首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
椎间盘(IVD)退变是一种常见的病理状态,保守治疗往往失败,IVD变性的患者最后往往需要手术干预。已经提出的几种治疗方案中,只有椎间盘切除术和关节融合术被证明可以达到预料的效果。生物治疗的目的是预防和控制椎间盘变性,改善椎间盘的功能、髓核和纤维环细胞的合成代谢和修复能力,并抑制基质降解。目前,临床应用仍处于起步阶段。间充质干细胞和基因治疗在预防和治疗IVD变性的作用还需要进一步的研究。最近的研究向我们展示了一种新的保护椎间盘的结构和功能的治疗策略:间充质干细胞(MSCs)移植,尤其是骨髓间充质干细胞(BM-MSCs)。而了解MSCs是否可以以及如何在有排拆性的退化的椎间盘中存活并繁殖是十分重要的。因此,本文着重讨论内源性蛋白酶、细胞因子、低氧、低营养、机械负荷及渗透压的调节对移植的MSCs的影响。  相似文献   

2.
Programmed cell death in intervertebral disc degeneration   总被引:6,自引:0,他引:6  
Intervertebral disc (IVD) degeneration is largely a process of destruction and failure of the extracellular matrix (ECM), and symptomatic IVD degeneration is thought to be one of the leading causes of morbidity or life quality deterioration in the elderly. To date, however, the mechanism of IVD degeneration is still not fully understood. Cellular loss from cell death in the process of IVD degeneration has long been confirmed and considered to contribute to ECM degradation, but the causes and the manners of IVD cell death remain unclear. Programmed cell death (PCD) is executed by an active cellular process and is extensively involved in many physiological and pathological processes, including embryonic development and human degenerative diseases. Thus, the relationship between PCD and IVD degeneration has become a new research focus of interest in recent years. By reviewing the available literature concentrated on PCD in IVD and discussing the methodology of detecting PCD in IVD cells, its inducing factors, the relationship of cell death to ECM degradation, and the potential therapy for IVD degeneration by modulation of PCD, we conclude that IVD cells undergo PCD via different signal transduction pathways in response to different stimuli, that PCD may play a role in the process of IVD degeneration, and that modulation of PCD might be a potential therapeutic strategy for IVD degeneration.  相似文献   

3.
4.
胎儿肺脏来源间充质干细胞的鉴定与损伤修复的实验研究   总被引:2,自引:0,他引:2  
目的 :为研究胎儿肺脏来源间充质干细胞的生物学性状 ,表型和多向分化能力。方法 :取胎龄为 4~ 5个月水囊引产胎儿 ,将肺脏细胞在SF(含 2 %FBS)培养基中培养。测定生长曲线、利用流式细胞仪对培养细胞进行表型测定 ,细胞周期分析 ,体外诱导分化实验。NOD SCID鼠放射损伤后 ,尾静脉输入经PKH2 6染色的间充质干细胞 ,两个月后检测外源细胞在肺脏的定植情况。结果 :从胎儿肺脏可培养出间充质干细胞 ,并可诱导成骨、软骨和脂肪细胞分化 ;移植两个月后可以检测到外源细胞在肺脏的定植。结论 :从胎儿肺脏可分离培养出间充质干细胞 ,在体外有效扩增且保持其低分化状态 ;间充质干细胞可以在肺脏长时间定植。  相似文献   

5.
自然存在的间充质干细胞数量少,限制了其研究应用。依靠自主发明的间充质干细胞过滤分离器,分离制备了人羊膜间充质干细胞,并对制备的干细胞进行了三维培养扩增。结果表明,制备的干细胞形态长势良好,并能诱导分化为类胰岛样组织。与常规方法相比,干细胞收获率提高了8倍以上,且细胞活性状态良好。间充质干细胞过滤分离器可以批量制备高质量的各种间充质干细胞,有利于高效率地建设各种间充质干细胞库,以促进间充质干细胞的研究应用。  相似文献   

6.
在海藻酸钠凝胶上诱导骨髓间充质干细胞分化为成骨细胞   总被引:5,自引:0,他引:5  
通过在海藻酸钠凝胶上诱导bMSCs向成骨细胞分化,探讨其对骨髓间充质干细胞(bone mesenchymal stem cells, bMSCs)的生物学效应。采用MTT、甲苯胺蓝染色、von Kossa染色和RT-PCR分别检测细胞的增殖、生长形态、诱导后细胞的钙化结节和成骨相关基因的表达。实验组bMSCs生长状况良好、细胞增殖迅速,与对照组的增殖无差异;bMSCs成集落样生长明显,集落中央细胞重叠生长形成钙化结节;培养至12d,实验组和对照组的成骨相关基因,包括碱性磷酸酶、I型胶原和骨钙素,均为阳性表达,但实验组的表达量高于对照组。海藻酸钠凝胶能够促进bMSCs向成骨细胞的分化,是良好的骨组织工程支架材料。  相似文献   

7.
糖尿病是目前困扰人类健康的第三大杀手。胰岛移植作为糖尿病的一种有效方法早已得到公认,但是胰岛供体的缺乏和移植排斥反应的存在限制了胰岛移植的临床应用[1]。胰岛素替代疗法是目前治疗糖尿病最有效的方法。然而这种方法也有许多缺陷。间充质干细胞(mesenchymal stem cell,MSC)具有多向分化潜能的均质性细胞,具有供源丰富、易于获得、有自由供体、避免免疫排斥等优点,因而是较为理想的胰岛B细胞来源[2]。近年来,众多实验研究表明了通过诱导MSC分化为胰岛B细胞治疗糖尿病的可能性。  相似文献   

8.
Guo X  Li YL 《生理科学进展》2005,36(3):204-208
间充质干细胞(mesenchymalstemcells,MSCs)主要存在于骨髓中,是多潜能干细胞,在脐血、外周血、脂肪、皮肤等多种组织中也相继分离出MSCs。MSCs具有独特的免疫特性,在异种异体环境内长期存在,使其临床应用前景更为广泛。目前,MSCs的分离培养、诱导分化及鉴定体系已趋成熟,理论上可分化为所有中胚层来源的细胞,内皮细胞来源于中胚层,因此MSCs具有分化为内皮细胞的可能性。本文对MSCs内皮分化意义和细胞学基础及其新近的研究进展作一综述。  相似文献   

9.
Neurogenic differentiation of murine and human adipose-derived stromal cells   总被引:70,自引:0,他引:70  
The identification of cells capable of neuronal differentiation has great potential for cellular therapies. We examined whether murine and human adipose-derived adult stem (ADAS) cells can be induced to undergo neuronal differentiation. We isolated ADAS cells from the adipose tissue of adult BalbC mice or from human liposuction tissue and induced neuronal differentiation with valproic acid, butylated hydroxyanisole, insulin, and hydrocortisone. As early as 1-3 h after neuronal induction, the phenotype of ADAS cells changed towards neuronal morphology. Following neuronal induction, muADAS cells displayed immunocytochemical staining for GFAP, nestin and NeuN and huADAS cells displayed staining for intermediate filament M, nestin, and NeuN. Following neuronal induction of murine and human ADAS cells, Western blot analysis confirmed GFAP, nestin, and NeuN protein expression. Pretreatment with EGF and basic FGF augmented the neuronal differentiation of huADAS cells. The neuronal differentiation of stromal cells from adipose tissue has broad biological and clinical implications.  相似文献   

10.
    
Mesenchymal stem cells (MSCs) are a population of primary and non-specialized cells, which can be isolated from various tissues. Currently, MSCs are key players in cellular therapy and regenerative medicine. However, the possibility of using MSCs in the treatment of many diseases needs to be preceded, though, by in-depth analysis of their properties, especially by determining the mechanism of tissue homing as well as the mechanism, due to which cells contribute to tissue regeneration. This review is intended to present information on recent findings regarding the mechanism of recruitment and tissue homing by MSCs and discuss current hypotheses for how MSCs can reach target tissues.  相似文献   

11.

Background

OSA increases atrial fibrillation (AF) risk and is associated with poor AF treatment outcomes. However, a causal association is not firmly established and the mechanisms involved are poorly understood. The aims of this work were to determine whether chronic obstructive sleep apnea (OSA) induces an atrial pro-arrhythmogenic substrate and to explore whether mesenchymal stem cells (MSC) are able to prevent it in a rat model of OSA.

Methods

A custom-made setup was used to mimic recurrent OSA-like airway obstructions in rats. OSA-rats (n = 16) were subjected to 15-second obstructions, 60 apneas/hour, 6 hours/day during 21 consecutive days. Sham rats (n = 14) were placed in the setup but no obstructions were applied. In a second series of rats, MSC were administered to OSA-rats and saline to Sham-rats. Myocardial collagen deposit was evaluated in Picrosirius-red stained samples. mRNA expression of genes involved in collagen turnover, inflammation and oxidative stress were quantified by real time PCR. MMP-2 protein levels were quantified by Western Blot.

Results

A 43% greater interstitial collagen fraction was observed in the atria, but not in the ventricles, of OSA-rats compared to Sham-rats (Sham 8.32 ± 0.46% vs OSA 11.90 ± 0.59%, P < 0.01). Angiotensin-I Converting Enzyme (ACE) and Interleukin 6 (IL-6) expression were significantly increased in both atria, while Matrix Metalloproteinase-2 (MMP-2) expression was decreased. MSC administration blunted OSA-induced atrial fibrosis (Sham + Saline 8.39 ± 0.56% vs OSA + MSC 9.57 ± 0.31%, P = 0.11), as well as changes in MMP-2 and IL-6 expression. Interleukin 1-β (IL-1β) plasma concentration correlated to atrial but not ventricular fibrosis. Notably, a 2.5-fold increase in IL-1β plasma levels was observed in the OSA group, which was prevented in rats receiving MSC.

Conclusions

OSA induces selective atrial fibrosis in a chronic murine model, which can be mediated in part by the systemic and local inflammation and by decreased collagen-degradation. MSCs transplantation prevents atrial fibrosis, suggesting that these stem cells could counterbalance inflammation in OSA.  相似文献   

12.
    
Multipotent mesenchymal stromal cells [also known as mesenchymal stem cells(MSCs)] are currently being studied as a cell-based treatment for inflammatory disorders. Experimental animal models of human immune-mediated diseases have been instrumental in establishing their immunosuppressive properties. In this review, we summarize recent studies examining the effectiveness of MSCs as immunotherapy in several widely-studied animal models, including type 1 diabetes, experimental autoimmune arthritis, experimental autoimmune encephalomyelitis, inflammatory bowel disease, graft-vs-host disease, and systemic lupus erythematosus. In addition, we discuss mechanisms identified by which MSCs mediate immune suppression in specific disease models, and potential sources of functional variability of MSCs between studies.  相似文献   

13.
目的:探讨缺氧复氧损伤环境下Ghrelin对脂肪来源的间充质干细胞(AD-MSCs)的保护作用,以寻求AD-MSCs心肌内移植的有利因素。方法:采用胶原酶消化法分离小鼠AD-MSCs,流式细胞术鉴定其标志。建立缺氧/复氧细胞模型,分3组:①对照组;②缺氧/复氧组(H/R);③H/R+Ghrelin(浓度分别为10-9、10-8、10-7mol/L)干预组。MTT法测定各组细胞增殖,TUNEL法检测细胞凋亡。结果:流式细胞术结果显示AD-MSCs CD44及CD90阳性,CD34、CD45阴性。AD-MSCs MTT分析显示在缺氧环境中,Ghrelin相比于单纯H/R组能够显著促进AD-MSCs的存活与增殖,并抑制其凋亡(P〈0.05)。结论:Ghrelin可以明显提高缺氧复氧环境下AD-MSCs的生存与增殖,抑制缺氧诱导的凋亡发生,有望为心肌梗死的干细胞移植治疗创造新的有利因素。  相似文献   

14.
Organismal aging is impacted by the deterioration of tissue turnover mechanisms due, in part, to the decline in stem cell function. This decline can be related to mitochondrial dysfunction and underlying energetic defects that, in concert, help drive biological aging. Thus, mitochondria have been described as a potential interventional target to hinder the loss of stem cell robustness, and subsequently, decrease tissue turnover decline and age-associated pathologies. In this review, we focused our analysis on the most recent literature on mitochondria and stem cell aging and discuss the potential benefits of targeting mitochondria in preventing stem cell dysfunction and thus influencing aging.  相似文献   

15.
目的 探讨大鼠骨髓间充质干细胞(mesenchymal stem cells,MSC)分离、纯化和体外诱导分化为脂肪细胞。方法 用密度梯度离心结合贴壁培养、定期换液,分离纯化出生大鼠MSC,传代扩增,并用免疫细胞化学法鉴定大鼠MSC的表面抗原。含地塞米松、3-异丁基-1-甲基黄嘌呤和胰岛素的培养液诱导MSC分化后,油红O染色鉴定。结果 大鼠MSC体外扩增10代以上,稳定表达CD44、CD54、CD106。油红O染色显示诱导后,71.2%有脂滴积聚。结论 从大鼠骨髓分离、纯化、体外诱导培养MSC,可定向分化为脂肪细胞表型。  相似文献   

16.
Shear strain has been implicated as an initiator of intervertebral disc anulus failure, however a clear, multi-scale picture of how shear strain affects the tissue microstructure has been lacking. The purposes of this study were to measure microscale deformations in anulus tissue under dynamic shear in two orie ntations, and to determine the role of elastin in regulating these deformations. Bovine AF tissue was simultaneously shear loaded and imaged using confocal microscopy following either a buffer or elastase treatment. Digital image analysis was used to track through time local shear strains in specimens sheared transversely, and stretch and rotation of collagen fiber bundles in specimens sheared circumferentially. The results of this study suggest that sliding does not occur between AF plies under shear, and that interlamellar connections are governed by collagen and fibrilin rather than elastin. The transverse shear modulus was found to be approximately 1.6 times as high in plies the direction of the collagen fibers as in plies across them. Under physiological levels of in-plane shear, fiber bundles stretched and re-oriented linearly. Elastin was found to primarily stiffen plies transversely. We conclude that alterations in the elastic fiber network, as found with IVD herniation and degeneration, can therefore be expected to significantly influence the AF response to shear making it more susceptible to micro failure under bending or torsion loading.  相似文献   

17.
Seshi B 《Proteomics》2006,6(19):5169-5182
  相似文献   

18.
    
Mesenchymal stromal/stem cells (MSCs) have shown significant therapeutic potential, and have therefore been extensively investigated in preclinical studies of regenerative medicine. However, while MSCs have been shown to be safe as a cellular treatment, they have usually been therapeutically ineffective in human diseases. In fact, in many clinical trials it has been shown that MSCs have moderate or poor efficacy. This inefficacy appears to be ascribable primarily to the heterogeneity of MSCs. Recently, specific priming strategies have been used to improve the therapeutic properties of MSCs. In this review, we explore the literature on the principal priming approaches used to enhance the preclinical inefficacy of MSCs. We found that different priming strategies have been used to direct the therapeutic effects of MSCs toward specific pathological processes. Particularly, while hypoxic priming can be used primarily for the treatment of acute diseases, inflammatory cytokines can be used mainly to prime MSCs in order to treat chronic immune-related disorders. The shift in approach from regeneration to inflammation implies, in MSCs, a shift in the production of functional factors that stimulate regenerative or anti-inflammatory pathways. The opportunity to fine-tune the therapeutic properties of MSCs through different priming strategies could conceivably pave the way for optimizing their therapeutic potential.  相似文献   

19.
Intervertebral disc degeneration is one major source of low back pain, which because of its complex multifactorial nature renders the treatment challenging and thus necessitates extensive research. Experimental animal models have proven valuable in improving our understanding of degenerative processes and potentially promising therapies. Currently, the sheep is the most frequently used large animal in vivo model in intervertebral disc research. However, despite its undoubted value for investigations of the complex biological and cellular aspects, to date, it is unclear whether the sheep is also suited to study the mechanical aspects of disc degeneration in humans.A parametric finite element (FE) model of the L4–5 spinal motion segment was developed. Using this model, the geometry and the material properties of both the human and the ovine spinal segment as well as different appearances of disc degeneration can be depicted. Under pure and combined loads, it was investigated whether degenerative changes to both the human and the ovine model equivalent caused the same mechanical response.Different patterns of degeneration resulted in large variations in the ranges of motion, intradiscal pressure, ligament and facet loads. In the human, but not in the ovine model, all these results differed significantly between different degrees of degeneration.This FE model study highlighted possible differences in the mechanical response to disc degeneration between human and ovine intervertebral discs and indicates the necessity of further, more detailed, investigations.  相似文献   

20.
    
Coronavirus disease 2019 (COVID-19) is an acute respiratory infection caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection typically presents with fever and respiratory symptoms, which can progress to severe respiratory distress syndrome and multiple organ failure. In severe cases, these complications may even lead to death. One of the causes of COVID-19 deaths is the cytokine storm caused by an overactive immune response. Therefore, suppressing the overactive immune response may be an effective strategy for treating COVID-19. Mesenchymal stem cells (MSCs) and their derived exosomes (MSCs-Exo) have potent homing abilities, immunomodulatory functions, regenerative repair, and antifibrotic effects, promising an effective tool in treating COVID-19. In this paper, we review the main mechanisms and potential roles of MSCs and MSCs-Exo in treating COVID-19. We also summarize relevant recent clinical trials, including the source of cells, the dosage and the efficacy, and the clinical value and problems in this field, providing more theoretical references for the clinical use of MSCs and MSCs-Exo in the treatment of COVID-19.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号