首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
低压缺氧对大鼠脑线粒体腺苷酸转运体特性的影响   总被引:1,自引:0,他引:1  
Chen LF  Liu JZ  Li B 《生理学报》2006,58(1):29-33
本文探讨低压缺氧对大鼠脑线粒体内膜腺苷酸转运体(adenine nucleotide translocator,ANT)转运特性的影响。实验将雄性Wistar大鼠随机分为常氧对照组和缺氧组,后者分别连续暴露于模拟5000m高原1、5、15、30d(23h/d)。分别于平原和模拟4000m高原断头处死动物,分离脑线粒体,用抑制剂终止法测定线粒体对。H-ADP的转运效率,抑制剂滴定法测定ANT密度,HPLC测定线粒体内腺苷酸含量。结果显示:缺氧后ANT转运活性均明显低于常氧组,缺氧不同天数线粒体内膜ANT分布密度无显著改变,线粒体内(ATP+ADP)含量下降与转运活性变化一致。以上观察结果表明,低压缺氧暴露可显著抑制ANT转运活性,降低能量产生和利用的周转率,但不改变ANT密度,提示ANT活性改变是低压缺氧时细胞能量代谢障碍的重要机制。  相似文献   

2.
3.
The efflux of mitochondrial adenine nucleotide which is induced by addition of PPi to suspensions of rat liver mitochondria has been investigated. This efflux of adenine nucleotide is greatly stimulated by the uncoupler FCCP at 1 μM, Vmax being 6.7 nmol/min per mg protein as compared to 2.0 nmol/min per mg protein in its absence. The depletion process is inhibited by carboxyatractyloside. The Km for PPi of 1.25 mM is essentially unchanged when uncoupler is added. Quantitation of the individual adenine nucleotide species (ATP, ADP and AMP) and their relationship to the rate of efflux suggests that ADP is the predominant species being exchanged for PPi.  相似文献   

4.
5.
A minimum model of adenine nucleotide exchange through the inner membrane of mitochondria is presented. The model is based on a sequential mechanism, which presumes ternary complexes formed by binding of metabolites from both sides of the membrane. The model explains the asymmetric kinetics of ADP-ATP exchange as a consequence of its electrogenic character. In energized mitochondria, a part of the membrane potential suppresses the binding of extramitochondrial ATP in competition with ADP. The remaining part of the potential difference inhibits the back exchange of internal ADP for external ATP. The assumption of particular energy-dependent conformational states of the translocator is not necessary. The model is not only compatible with the kinetic properties reported in the literature about the adenine nucleotide exchange, but it also correctly describes the response of mitochondrial respiration to the extramitochondrial ATP/ADP ratio under different conditions. The model computations reveal that the translocation step requires some loss of free energy as driving force. The size of the driving force depends on the flux rate as well as on the extra- and intramitochondrial ATP/ADP quotients. By both quotients the translocator controls the export of ATP formed by oxidative phosphorylation in mitochondria.  相似文献   

6.
It has been shown previously that human rho degrees cells, deprived of mitochondrial DNA and consequently of functional oxidative phosphorylation, maintain a mitochondrial membrane potential, which is necessary for their growth. The goal of our study was to determine the precise origin of this membrane potential in three rho degrees cell lines originating from the human HepG2, 143B, and HeLa S3 cell lines. Residual cyanide-sensitive oxygen consumption suggests the persistence of residual mitochondrial respiratory chain activity, about 8% of that of the corresponding parental cells. The fluorescence emitted by the three rho degrees cell lines in the presence of a mitochondrial specific fluorochrome was partially reduced by a protonophore, suggesting the existence of a proton gradient. The mitochondrial membrane potential is maintained both by a residual proton gradient (up to 45 to 50% of the potential) and by other ion movements such as the glycolytic ATP(4-) to mitochondrial ADP(3-) exchange. The ANT2 gene, encoding isoform 2 of the adenine nucleotide translocator, is overexpressed in rho degrees HepG2 and 143B cells strongly dependent on glycolytic ATP synthesis, as compared to the corresponding parental cells, which present a more oxidative metabolism. In rho degrees HeLa S3 cells, originating from the HeLa S3 cell line, which already displays a glycolytic energy status, ANT2 gene expression was not higher as in parental cells. Mitochondrial oxygen consumption and ANT2 gene overexpression vary in opposite ways and this suggests that these two parameters have complementary roles in the maintenance of the mitochondrial membrane potential in rho degrees cells.  相似文献   

7.
8.
Adenine nucleotide exchange between the intra- and extramitochondrial compartments of mitochondria isolated from the muscle tissue of Ascaris lumbricoides was investigated. The exchange was specific for ATP and ADP, AMP, adenosine and non-adenine nucleotides were not exchanged at significant rates. All combinations of counter exchange were found to be possible between intra- and extramitochondrial ATP and ADP. Adenine nucleotide exchange in Ascaris muscle mitochondria was inhibited by atractyloside; was strongly temperature dependent; activated by potassium and magnesium and only slightly activated by calcium. The Km for adenine nucleotide exchange in Ascaris mitochondria was 4·1 and 2·85 μm for ATP and ADP respectively. The properties of adenine nucleotide exchange in Ascaris muscle mitochondria are thus similar in general features to the adenine nucleotide translocase system of mammalian mitochondria.  相似文献   

9.
The Bcl-2 family proteins plays a central role in apoptosis. The pro- or anti-apoptotic activities of Bcl-2 family are dependent on the Bcl-2 homology (BH) regions. Bcl-rambo, a new pro-apoptotic member, is unusual in that its pro-apoptotic activity is independent of its BH domains. However, the mechanism underlying Bcl-rambo-induced apoptosis is largely unknown. Mitochondrial localization is indispensable for the pro-apoptotic function of Bcl-rambo. Bcl-rambo interacts physically with the adenine nucleotide translocator (ANT), suppresses the ADT/ATP-dependent translocation activity of ANT. Collectively, our data indicate Bcl-rambo is a pro-apoptotic member of the Bcl-2 family, induces the permeability transition via interaction with ANT.

Structured summary of protein interactions:

Bcl-Rambo and HSP60colocalize by fluorescence microscopy (View interaction)Bcl-rambobinds to ANT1 by pull down (View interaction)  相似文献   

10.
Knorpp C  Johansson M  Baird AM 《FEBS letters》2003,555(2):363-366
This study shows that the plant mitochondrial nucleoside diphosphate kinase (mNDPK) localizes to both the intermembrane space and to the mitochondrial inner membrane. We show that mNDPK is very firmly attached to the membrane. Co-immunoprecipitation experiments identified the adenine nucleotide translocator as an interaction partner. This is the first report showing a direct association between these two proteins, although previous studies have shown metabolic cooperation between them. Possible consequences for mitochondrial energy metabolism are discussed.  相似文献   

11.
12.
Leishmania cannot synthesize purines de novo and rely on their host to furnish these compounds. To accomplish this, they possess multiple purine nucleoside and nucleobase transporters. Subcellular fractionation, immunohistochemical localization with anti-adenine nucleotide translocator (ANT) antibodies and surface biotinylation show that the mitochondrial ANT is also present in the plasma membrane of both promastigotes and amastigotes. Leishmania, however, do not appear to rely on this transporter to supplement their purine or energy requirements via preformed ATP from its host. Rather, Leishmania appear to use the plasma membrane ANT as part of a chemotaxis response. ATP is a chemorepellant for Leishmania and cells treated with atractyloside, an inhibitor of ANT, no longer exhibit negative chemotaxis for this compound.  相似文献   

13.
The aspartate/glutamate carrier from beef heart mitochondria has been solubilized with detergent. The transport protein was partially purified by chromatography on hydroxyapatite in the presence of dodecyl octaoxyethylene ether and high concentrations of ammonium acetate. During purification, the aspartate/glutamate carrier was identified by functional reconstitution into egg yolk phospholipid liposomes. After hydroxyapatite chromatography the protein is 30 fold enriched in aspartate/glutamate transport activity but still contains ADP/ATP-carrier and phosphate carrier. The reconstituted activity is specific for exchange of L-aspartate and L-glutamate and is similar to intact mitochondria with respect to substrate affinity and inhibitor sensitivity.  相似文献   

14.
The process of skeletal muscle aging is characterized by a progressive loss of muscle mass and functionality. The underlying mechanisms are highly complex and remain unclear. This study was designed to further investigate the consequences of aging on mitochondrial oxidative phosphorylation in rat gastrocnemius muscle, by comparing young (6 months) and aged (21 months) rats. Maximal oxidative phosphorylation capacity was clearly reduced in older rats, while mitochondrial efficiency was unaffected. Inner membrane properties were unaffected in aged rats since proton leak kinetics were identical to young rats. Application of top-down control analysis revealed a dysfunction of the phosphorylation module in older rats, responsible for a dysregulation of oxidative phosphorylation under low activities close to in vivo ATP turnover. This dysregulation is responsible for an impaired mitochondrial response toward changes in cellular ATP demand, leading to a decreased membrane potential which may in turn affect ROS production and ion homeostasis. Based on our data, we propose that modification of ANT properties with aging could partly explain these mitochondrial dysfunctions.  相似文献   

15.
Low concentrations (50–200 μ M ) of the anionic detergents cholate, deoxycholate and dodecylsulphate inhibited the activity of adenine nucleotide translocator in mitochondria from etiolated maize ( Zea mays L. hybrid Krasnodarskij 303) coleoptiles. This resulted in: (a) a decrease in the rates of oxidative phosphorylation and hydrolysis of extramitochondrial ATP; (b) a decrease in the rate of [33P]-ATP transport through the inner mitochondrial membrane. Anionic detergents may act as competitive inhibitors of ADP and ATP transport in maize mitochondria.  相似文献   

16.
The presence of ATP or ADP in the incubation medium prevents the collapse of membrane potential induced by external Ca2+ and phosphate. The same adenine nucleotides are unable to restore collapsed membrane potential unless Mg2+ are also added. Bongkrekate is also able to prevent the effects of external Ca2+ and phosphate and when added after membrane potential has collapsed strongly potentiates the restorative action of ATP or ADP. Atractyloside has an opposite effect.  相似文献   

17.
18.
19.
20.
Insulin and dexamethasone, usually added to culture media, play an important role in maintaining the survival of functional hepatocytes. Adenine nucleotide concentrations and energy charge values of cultured hepatocytes were determined to investigate the relationship between the beneficial effects of these hormones and the energy status of the cells. The results indicate that insulin and dexamethasone are essential in maintaining the metabolic competence of cultured hepatocytes and that this correlates with the absolute concentration of ATP rather than with the energy charge.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号