首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A M Segall  S D Goodman    H A Nash 《The EMBO journal》1994,13(19):4536-4548
Integration host factor (IHF) is required in lambda site-specific recombination to deform the DNA substrates into conformations active for recombination. HU, a homolog of IHF, can also deform DNA but binds without any apparent sequence specificity. We demonstrate that HU can replace IHF by cooperating with the recombinase protein, integrase, to generate a stable and specific complex with electrophoretic mobility and biochemical activity very close to the complex formed by IHF and integrase. The eukaryotic HMG1 and HMG2 proteins differ entirely in structure from HU but they also bind DNA non-specifically and induce or stabilize deformed DNA. We show that the eukaryotic HMG1 and HMG2 proteins cooperate with integrase at least as well as does HU to make a defined structure. We also find that the eukaryotic core histone dimer H2A-H2B can replace IHF, suggesting that the histone dimer is functional outside the context of a nucleosome. HU and the HMG proteins not only contribute to the formation of stable complexes, but they can at least partially replace IHF for the integrative and excisive recombination reactions. These results, together with our analysis of nucleoprotein complexes made with damaged recombination sites, lead us to conclude that the cooperation between HU and integrase does not depend on protein-protein contacts. Rather, cooperation is manifested through building of higher order structures and depends on the capacity of the non-specific DNA binding proteins to bend DNA. While all these non-specific binding proteins appear to fulfil the same bending function, they do so with different efficiencies. This probably reflects subtle structural differences between the assembled complexes.  相似文献   

2.
The histone-like (HU) protein is one of the major nucleoid-associated proteins of the bacterial nucleoid, which shares high sequence and structural similarity with IHF but differs from the latter in DNA-specificity. Here, we perform an analysis of structural-dynamic properties of HU protein from Spiroplasma melliferum and compare its behavior in solution to that of another mycoplasmal HU from Mycoplasma gallisepticum. The high-resolution heteronuclear NMR spectroscopy was coupled with molecular-dynamics study and comparative analysis of thermal denaturation of both mycoplasmal HU proteins. We suggest that stacking interactions in two aromatic clusters in the HUSpm dimeric interface determine not only high thermal stability of the protein, but also its structural plasticity experimentally observed as slow conformational exchange. One of these two centers of stacking interactions is highly conserved among the known HU and IHF proteins. Second aromatic core described recently in IHFs and IHF-like proteins is considered as a discriminating feature of IHFs. We performed an electromobility shift assay to confirm high affinities of HUSpm to both normal and distorted dsDNA, which are the characteristics of HU protein. MD simulations of HUSpm with alanine mutations of the residues forming the non-conserved aromatic cluster demonstrate its role in dimer stabilization, as both partial and complete distortion of the cluster enhances local flexibility of HUSpm.  相似文献   

3.
Most chronic and recurrent bacterial infections involve a biofilm component, the foundation of which is the extracellular polymeric substance (EPS). Extracellular DNA (eDNA) is a conserved and key component of the EPS of pathogenic biofilms. The DNABII protein family includes integration host factor (IHF) and histone‐like protein (HU); both are present in the extracellular milieu. We have shown previously that the DNABII proteins are often found in association with eDNA and are critical for the structural integrity of bacterial communities that utilize eDNA as a matrix component. Here, we demonstrate that uropathogenic Escherichia coli (UPEC) strain UTI89 incorporates eDNA within its biofilm matrix and that the DNABII proteins are not only important for biofilm growth, but are limiting; exogenous addition of these proteins promotes biofilm formation that is dependent on eDNA. In addition, we show that both subunits of IHF, yet only one subunit of HU (HupB), are critical for UPEC biofilm development. We discuss the roles of these proteins in context of the UPEC EPS.  相似文献   

4.
HU is one of the most abundant DNA binding proteins of bacteria. Unlike IHF, integration host factor of Escherichia coli, with which HU shares many properties, including a strong sequence homology and similar predicted structure, HU seems to bind non-specifically to DNA whereas IHF binds to specific sites. In this work we compare the binding characteristics of HU and IHF to a DNA fragment containing the minimal origin of replication of E. coli (oriC) and we analyse the effect of HU on the binding capacity of IHF to this oriC fragment. We show that HU interacts randomly and non-specifically with oriC as opposed to the specific binding of IHF to this same DNA sequence. In addition, we show that HU can modulate the binding of IHF to its specific oriC site. Depending on the relative concentrations of HU and IHF, HU is able either to activate or to inhibit the binding of IHF to oriC.  相似文献   

5.
IHF and HU are small basic proteins of eubacteria that bind as homodimers to double-stranded DNA and bend the duplex to promote architectures required for gene regulation. These architectural proteins share a common alpha/beta fold but exhibit different nucleic acid binding surfaces and distinct functional roles. With respect to DNA-binding specificity, for example, IHF is sequence specific, while HU is not. We have employed Raman difference spectroscopy and gel mobility assays to characterize the molecular mechanisms underlying such differences in DNA recognition. Parallel studies of solution complexes of IHF and HU with the same DNA nonadecamer (5' --> 3' sequence: TC TAAGTAGTTGATTCATA, where the phage lambda H1 consensus sequence of IHF is underlined) show the following. (i) The structure of the targeted DNA site is altered much more dramatically by IHF than by HU binding. (ii) In the IHF complex, the structural perturbations encompass both the sugar-phosphate backbone and the bases of the consensus sequence, whereas only the DNA backbone is altered by HU binding. (iii) In the presence of excess protein, complexes of order higher than 1 dimer per duplex are detected for HU:DNA, though not for IHF:DNA. The results differentiate structural motifs of IHF:DNA and HU:DNA solution complexes, provide Raman signatures of prokaryotic sequence-specific and nonspecific recognition, and suggest that the architectural role of HU may involve the capability to recruit additional binding partners to even relatively short DNA sequences.  相似文献   

6.
The protein HU can displace the LexA repressor from its DNA-binding sites   总被引:7,自引:2,他引:5  
The major bacterial histone-like protein HU is a small, basic, dimeric protein composed of two closely related subunits. HU is involved in several processes in the bacterial cell such as the initiation of replication, transposition, gene inversion and cell division. It has been suggested that HU could introduce structural changes to the DNA which would facilitate or inhibit the binding of regulatory proteins to their specific sites. In this study we investigated the effect of HU on the binding of LexA protein, the regulator of SOS functions, to three of its specific binding sites. We show that HU can displace LexA from its binding sites on the operators of the lexA, recA and sfiA genes. The lexA operator was the most sensitive while the higher affinity sfiA operator was the least sensitive. Since HU, like its homologue IHF, probably binds DNA in the minor groove we tested the effect of distamycin, a drug which binds to the minor groove, on LexA binding. Like HU, this drug disrupted LexA–operator complexes. These results suggest that distortion of the minor groove of the lexA operators excludes the binding of the repressor to the major groove.  相似文献   

7.
IHF and HU are two heterodimeric nucleoid-associated proteins (NAP) that belong to the same protein family but interact differently with the DNA. IHF is a sequence-specific DNA-binding protein that bends the DNA by over 160°. HU is the most conserved NAP, which binds non-specifically to duplex DNA with a particular preference for targeting nicked and bent DNA. Despite their importance, the in vivo interactions of the two proteins to the DNA remain to be described at a high resolution and on a genome-wide scale. Further, the effects of these proteins on gene expression on a global scale remain contentious. Finally, the contrast between the functions of the homo- and heterodimeric forms of proteins deserves the attention of further study. Here we present a genome-scale study of HU- and IHF binding to the Escherichia coli K12 chromosome using ChIP-seq. We also perform microarray analysis of gene expression in single- and double-deletion mutants of each protein to identify their regulons. The sequence-specific binding profile of IHF encompasses ~30% of all operons, though the expression of <10% of these is affected by its deletion suggesting combinatorial control or a molecular backup. The binding profile for HU is reflective of relatively non-specific binding to the chromosome, however, with a preference for A/T-rich DNA. The HU regulon comprises highly conserved genes including those that are essential and possibly supercoiling sensitive. Finally, by performing ChIP-seq experiments, where possible, of each subunit of IHF and HU in the absence of the other subunit, we define genome-wide maps of DNA binding of the proteins in their hetero- and homodimeric forms.  相似文献   

8.
9.
10.
N Goshima  Y Inagaki  H Otaki  H Tanaka  N Hayashi  F Imamoto  Y Kano 《Gene》1992,118(1):97-102
Chimeric proteins between Escherichia coli histone-like HU and IHF were constructed by genetic engineering, in which part of the arm region was replaced by the corresponding region of IHF alpha (designated as HupANhimA) or IHF beta (HupANhimD); alternatively, an alpha-helix 2-beta 1 region was replaced by the corresponding region of IHF alpha (HupAXhimA) or IHF beta (HupAXhimD) (symbols N and X indicate NotI and XhoI junctions). These proteins were synthesized in a hupA-hupB double-deletion mutant. HupANhimA exhibited marked reduction in nonspecific DNA binding in vitro, and a drastic loss of HU activity in replicative transposition of Mu phage in vivo. HupANhimD also showed a significant reduction in the ability for DNA binding, though this protein supported Mu phage development. In contrast, the other two chimeric HU proteins showed only slight changes in nonspecific DNA-binding ability: they retained activities for transposition of Mu phage in vivo. These observations confirm that the flexible arm of HU-2, a domain proposed for DNA binding [Tanaka et al., Nature 310 (1984) 376-381; Goshima et al., Gene 96 (1990) 141-145], plays an important role in the physiological function of this protein. The results indicate that a unique conformation of the arm structure of HU protein, particularly the N-terminal half of a two-strand antiparallel beta-ribbon of the structure, is important for the DNA-binding ability of this protein.  相似文献   

11.
12.
13.
SOX genes are a family of genes that encode for proteins which are characterised by the presence of a HMG-domain related to that of the mammalian sex-determining gene (SRY). By definition, the DNA binding domain of SOX genes is at least 50% identical to the 79 amino acid HMG domain of the SRY gene. We report here two HMG-box sequences from two microbat species (R. ferrumequinum and P. Pipistrellus) which were PCR amplified using a primer pair specific to the mouse Sry HMG-box. The high percentage of identity of this sequences with the human and mouse SOX30 HMG-box suggests that they are the SOX30 HMG-box for these two bat species. The sequencing data reported in this paper are available in the EMBL Nucleotide Sequence Database through the following accession numbers: Pipistrellus pipistrellus SOX30 gene: AJ243292; Rhinolophus ferrumequinum SOX30 gene: AJ243293. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
? The high mobility group (HMG)-box represents a DNA-binding domain that is found in various eukaryotic DNA-interacting proteins. Proteins that contain three copies of the HMG-box domain, termed 3 × HMG-box proteins, appear to be specific to plants. The Arabidopsis genome encodes two 3 × HMG-box proteins that were studied here. ? DNA interactions were examined using electrophoretic mobility shift assays, whereas expression, subcellular localization and chromosome association were mainly analysed by different types of fluorescence microscopy. ? The 3 × HMG-box proteins bind structure specifically to DNA, display DNA bending activity and, in addition to the three HMG-box domains, the basic N-terminal domain contributes to DNA binding. The expression of the two Arabidopsis genes encoding 3 × HMG-box proteins is linked to cell proliferation. In synchronized cells, expression is cell cycle dependent and peaks in cells undergoing mitosis. 3 × HMG-box proteins are excluded from the nuclei of interphase cells and localize to the cytosol, but, during mitosis, they associate with condensed chromosomes. The 3 × HMG-box2 protein generally associates with mitotic chromosomes, while 3 × HMG-box1 is detected specifically at 45S rDNA loci. ? In addition to mitotic chromosomes the 3 × HMG-box proteins associate with meiotic chromosomes, suggesting that they are involved in a general process of chromosome function related to cell division, such as chromosome condensation and/or segregation.  相似文献   

15.
A genomic DNA library of Bifidobacterium longum ATCC15707 was transfected into an Escherichia coli strain deficient in both HU and IHF, the growth of which is cold-sensitive because of the deficiency in these proteins. Cold-resistant colonies were selected and the DNA was cloned and sequenced. A polypeptide consisted of 93 amino acids, a predicted molecular mass of 9983 Da with an isoelectric point of 10.35, was deduced from an orf in the middle of the DNA fragment. The amino acid sequence was highly similar to HU family proteins, and 26 aas of N terminal was identical to a histone-like protein, HBI, a HU family protein of B. longum. Incapabilities of Mu phage propagation in an E. coli mutant deficient in HU or IHF could be suppressed by DNA bearing this orf. These results showed that the orf is a gene hup encoding HBI, a histone-like protein HU of B. longum.  相似文献   

16.
17.
Homologs of the dimeric HU protein of Escherichia coli can be found in every prokaryotic organism that has been analyzed. In this work, we demonstrate that Serratia marcescens synthesizes two distinct HU subunits, like E. coli and Salmonella typhimurium, suggesting that the heterodimeric HU protein could be a common feature of enteric bacteria. A phylogenetic analysis of the HU-type proteins (HU and IHF) is presented, and a scheme for the origin of the hup genes and the onset of HU heterodimericity is suggested.  相似文献   

18.
Pre-replication complexes (pre-RC) assemble on replication origins and unwind DNA in the presence of chromatin proteins. As components of Escherichia coli pre-RC, two histone-like proteins HU and IHF (integration host factor), stimulate initiator DnaA-catalysed unwinding of the chromosomal replication origin, oriC. Using in vivo footprint analysis just before DNA synthesis initiates, we detect IHF binding coincident with a shift of DnaA to weaker central oriC sites. Integration host factor redistributed pre-bound DnaA to identical sites in vitro. HU did not redistribute DnaA, but suppressed binding specifically at I3. These results suggest that different pathways mediated by bacterial chromatin proteins exist to regulate pre-RC assembly and unwind oriC.  相似文献   

19.
The genome of Escherichia coli is composed of a single molecule of circular DNA with the length of about 47,000 kilobase pairs, which is associated with about 10 major DNA-binding proteins, altogether forming the nucleoid. We expressed and purified 12 species of the DNA-binding protein, i.e. CbpA (curved DNA-binding protein A), CbpB or Rob (curved DNA-binding protein B or right arm of the replication origin binding protein), DnaA (DNA-binding protein A), Dps (DNA-binding protein from starved cells), Fis (factor for inversion stimulation), Hfq (host factor for phage Q(beta)), H-NS (histone-like nucleoid structuring protein), HU (heat-unstable nucleoid protein), IciA (inhibitor of chromosome initiation A), IHF (integration host factor), Lrp (leucine-responsive regulatory protein), and StpA (suppressor of td(-) phenotype A). The sequence specificity of DNA binding was determined for all the purified nucleoid proteins using gel-mobility shift assays. Five proteins (CbpB, DnaA, Fis, IHF, and Lrp) were found to bind to specific DNA sequences, while the remaining seven proteins (CbpA, Dps, Hfq, H-NS, HU, IciA, and StpA) showed apparently sequence-nonspecific DNA binding activities. Four proteins, CbpA, Hfq, H-NS, and IciA, showed the binding preference for the curved DNA. From the apparent dissociation constant (K(d)) determined using the sequence-specific or nonspecific DNA probes, the order of DNA binding affinity were determined to be: HU > IHF > Lrp > CbpB(Rob) > Fis > H-NS > StpA > CbpA > IciA > Hfq/Dps, ranging from 25 nM (HU binding to the non-curved DNA) to 250 nM (Hfq binding to the non-curved DNA), under the assay conditions employed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号