首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used Limulus sperm acrosomal actin bundles to examine the effect of 2 microM cytochalasin B (CB) on elongation from both the barbed and pointed ends of the actin filament. In this paper we report that 2 microM CB does not prevent monomer addition onto the barbed ends of the acrosomal actin filaments. Barbed end assembly occurred over a range of actin monomer concentrations (0.2-6 microM) in solutions containing 75 mM KCl, 5 mM MgCl2, 10 mM Imidazole, pH 7.2, and 2 microM CB. However, the elongation rates were reduced such that the rates at the barbed end were approximately the same as those at the pointed end. The association and dissociation rate constants were 8- to 10-fold smaller at the barbed end in the presence of CB along with an accompanying twofold increase in critical concentration at that end. Over the time course of experimentation there was little evidence for potentiation by CB of the nucleation step of assembly. CB did not sever actin filaments; instead its presence increased the susceptibility of actin filaments to breakage from the gentle shear forces incurred during sample preparation. Under these experimental conditions, the assembly rate constants and critical concentration at the pointed end were the same in both the presence and the absence of CB.  相似文献   

2.
Substoichiometric concentrations of cytochalasin D inhibited the rate of polymerization of actin in 0.5 mM MgCl2, increased its critical concentration and lowered its steady state viscosity. Stoichiometric concentrations of cytochalasin D in 0.5 mM MgCl2 and even substoichiometric concentrations of cytochalasin D in 30 mM KCl, however, accelerated the rate of actin polymerization, although still lowering the final steady state viscosity. Cytochalasin B, at all concentrations in 0.5 mM MgCl2 or in 30 mM KCl, accelerated the rate of polymerization and lowered the final steady state viscosity. In 0.5 mM MgCl2, cytochalasin D uncoupled the actin ATPase activity from actin polymerization, increasing the ATPase rate by at least 20 times while inhibiting polymerization. Cytochalasin B had a very much lower stimulating effect. Neither cytochalasin D nor B affected the actin ATPase activity in 30 mM KCl. The properties of cytochalasin E were intermediate between those of cytochalasin D and B. Cytochalasin D also stimulated the ATPase activity of monomeric actin in the absence of MgCl2 and KCl and, to a much greater extent, stimulated the ATPase activity of monomeric actin below its critical concentration in 0.5 mM MgCl2. Both above and below its critical concentration and in the presence and absence of cytochalasin D, the initial rate of actin ATPase activity, when little or no polymerization had occurred, was directly proportional to the actin concentration and, therefore, apparently was independent of actin-actin interactions. To rationalize all these data, a working model has been proposed in which the first step of actin polymerization is the conversion of monomeric actin-bound ATP, A . ATP, to monomeric actin-bound ADP and Pi, A* . ADP . Pi, which, like the preferred growing end of an actin filament, can bind cytochalasins.  相似文献   

3.
P Sampath  T D Pollard 《Biochemistry》1991,30(7):1973-1980
We used electron microscopy to measure the effects of cytochalasins, phalloidin, and pH on the rates of elongation at the barbed and pointed ends of actin filaments. In the case of the cytochalasins, we compared the effects on ATP- and ADP-actin monomers. Micromolar concentrations of either cytochalasin B (CB) or cytochalasin D (CD) inhibit elongation at both ends of the filament, about 95% at the barbed end and 50% at the pointed end, so that the two ends contribute about equally to the rate of growth. Half-maximal inhibition of elongation at the barbed end is at 0.1 microM CB and 0.02 microM CD for ATP-actin and at 0.1 microM CD for ADP-actin. At the pointed end, CD inhibits elongation by ATP-actin and ADP-actin about equally. At high (2 microM) concentrations, the cytochalasins reduce the association and dissociation rate constants in parallel for both ADP- and ATP-actin, so their effects on the critical concentrations are minimal. These observations confirm and extend those of Bonder and Mooseker [Bonder, E. M., & Mooseker, M. S. (1986) J. Cell Biol. 102, 282-288]. The dependence of the elongation rate on the concentration of both cytochalasin and actin can be explained quantitatively by a mechanism that includes the effects of cytochalasin binding to actin monomers [Godette, D. W., & Frieden, C. (1986) J. Biol. Chem. 261, 5974-5980] and a partial cap of the barbed end of the filament by the complex of ADP-actin and cytochalasin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
《The Journal of cell biology》1986,103(6):2747-2754
I measured the rate of elongation at the barbed and pointed ends of actin filaments by electron microscopy with Limulus sperm acrosomal processes as nuclei. With improvements in the mechanics of the assay, it was possible to measure growth rates from 0.05 to 280 s-1. At 22 degrees C in 1 mM MgCl2, 10 mM imidazole (pH 7), 0.2 mM ATP with 1 mM EGTA or 50 microM CaCl2 or with EGTA and 50 mM KCl, the elongation rates at both ends have a linear dependence on the ATP-actin concentration from the critical concentration to 20 microM. Consequently, over a wide range of subunit addition rates, the rate constants for association and dissociation of ATP-actin are constant. This shows that the nucleotide composition at or near the end of the growing filament is either the same over this range of growth rates or has no detectable effect on the rate constants. Under conditions where polymerization is fastest (MgCl2 + KCl + EGTA) the rate constants have these values: (table; see text) Compared with ATP-actin, ADP-actin associates slower at both ends, dissociates faster from the barbed end, but dissociates slower from the pointed end. Taking into account the events at both ends, these constants and a simple Oosawa-type model account for the complex three-phase dependence of the rate of polymerization in bulk samples on the concentration of ATP-actin monomers observed by Carlier, M.-F., D. Pantaloni, and E. D. Korn (1985, J. Biol. Chem., 260:6565-6571). These constants can also be used to predict the reactions at steady state in ATP. There will be slow subunit flux from the barbed end to the pointed end. There will also be minor fluctuations in length at the barbed end due to occasional rapid dissociation of strings of ADP subunits but the pointed end will be relatively stable.  相似文献   

5.
The concentration dependences of the activities of cytochalasin B, D, E, and H in capping and cleaving actin filaments have been assayed using fluorescence photobleaching recovery. Filament capping was detected by the increase in mobile G-actin. Cytochalasin D (CD) showed the strongest filament capping activity, with an apparent dissociation constant from filament ends of 50 nM. The order of capping activity was CD greater than CH greater than CE much greater than CB. Filament cleavage was detected by the increase in the diffusion coefficients of actin filaments. By this criterion the order of filament cleavage activity was CD, CE greater than CH much greater than CB. Cytochalasin B shows some activity in cleavage of filaments over a concentration range (0-100 microM) at which it shows no appreciable capping activity. This activity, together with results from other groups, is interpreted to mean that CB binds to protomers within the filament, but not to the barbed end. The reversal of activities for CH and CE, combined with the activity profile of CB, constitute the strongest evidence to date that there is more than one cytochalasin binding site on the actin molecule.  相似文献   

6.
Plasma gelsolin formed a very tight 1:2 complex with G-actin in the presence of Ca2+, but no interaction between gelsolin and G-actin was detected in the presence of excess EGTA. However, the 1:2 complex dissociated into a 1:1 gelsolin:actin complex and monomeric actin when excess EGTA was added. Plasma gelsolin bound tightly to the barbed ends of actin filaments and also severed filaments in the presence of Ca2+ and bound weakly to the filament barbed end in the presence of EGTA. The 1:2 gelsolin-actin complex bound to the barbed ends of filaments but did not sever them. By blocking the barbed end of filaments with plasma gelsolin, we determined the critical concentration at the pointed end in 1 mM MgCl2 and 0.2 mM ATP to be 4 microM. The dissociation rate constant for ADP-G-actin from the pointed end was estimated to be about 0.4 s-1 and the association rate constant to be about 5 X 10(4) M-1 s-1. Finally, we obtained evidence that plasma gelsolin accelerates but does not bypass the nucleation step and, therefore, that the concentration of gelsolin does not directly determine the concentration of filaments polymerized in its presence. Thus, gelsolin-capped filaments may not provide an absolutely reliable method for determining the rate constant for the association of ATP-G-actin at the pointed ends of filaments, but a reasonable estimate would be 1 X 10(5) M-1 s-1 in 1 mM MgCl2 and 0.2 mM ATP.  相似文献   

7.
Growing evidence suggests that the nucleotide bound to actin filaments serves as a timer to control actin filament turnover during cell motility (Pollard, T. D., Blanchoin, L., and Mullins, R. D. (2000) Annu. Rev. Biophys. Biomol. Struct. 29, 545-576). We re-examined the hydrolysis of ATP by polymerized actin using mechanical quenched-flow methods to improve temporal resolution. The rate constant for ATP hydrolysis by polymerized Mg actin is 0.3 s(-1), 3-fold faster than that measured manually. The ATP hydrolysis rate is similar when Mg ATP actin elongates either the pointed end or the barbed end of filaments. Polymerized Ca actin hydrolyzes ATP at 0.05 s(-1). Mg ATP actin saturated with profilin can elongate barbed ends at >60 s(-1), 2 orders of magnitude faster than ATP hydrolysis (0.3 s(-1)). Given that profilin binds to a surface on actin that is buried in the Holmes model of the actin filament, we expect that profilin will block subunit addition at the barbed end of a filament. Profilin must move from this site at rates much faster than it dissociates from monomers (4 s(-1)). ATP hydrolysis is not required for this movement.  相似文献   

8.
We used actin filament bundles isolated from intestinal brush-border microvilli to nucleate the polymerization of pure muscle actin monomers into filaments. Growth rates were determined by electron microscopy by measuring the change in the length of the filaments as a function of time. The linear dependence of the growth rates on the actin monomer concentration provided the rate constants for monomer association and dissociation at the two ends of the growing filament. The rapidly growing ("barbed") end has higher association and dissociation rate constants than the slowly growing ("pointed") end. The values of these rate constants differ in 20 mM KCl compared with 75 mM KCl, 5 mM MgSO4. 2 microM cytochalasin B blocks growth entirely at the barbed end, apparently by reducing both association and dissociation rate constants to near zero, but inhibits growth at the pointed end to only a small extent.  相似文献   

9.
The effect of inorganic phosphate (Pi) on the depolymerization of F-actin has been measured. Pi inhibits disassembly of pyrene-labelled F-actin at steady-state induced either by dilution, or by shearing, suggesting that Pi decreases the off rate constant, k-, for dissociation. This effect of Pi is maximal at 20 mM, unlike the effect of Pi in reducing the critical concentration at the pointed end (maximal at 2 mM). This difference in concentration dependence for the two effects is interpreted as different affinities of Pi for the barbed and pointed ends, presumably as ADP-Pi-actin species. The contribution of ATP/ADP phase changes at filament ends (i.e. "dynamic instability") to length redistribution in sheared polymer steady-state actin filament populations was determined by (1) converting ATP to ADP in the system to prevent phase changes, or (2) adding 20 mM-Pi to the system to inhibit depolymerization. The observed absence of effect of these treatments on length redistribution excludes all mechanisms which involve phase change-driven disassembly or monomer exchange at filament ends, and appears to constrain the mechanism to one of end-to-end annealing under these conditions.  相似文献   

10.
To obtain kinetic information about the pointed ends of actin filaments, experiments were carried out in the presence of gelsolin which blocks all events at the kinetically dominant barbed ends. The 1:2 gelsolin-actin complex retains 1 mol/mol of actin-bound ATP, but it neither hydrolyzes the ATP nor exchanges it with ATP free in solution at a significant rate. On the other hand, the actin filaments with their barbed ends capped with gelsolin hydrolyze ATP relatively rapidly at steady state, apparently as a result of the continued interaction of ATP-G-actin with the pointed ends of the filaments. ATP hydrolysis during spontaneous polymerization of actin in the presence of relatively high concentrations of gelsolin lags behind filament elongation so that filaments consisting of as much as 50% ATP-actin subunits are transiently formed. Probably for this reason, during polymerization the actin monomer concentration transiently reaches a concentration lower than the final steady-state critical concentration of the pointed end. At steady state, however, there is no evidence for an ATP cap at the pointed ends of gelsolin-capped filaments, which differs from the barbed ends which do have an ATP cap in the absence of gelsolin. As there is no reason presently to think that gelsolin has any effect on events at the pointed ends of filaments, the properties of the pointed ends deduced from these experiments with gelsolin-capped filaments are presumably equally applicable to the pointed ends of filaments in which the barbed ends are free.  相似文献   

11.
G-actin freed from exogenous ATP was added to the pieces of isolated acrosomal actin bundles from horseshoe crab sperm to form filaments as reported earlier (Tilney, L.G., Bonder, E.M., & DeRosier, D.J. (1981) J. Cell Biol. 90, 485-494). The growth of a filament was far more rapid at one end (the preferred end) than the other end. These ends were shown to correspond to the barbed and pointed ends, respectively, by decoration of the filaments with myosin subfragment 1. Cytochalasin B inhibited the monomer addition at the preferred end. This technique is useful in determining the ends to which actin filament end-binding proteins from nonmuscle cells bind, which are considered to regulate the actin polymerization in the cells.  相似文献   

12.
We examined the nucleated polymerization of actin from the two ends of filaments that comprise the microvillus (MV) core in intestinal epithelial cells by electron microscopy. Three different in vitro preparations were used to nucleate the polymerization of muscle G- actin: (a) MV core fragments containing "barbed" and "pointed" filament ends exposed by shear during isolation, (b) isolated, membrane-intact brush borders, and (c) brush borders demembranated with Triton-X 100. It has been demonstrated that MV core fragments nucleate filament growth from both ends with a strong bias for one end. Here we identify the barbed end of the core fragment as the fast growing end by decoration with myosin subfragment one. Both cytochalasin B (CB) and Acanthamoeba capping protein block filament growth from the barbed but not the pointed end of MV core fragments. To examine actin assembly from the naturally occurring, membrane-associated ends of MV core filaments, isolated membrane-intact brush borders were used to nucleate the polymerization of G-actin. Addition of salt (75 mM KCl, 1 mM MgSO4) to brush borders preincubated briefly at low ionic strength with G- actin induced the formation of 0.2-0.4 micron "growth zones" at the tips of microvilli. The dense plaque at the tip of the MV core remains associated with the membrane and the presumed growing ends of the filaments. We also observed filament growth from the pointed ends of core filaments in the terminal web. We did not observe filament growth at the membrane-associated ends of core filaments when the latter were in the presence of 2 microM CB or if the low ionic strength incubation step was omitted. Addition of G-actin to demembranated brush borders, which retain the dense plaque on their MV tips, resulted in filament growth from both ends of the MV core. Again, 2 microM CB blocked filament growth from only the barbed (tip) end of the core. The dense plaque remained associated with the tip-end of the core in the presence of CB but usually was dislodged in control preparations where nucleated polymerization from the tip-end of the core occurred. Our results support the notion that microvillar assembly and changes in microvillar length could occur by actin monomer addition/loss at the barbed, membrane-associated ends of MV core filaments.  相似文献   

13.
Capping one end of an actin filament affects elongation at the other end   总被引:1,自引:0,他引:1  
The rates of elongation at the free ends of actin filaments were compared to those of intact filaments, when the one end was masked with muscle beta-actinin or cytochalasin D, using fixed actoheavy meromyosin and Limulus acrosomal actin bundles as seeds. Experimental conditions were chosen so as to prevent spontaneous filament formation as far as possible. The rate of elongation at the barbed end of fixed actoheavy meromyosin was reduced to about one-fourth when the other pointed end was capped by beta-actinin, and that at the pointed end was reduced to one-third when the barbed end was blocked by cytochalasin D. Similar effects were also observed with the packed actin bundles of horseshoe crab sperm, although the decreases in elongation were less marked: 50-60% of the control both in the presence of beta-actinin and cytochalasin D. To explain the peculiar "end effect" described above, it is proposed that possible conformational changes at one end of an actin filament caused by the binding of a capping substance are transmitted successively to the other end so as to affect the elongation there.  相似文献   

14.
Cytochalasin inhibits the rate of elongation of actin filament fragments   总被引:41,自引:22,他引:19  
Submicromolar concentrations of cytochalasin inhibit the rate of assembly of highly purified dictyostelium discoideum actin, using a cytochalasin concentration range in which the final extent of assembly is minimally affected. Cytochalasin D is a more effective inhibitor than cytochalasin B, which is in keeping with the effects that have been reported on cell motility and with binding to a class of high-affinity binding sites from human erythrocyte membranes (Lin and Lin. 1978. J. Biol. CHem. 253:1415; Lin and Lin. 1979. Proc. Natl. Acad. Sci. U.S.A. 76:2345); 5x10(-7) M cytochalasin B lowers it to 70 percent of the control value, whereas 10(-7) M cytochalasin B lowers the rate to 25 percent. Fragments of F-actin were used to increase the rate of assembly fivefold by providing more filament ends on to which monomers could add. Under these conditions, cytochalasin has an even more dramatic effect on the assembly rate; the concentrations of cytochalasin B and cytochalasin D required for half-maximal inhibition are 2x10(-7) M and 10(-8) M, respectively. The assembly rate is most sensitive to cytochalasin when actin assembly is carried out in the absence of ATP (with 3 mM ADP present to stabilize the actin). In this case, the concentrations of cytochalasin B and cytochalasin D required for half-maximal inhibition are 4x10(-8) M and 1x10(-9) M, respectively. A scatchard plot has been obtained using [(3)H]cytochalasin B binding to F-actin in the absence of ATP. The K(d) from this plot (approximately 4x10(-8) M) agrees well with the concentration of cytochalasin B required for half-maximal inhibition of the rate of assembly under these conditions. The number of cytochalasin binding sites is roughly one per F-actin filament, suggesting that cytochalasin has a specific action on actin filament ends.  相似文献   

15.
Actin binding proteins control actin assembly and disassembly by altering the critical concentration and by changing the kinetics of polymerization. All of these control mechanisms in some way or the other make use of the energy of hydrolysis of actin-bound ATP. Capping of barbed filament ends increases the critical concentration as long as ATP hydrolysis maintains a difference in the actin monomer binding constants of the two ends. A further increase in the critical concentration on adding a second cap, tropomodulin, to the other, pointed filament end also requires ATP hydrolysis as described by the model presented here. Changes in the critical concentration are amplified into much larger changes of the monomer pool by actin sequestering proteins, provided their actin binding equilibrium constants fall within a relatively narrow range around the values for the two critical concentrations of actin. Cofilin greatly speeds up treadmilling, which requires ATP hydroysis, by increasing the rate constant of depolymerization. Profilin increases the rate of elongation at the barbed filament end, coupled to a lowering of the critical concentration, only if ATP hydrolysis makes profilin binding to the barbed end independent of its binding constant for actin monomers.  相似文献   

16.
Current theory and experiments describing actin polymerization suggest that site-specific cleavage of bound nucleotide following F-actin filament formation causes the barbed ends of microfilaments to be capped first with ATP subunits, then with ADP bound to inorganic phosphate (ADP.Pi) at steady-state. The barbed ends of depolymerizing filaments consist of ADP subunits. The decrease in stability of the barbed-end cap accompanying the transition from ADP.Pi to ADP allows nucleotide hydrolysis and subsequent loss of Pi to regulate F-actin filament dynamics. We describe a novel computational model of nucleotide capping that simulates both the spatial and temporal properties of actin polymerization. This model has been used to test the effects of high filament concentration on the behavior of the ATP hydrolysis cycle observed during polymerization. The model predicts that under conditions of high microfilament concentration an ADP cap can appear during steady-state at the barbed ends of filaments. We show that the presence of the cap can be accounted for by a kinetic model and predict the relationship between the nucleotide concentration ratio [ATP]/[ADP], the F-actin filament concentration, and the steady-state distribution of barbed-end ADP cap lengths. The possible consequences of this previously unreported phenomenon as a regulator of cytoskeletal behavior are discussed.  相似文献   

17.
Actin polymerization was investigated using fluorescence probe N-(1-pyrenyl)iodoacetamide, which was bound covalently to reactive sulfhydryl group, Cys-373. Labeled actin in the bulk was 0.5 to 1% of total actin concentration. Actin polymerization at concentration 12 mM was started by addition of 20 mM KCl and 2 mM MgCl2. The label fluorescence was excited at 365 nm and registered at 386 nm. Under actin polymerization the label fluorescence increased almost 10 times. Two main phases may be distinguished in the process of actin polymerization: 1) monomer activation and nucleus (trimer) formation, 2) growth of actin filaments on the nuclei. In our experimental conditions, both for pure actin and for that with added annexin VI, the 1st phase continued for about 3 min and after that the 2nd phase was perfectly approximated by exponential dependence. An analysis of the exponential curves showed that actin monomer lifetime increased from 327 s, at annexin absence, to about 373 s at 0.7 microM annexin and more. Calculation of rate constants at two ends of growing actin filament suggests that annexin VI binds with pointed ("slow") end so that at sufficient annexin concentration the filament grows only on barbed ("fast") end. Our results, together with data of other researchers showing that annexin VI binds with the inner membrane surface of smooth muscle cell through Ca2+, may indicate that, at Ca2+ entering the cell, this annexin binds actin filament pointed ends to cell surface making it ready for the act of contraction.  相似文献   

18.
Tropomodulin caps the pointed ends of actin filaments   总被引:10,自引:3,他引:7       下载免费PDF全文
《The Journal of cell biology》1994,127(6):1627-1635
Many proteins have been shown to cap the fast growing (barbed) ends of actin filaments, but none have been shown to block elongation and depolymerization at the slow growing (pointed) filament ends. Tropomodulin is a tropomyosin-binding protein originally isolated from red blood cells that has been localized by immunofluorescence staining to a site at or near the pointed ends of skeletal muscle thin filaments (Fowler, V. M., M. A., Sussman, P. G. Miller, B. E. Flucher, and M. P. Daniels. 1993. J. Cell Biol. 120: 411-420). Our experiments demonstrate that tropomodulin in conjunction with tropomyosin is a pointed end capping protein: it completely blocks both elongation and depolymerization at the pointed ends of tropomyosin-containing actin filaments in concentrations stoichiometric to the concentration of filament ends (Kd < or = 1 nM). In the absence of tropomyosin, tropomodulin acts as a "leaky" cap, partially inhibiting elongation and depolymerization at the pointed filament ends (Kd for inhibition of elongation = 0.1-0.4 microM). Thus, tropomodulin can bind directly to actin at the pointed filament end. Tropomodulin also doubles the critical concentration at the pointed ends of pure actin filaments without affecting either the rate of extent of polymerization at the barbed filament ends, indicating that tropomodulin does not sequester actin monomers. Our experiments provide direct biochemical evidence that tropomodulin binds to both the terminal tropomyosin and actin molecules at the pointed filament end, and is the long sought-after pointed end capping protein. We propose that tropomodulin plays a role in maintaining the narrow length distributions of the stable, tropomyosin-containing actin filaments in striated muscle and in red blood cells.  相似文献   

19.
The regulation of actin is key for controlled cellular function. Filaments are regulated by actin-binding proteins, but the nucleotide state of actin is also an important factor. From extended molecular dynamics simulations, we find that both nucleotide states of the actin monomer have significantly less twist than their crystal structures and that the ATP monomer is flatter than the ADP form. We also find that the filament’s pointed end is flatter than the remainder of the filament and has a conformation distinct from G-actin, meaning that incoming monomers would need to undergo isomerization that would weaken the affinity and slow polymerization. Conversely, the barbed end of the filament takes on a conformation nearly identical to the ATP monomer, enhancing ATP G-actin’s ability to polymerize as compared with ADP G-actin. The thermodynamic penalty imposed by differences in isomerization for the ATP and ADP growth at the barbed end exactly matches experimental results.  相似文献   

20.
It was shown that substoichiometric concentrations of chaetoglobosin J, one of the fungal metabolites belonging to cytochalasins, inhibited the elongation at the barbed end of an actin filament. Stoichiometric concentrations of chaetoglobosin J decreased both the rate and the extent of actin polymerization in the presence of 75 mM KCl, 0.2 mM ATP and 10 mM Tris-HCl buffer at pH 8.0 and 25 degrees C. In contrast, stoichiometric concentrations of cytochalasin D accelerated actin polymerization. Chaetoglobosin J slowly depolymerized F-actin to G-actin until an equilibrium was reached. Analyses by a number of different methods showed the increase of monomer concentration at equilibrium to depend on chaetoglobosin J concentrations. F-actin under the influence of stoichiometric concentrations of chaetoglobosin J only slightly activated the Mg2+-enhanced ATPase activity of myosin at low ionic strength. It is suggested that when the structure of the chaetoglobosin-affected actin filaments is modified, the equilibrium is shifted to the monomer side, and the interaction with myosin is weakened.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号