) or adenosine (10 microM). Neither PIA nor adenosine exerted any effect on the plasma-membrane cyclic AMP phosphodiesterase activity either alone or in combination with glucagon. Furthermore, PIA and adenosine did not potentiate the action of insulin in activating this enzyme. 2-Deoxy-adenosine (10 microM) was ineffective in mimicking the action of adenosine. The effect of PIA in preventing the blockade by glucagon of insulin's action was inhibited by low concentrations of theophylline. Half-maximal effects of PIA were elicited at around 6nM-PIA. It is suggested that adenosine is exerting its effects on this system through an R-type receptor. This receptor does not appear to be directly coupled to adenylate cyclase, however, as PIA did not affect either the activity of adenylate cyclase or intracellular cyclic AMP concentrations. Insulin's activation of the plasma-membrane cyclic AMP phosphodiesterase, in the presence of both glucagon and PIA, was augmented by increasing intracellular cyclic AMP concentrations with either dibutyryl cyclic AMP or the cyclic AMP phosphodiesterase inhibitor Ro-20-1724. PIA also inhibited the ability of glucagon to uncouple (desensitize) adenylate cyclase activity in intact hepatocytes. This occurred at a half-maximal concentration of around 3 microM-PIA. However, if insulin (10 nM) was also present in the incubation medium, PIA exerted its action at a much lower concentration, with a half-maximal effect occurring at around 4 nM.  相似文献   

20.
The variations in the concentrations of intra- and extracellular cyclic AMP and in the specific activities of adenylate cyclase (EC 4.6.1.1) and cyclic AMP phosphodiesterase (EC 3.1.4.17) have been monitored in synchronized culture of Nocardia restricta, a prokaryote belonging to the group of Actinomycetes. At the beginning of the cell cycel, during a first period of RNA and protein synthesis, there is an increasing synthesis of adenylate cyclase which can be suppressed in the presence of chloramphenicol or rifampicin. Simultaneously, the specific activity of cyclic AMP phosphodiesterase decreases and the concentrations of intra- and extracellular cyclic AMP rise. After the end of DNA replication, during a second period of RNA and protein synthesis, the specific activity of cyclic AMP phosphodiesterase increases; during the same time, the specific activity of adenylate cyclase and the level of intracellular cyclic AMP drop. It appears that the overall metabolism of cyclic AMP is coordinated so that the cyclic AMP level will be high at the beginning of DNA replication and will fall thereafter. The results are discussed in comparison with known data about the variations of cyclic AMP during the cell cycle of mammalian cells in cultures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号