首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Isolated bovine adrenal cortex mitochondria imported in vitro synthesized pre-P-450(SCC) and processed it to the mature form. Partial radio-sequencing of the processed P-450(SCC) gave a result identical with that for authentic P-450(SCC). Rat liver mitochondria also imported pre-P-450(SCC) and processed it to the mature form, whereas bovine heart mitochondria were unable to import and process pre-P-450(SCC) although both mitochondrial preparations imported and processed pre-adrenodoxin. The pre-P-450(SCC) processing activity of bovine adrenal cortex mitochondria was associated with the matrix side surface of the inner membrane. The processing protease could be solubilized by sodium cholate and partially purified by ammonium sulfate fractionation. The partially purified processing protease cleaved pre-P-450(SCC) at the correct position. It was also active in processing pre-P-450(11 beta) but inactive toward pre-adrenodoxin. Bovine heart mitochondria lacked the processing activity to pre-P-450(SCC). The localization of pre-P-450(SCC) and mature P-450(SCC) in bovine adrenal cortex mitochondria was examined. Mature P-450(SCC) processed by the mitochondria was found associated with the matrix-side surface of the inner membrane, which is the correct location of P-450(SCC) in the cell. In the presence of o-phenanthroline, pre-P-450(SCC) was imported into the organelles without being processed and remained soluble in the matrix. The incorporation of newly processed mature P-450(SCC) into the inner membrane was also observed when pre-P-450(SCC) was incubated with inner membrane vesicles. Mature P-450(SCC) generated in vitro from pre-P-450(SCC) by the partially purified processing protease was incorporated not only into the inner membrane vesicles but also into bovine adrenal cortex microsomes. These findings suggested that the processing of pre-P-450(SCC) occurred prior to the incorporation of mature-P-450(SCC) into the inner membrane.  相似文献   

2.
Maturation of the precursor forms of bovine cholesterol side-chain cleavage cytochrome P-450 (P-450SCC) and 11 beta-hydroxylase cytochrome P-450 (P-450(11)beta) was investigated using mitochondria from bovine corpus luteum. The results show that both precursors, whose synthesis was directed by bovine adrenocortical RNA, can be imported and proteolytically processed to their corresponding mature forms by bovine corpus luteal mitochondria, even though P-450(11)beta is not expressed in this tissue. Furthermore, the efficiency of processing of pre-P-450(11)beta by corpus luteal mitochondria is similar to that of pre-P-450SCC, an endogenous enzyme of these mitochondria. However, the P-450(11)beta precursor is not processed by mitochondria from a nonsteroidogenic tissue (heart), a result observed previously for the P-450SCC precursor (M. F. Matocha and M. R. Waterman (1984) J. Biol. Chem. 259, 8672-8678). This discriminatory processing of pre-P-450(11)beta by heterologous mitochondria suggests that the precursor forms of P-450SCC and P-450(11)beta are processed via a common pathway in steroidogenic mitochondria and that this pathway is absent in nonsteroidogenic mitochondria.  相似文献   

3.
The mitochondrial proteins involved in adrenocortical steroidogenesis are synthesized as higher molecular weight precursors which require processing by the mitochondria to their mature sizes. The post-translational maturation of two of these proteins has been examined: the cholesterol side chain cleavage cytochrome P-450 (P-450scc) and the iron-sulfur protein, adrenodoxin. Total translation products synthesized in a cell-free system programmed by bovine adrenocortical poly(A+) RNA were incubated with isolated bovine adrenocortical or heart mitochondria followed by immunoisolation of radiolabeled P-450scc or adrenodoxin. In the presence of adrenocortical mitochondria, the precursor form of P-450scc was converted into a trypsin-resistant form that had the same molecular weight as mature P-450scc. Unlike adrenocortical mitochondria, heart mitochondria were unable to process the P-450scc precursor which remained unaltered and trypsin-sensitive. In addition, a matrix fraction of heart mitochondria did not cleave the P-450scc precursor. In contrast, the adrenodoxin precursor did not exhibit similar specificity as it was processed to the mature form by both adrenocortical and heart mitochondria. Also, the adrenocortical mitochondria were not restricted to processing endogenous proteins as they imported and cleaved the precursor to ornithine transcarbamylase. The results indicate that some mitochondrial precursor proteins have tertiary structures which allow them to be recognized by all mitochondria while other mitochondrial precursor proteins have structures recognizable by only specialized mitochondria.  相似文献   

4.
Adrenodoxin (Ad) is synthesized as a larger precursor (preAd) by cytoplasmic polysomes and then transported into mitochondria concomitant with its proteolytic processing to the mature form. The protease in bovine adrenal cortex mitochondria, which converts preAd to the mature form, is a metalloprotease in the matrix (Sagara, Y., Ito, A. & Omura, T. (1984) J. Biochem. 96, 1743-1752). In this study, the protease was purified about 100-fold from the matrix fraction of bovine adrenal cortex mitochondria. The partially purified protease converted not only preAd, but also the precursors of malate dehydrogenase (MDH) and 27 kDa protein (P-27) to the corresponding mature forms. However, it was inactive toward the precursors of P-450(SCC) and of P-450(11 beta). Since isolated rat liver mitochondria can import and process preAd as efficiently as bovine adrenal cortex mitochondria, we partially purified a preAd-processing protease from rat liver mitochondria and compared its properties with those of the bovine adrenal cortex enzyme. The properties of the rat liver protease were indistinguishable from those of the bovine adrenal cortex enzyme in molecular weight determined from Sephadex G-150 gel filtration, metal requirement and ability to process preMDH and preP-27. The rat liver enzyme was also inactive toward the precursors of P-450(SCC) and P-450(11 beta). These results indicate the presence in both adrenal cortex and liver mitochondria of the same type of processing protease, which processes preAd and also the precursors of some other mitochondrial proteins.  相似文献   

5.
W J Ou  A Ito  H Okazaki    T Omura 《The EMBO journal》1989,8(9):2605-2612
A processing protease has been purified from the matrix fraction of rat liver mitochondria. The purified protease contained two protein subunits of 55 kd (P-55) and 52 kd (P-52) as determined by SDS-PAGE. The processing protease was estimated to be 105 kd in gel filtration, indicating that the two protein subunits form a heterodimeric complex. At high ionic conditions, the two subunits dissociated. The purified processing protease cleaved several mitochondrial protein precursors destined to different mitochondrial compartments, including adrenodoxin, malate dehydrogenase, P-450(SCC) and P-450(11 beta), but the processing efficiencies were different each other. The endoprotease nature of the processing protease was confirmed with the purified enzyme using adrenodoxin precursor as the substrate; both the mature form and the extension peptide were detected after the processing. The processing activity of the protease was inhibited by metal chelators, and reactivated by Mn2+, indicating that the protease is a metalloprotease.  相似文献   

6.
In order to establish the role of the extension peptide of the precursor of P-450(SCC), a mitochondrial inner membrane protein, in the import into the organella, three deletion mutants of the precursor, in which the deletions were in the mature portion, were constructed. These mutant precursors were imported into mitochondria in vitro as efficiently as the original precursor, indicating that the extension peptide contains sufficient information for the import of the precursor into mitochondria. To investigate which portion of the extension peptide contains the mitochondrial targeting signal, various lengths of the amino-terminal portion of the extension peptide of P-450(SCC) precursor were fused to the mature portion of adrenodoxin. The fusion proteins consisting of 44 and 19 amino-terminal amino acids and mature adrenodoxin were imported into mitochondria, whereas those containing 14, 7, and 2 amino-terminal amino acid residues were not. The importance of the amino-terminal portion of the extension peptide was confirmed by the deletion from the amino-terminal end of a fusion protein consisting of the amino-terminal 44 amino acid residues of P-450(SCC) precursor and mature adrenodoxin, SCC44RAd. The amino-terminal deletions abolished the import of the fusion proteins into mitochondria. Substitution of all of the three basic amino acids, Arg(4), Arg(9), and Lys(14) in the extension peptide of SCC44RAd to Ser or Thr inhibited the binding of the fusion protein to mitochondria as well as its import.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
Bovine cytochrome P-450(SCC) introduced with the baculovirus host vector system was found to be expressed in Spodoptera frugiperda cells. Cell fractionation analysis indicated that the P-450(SCC) expressed as the precursor form was transported into mitochondria and converted to a mature form. However, this form did not exhibit definite activity for cholesterol side chain cleavage. These findings suggest that most of the P-450(SCC) expressed by this system is an inactive protein within mitochondria that is not folded to the conformation of the active enzyme and/or does not incorporate heme appropriately.  相似文献   

8.
The immunochemical relatedness between human and bovine proteins catalyzing the cholesterol side-chain cleavage reaction was investigated. In dot-immunobinding analysis, antibodies against bovine adrenocortical cytochrome P-450SCC, adrenodoxin, and adrenodoxin reductase recognized the corresponding proteins in a dose-dependent manner in mitochondrial preparations from human placenta. Limited proteolysis with trypsin cleaved bovine P-450SCC into fragments F1 and F2, which represent the NH2- and C-terminal parts of P-450SCC, respectively. Identical trypsin treatment yielded similar-size fragments from human placental P-450SCC. In Western immunoblots, anti-F1 and anti-F2 antibodies recognized the corresponding fragments in both trypsin-digested bovine and human P-450SCC. Antibodies against bovine P-450SCC, fragments F1 and F2, adrenodoxin and adrenodoxin reductase inhibited cholesterol side-chain cleavage activity in bovine adrenocortical mitochondria by 24-51%, but failed to affect the activity in human placental mitochondria. These data indicate that human and bovine P-450SCC share common antigenic determinants located outside the enzyme active site. The immunological similarity between bovine adrenodoxin and human ferredoxin allowed for a simple purification protocol of human placental P-450SCC by adrenodoxin affinity chromatography. The P-450SCC obtained by this method was electrophoretically homogeneous and showed characteristics typical to P-450SCC.  相似文献   

9.
The synthesis and maturation of the precursor forms of three mitochondrial enzymes involved in steroid hormone biosynthesis have been studied in vivo. Primary cultures of bovine adrenocortical cells were radiolabeled with [35S] methionine and newly synthesized cholesterol side-chain cleavage cytochrome P-450 (P-450scc), 11 beta-hydroxylase cytochrome P-450 (P-450(11)beta), and adrenodoxin immunoisolated using specific antibodies. Both the precursor and mature forms of P-450scc and P-450(11)beta were detected during short periods of pulse labeling; however, the precursor forms were transitory in nature while their corresponding mature forms accumulated. Pulse-chase experiments showed that the precursor form of each cytochrome P-450 had an apparent half-life of 3.5 min. In contrast, the precursor form of adrenodoxin was not readily detected in pulse-labeling experiments until a substantial amount of its mature form had accumulated. When the cultured cells were treated with a chelator of divalent cations (o-phenanthroline) or a mitochondrial uncoupler (dinitrophenol), the maturation of all three precursors was inhibited. The synthesis of the P-450scc and P-450(11)beta precursors was induced in cells maintained in the presence of adrenocorticotropin, and the rates of appearance of their processed forms were also increased. The mature forms of all three proteins were immunoisolated from a trypsinized mitochondrial fraction prepared from the radiolabeled cells, demonstrating that the mature proteins were localized within the organelle. These studies establish that the maturation of the precursor forms of the mitochondrial steroidogenic enzymes are characterized by steps similar to those reported for other mitochondrial precursor proteins.  相似文献   

10.
The precursor of cytochrome b2 (a cytoplasmically-synthesized mitochondrial protein) binds to isolated mitochondria or to isolated outer membrane vesicles. Binding does not require an energized inner membrane, is diminished by trypsin treatment of the membranes and is not observed with the partially processed (intermediate) form of the cytochrome b2 precursor or with non-mitochondrial proteins. Upon energization of the mitochondria, the bound precursor is imported and cleaved to the mature form. Similar results were obtained with the precursor of citrate synthase. This receptor-like binding activity was present in isolated outer, but not inner membrane. It was solubilized from outer membrane with non-ionic detergent and reconstituted into liposomes.  相似文献   

11.
The precursor of cytochrome P-450(SCC) (preP-450(SCC], an inner membrane protein of adrenal cortex mitochondria, has an extension peptide consisting of 39 amino acids which is thought to play an essential role in the import of the precursor into mitochondria. The amino terminal portion of the extension peptide contains three positively charged amino acid residues, Arg(4), Arg(9), and Lys(14). To investigate their role in the import of preP-450(SCC) into mitochondria, they were replaced by other amino acids, Ser or Thr, by site-directed mutagenesis. The import of mutated preP-450(SCC)s with single amino acid substitution was much less efficient than with the original precursor. The mutated preP-450(SCC)s with two or three substitutions were not imported. These results suggest that the positively charged amino acid residues in the amino terminal portion of the extension peptide are essential for the import of preP-450(SCC) into mitochondria.  相似文献   

12.
S Furuya  K Mihara  S Aimoto    T Omura 《The EMBO journal》1991,10(7):1759-1766
We chemically synthesized a peptide, 11 beta-45, which was composed of 45 amino acid residues including the whole extension peptide and some of the mature portion of bovine cytochrome P-450(11 beta) precursor. 11 beta-45 was imported into mitochondria in vitro depending on the mitochondrial membrane potential, but its import did not require extramitochondrial ATP. Although cytosolic protein factors in the high speed supernatant of reticulocyte lysate are known to stimulate the import of various precursor proteins into mitochondria, the import of 11 beta-45 was not stimulated by cytosolic factors in reticulocyte lysate. The import of the peptide did not require mitochondrial surface protein components because its import was not affected by trypsin treatment of mitochondria. On the other hand, trypsin treatment of mitoplasts resulted in a great reduction in the import of the peptide, indicating that 11 beta-45 interacts during the import process with some protein components located inside mitochondria. These observations indicated that the peptide 11 beta-45 was imported via the potential-dependent pathway as in the case of precursor proteins, but skipped the interactions with cytosolic factors and mitochondrial surface components normally required for the import of precursor proteins.  相似文献   

13.
14.
Various portions of the extension peptides of P-450(SCC) precursor were chemically synthesized. The effects of these peptides on the import of enzyme precursors into mitochondria were examined. Peptides SEP1-15 and SEP1-20, corresponding to the amino terminal portion of the extension peptides, strongly inhibited the import of P-450(SCC) precursor into mitochondria. These peptides were effective at concentrations above 30 microM, and complete inhibition was observed at 100 microM. SEP1-11, which is shorter than SEP1-15 and SEP1-20, showed very weak inhibition. SEP25-39, which corresponds to the carboxy terminal portion of the extension peptide, did not affect the import of the precursor. The import of P-450(11 beta) and adrenodoxin precursors were also inhibited by SEP1-15. Another peptide, AEP1-14, which corresponds to the amino terminal portion of the extension peptide of adrenodoxin precursor, was also synthesized. The peptide inhibited the import of both adrenodoxin and P-450(SCC) precursors into mitochondria. The import of malate dehydrogenase was also inhibited by SEP1-15 and AEP1-14. The rate of the internalization of the precursor into mitochondria was decreased by the peptides. The amount of the precursor bound to the surface of mitochondria and the processing of adrenodoxin precursor were not affected. The respiratory activities of isolated mitochondria were not influenced by SEP1-15 even at 100 microM. We conclude that the inhibitory activities of the synthetic partial extension peptides on the import of enzyme precursors into mitochondria require the presence of about fifteen amino acid residues in the amino terminal portion of the extension peptides, and the inhibition of the import by the peptides was dependent on the blockage of the internalization of the precursors into mitochondria.  相似文献   

15.
We have purified and characterized a phenobarbital (PB)-inducible hepatic mitochondrial cytochrome P-450 (P-450), termed P-450mt4, which is distinctly different from the previously characterized mitochondrial isoforms. The level of induction of P-450mt4 by PB in the male livers is nearly 20-fold, as against a marginal induction in the female livers, suggesting that it may be a male predominant isoform. P-450mt4 shows a close resemblance to microsomal P-450b (the major PB-inducible form) with respect to electrophoretic migration (apparent molecular mass of 50 kDa) and immunological cross-reactivity, although it exhibits a distinct isoelectric pH (pI 6.9 vs 6.5 for P-450b), peptide fingerprint pattern, and amino acid composition. Further, the N-terminal sequence analysis shows over 90% positional identity (39 out of 42) between P-450mt4 and P-450b, suggesting that it is a close relative of the P-450 IIB gene family. In vitro reconstitution experiments show that P-450mt4 can metabolize a wide range of substrates such as benzphetamine, (dimethylamino)antipyrine, aflatoxin B1, and vitamin D3, exclusively in the presence of mitochondrial-specific ferredoxin and ferredoxin reductase as electron carriers. P-450mt4 is translated as a 53-kDa precursor, which is transported into mitochondria under in vitro conditions and processed into a mature 50-kDa protein. These results provide conclusive evidence for the occurrence of a male-specific P-450 belonging to the IIB gene family in rat liver mitochondria.  相似文献   

16.
Gene structure of human cytochrome P-450(SCC), cholesterol desmolase   总被引:8,自引:0,他引:8  
Four independent clones containing a part of the P-450(SCC), cholesterol desmolase, gene were isolated from human genomic libraries using bovine P-450(SCC) cDNA as a probe. These clones covered the entire P-450(SCC) gene except for a part of the 1st intron. The gene is at least 20 kb long and is split into 9 exons by 8 introns. The sequence analysis revealed that the nine separated exons code for a primary structure consisting of 521 amino acids which shows 72% homology with that of bovine P-450(SCC). A CATT sequence and a TATAAT sequence, which are possibly a "CAT" box, and a "TATA" box, respectively, are present 129 and 91 bp upstream from the initiation codon. An unusual exon/intron junctional sequence that begins with GC was found in the 6th intron of the gene. A putative extension peptide consisting of 39 amino acids was found in the sequence of human P-450(SCC) by comparison with that of the bovine counterpart. Two conserved regions were found in the extension peptide of these two forms of P-450(SCC), suggesting a functional role of the portions in the mitochondrial localization and processing of P-450(SCC) precursor. The mature form of human P-450(SCC) has only one cysteine residue, which was located in the center of the HR2 region (Gotoh et al. (1983) J. Biochem. 97, 807-817). This observation established beyond doubt that the sole cysteine residue in the HR2 region is the 5th ligand to the heme.  相似文献   

17.
Many nuclear-coded mitochondrial proteins are synthesized as larger precursor polypeptides that are proteolytically processed during import into the mitochondrion. This processing appears to be catalyzed by a soluble, metal-dependent protease localized in the mitochondrial matrix. In this report we employ an in vitro system to investigate the role of processing in protein import. Intact Neurospora crassa mitochondria were incubated with radiolabeled precursors in the presence of the chelator o-phenanthroline. Under these conditions, the processing of the precursors of the beta-subunit of F1-ATPase (F1 beta) and subunit 9 of the F0F1-ATPase was strongly inhibited. Protease-mapping studies indicated that import of the precursor proteins into the mitochondria continued in the absence of processing. Upon readdition of divalent metal to the treated mitochondria, the imported precursors were quantitatively converted to their mature forms. This processing of imported precursors occurred in the absence of a mitochondrial membrane potential and was extremely rapid even at 0 degrees C. This suggests that all or part of the polypeptide chain of the imported precursors had been translocated into the matrix location of the processing enzyme. Localization experiments suggested that the precursor to F1 beta is peripherally associated with the mitochondrial membrane while the precursor to subunit 9 appeared to be tightly bound to the membrane. We conclude that proteolytic processing is not necessary for the translocation of precursor proteins across mitochondrial membranes, but rather occurs subsequent to this event. On the basis of these and other results, a hypothetical pathway for the import of F1 beta and subunit 9 is proposed.  相似文献   

18.
Mild acid treatment of in vitro translated cytochrome P-450(SCC) (pre-P-450(SCC] peptide cleaved the peptide into two fragments. Comparison of the sizes and the NH2-terminal amino acids of the fragments with those of the corresponding fragments from mature P-450(SCC) suggested that the prepiece of pre-P-450(SCC) was present at the NH2-terminal end of the peptide. This conclusion was confirmed by radio-sequencing of the NH2-terminal portion of pre-P-450(SCC).  相似文献   

19.
A system has been developed for the import in vitro of precursor proteins into Euglena chloroplasts, which have three envelope membranes. Preparation of functional chloroplasts with intact envelope membranes has been optimized. Import of the precursor (50 kDa) for the tetrapyrrole biosynthesis enzyme porphobilinogen deaminase (PBGD), and processing to the mature size (40 kDa), occurred at 25 degrees C in the light and the presence of ATP, with an estimated efficiency of 62%. Pretreatment of the chloroplasts with proteases abolished this import, suggesting the involvement of specific protein receptors. The presequence of PBGD was found to be cleaved by Escherichia coli leader peptidase to an intermediate form (46 kDa). A construct in which the first 30 residues of the presequence (presumed to be the region removed by leader peptidase) had been deleted was no longer imported. Neither prePBGD nor the truncated precursor were imported into pea chloroplasts, although both bound to the pea chloroplast envelope. Conversely, a chimeric construct, in which the mature PBGD protein was fused downstream of the transit peptide for pea ferredoxin-NADP reductase, was efficiently imported into pea chloroplasts and processed to the mature size. However, this was not imported into Euglena chloroplasts, although again it bound to them. These results provide preliminary evidence for the possibility of two functional domains within the Euglena PBGD presequence. The implications of these findings with respect to the evolution of Euglena chloroplasts are discussed.  相似文献   

20.
The import of the precursor of mitochondrial aspartate aminotransferase was reconstituted in vitro with isolated mitochondria thus corroborating the earlier conclusion of a post-translational uptake. The higher Mr precursor was synthesized in a reticulocyte lysate programmed with free polysomes from chicken liver. After incubation with intact mitochondria from chicken heart about 50% of the precursor was converted to the mature form in a time-dependent process, its rate being a function of the amount of mitochondria added. The same amount of precursor was processed to the mature form on addition of a mitochondrial extract. No conversion to the mature enzyme took place when the precursor was incubated with intact mitochondria in the presence of the uncoupling agent carbonyl cyanide m-chlorophenylhydrazone or of the chelator o-phenanthroline which penetrates the mitochondrial inner membrane. In contrast, the chelator bathophenanthroline disulfonate which does not diffuse into the mitochondrial matrix did not inhibit the appearance of the mature form. The results indicate that that precursor must pass through an energized inner mitochondrial membrane before it is processed by a chelator-sensitive protease in the mitochondrial matrix. Excess mature mitochondrial aspartate aminotransferase did not compete with the precursor for its uptake into mitochondria. Mature mitochondrial aspartate aminotransferase is an alpha 2-dimer with Mr = 2 X 45,000. Both the precursor synthesized in a rabbit reticulocyte lysate and the precursor accumulated in the cytosol of carbonyl cyanide m-chlorophenylhydrazone-treated chicken embryo fibroblasts were found to exist as homodimer or hetero-oligomer and high Mr complexes (Mr greater than 300,000).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号