首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Our previous studies have shown that oxygen inhalation significantly reduces tumor hypoxia in the moderately well-differentiated HI subline of the Dunning prostate R3327 rat carcinoma. To test our hypothesis that modifying hypoxia could improve the radiosensitivity of these tumors, we performed experimental radiotherapy to compare the tumor response to ionizing radiation alone or in combination with oxygen inhalation. Tumor pO(2) measurements were performed on size-selected tumors several hours before radiotherapy using (19)F nuclear magnetic resonance echo planar imaging relaxometry (FREDOM) of the reporter molecule hexafluorobenzene. In common with our previous findings, the larger tumors (>3.5 cm(3)) exhibited greater hypoxia than the smaller tumors (<2 cm(3); P < 0.001), and oxygen inhalation reduced the hypoxic fraction (<10 Torr): In the larger tumors, hypoxic fraction dropped significantly from a mean baseline value of 80% to 17% (P < 0.001). The effect of oxygen administered 30 min before and during irradiation on tumor response to a single 30-Gy dose of photons was evaluated by growth delay. For the smaller tumors, no difference in growth delay was found when treatment was given with or without oxygen breathing. By contrast, breathing oxygen before and during irradiation significantly enhanced the growth delay in the larger tumors (additional 51 days). The differential behavior may be attributed to the low baseline hypoxic fraction (<10 Torr) in small tumors (20%) as a target for oxygen inhalation. There was a strong correlation between the estimated initial pO(2) value and the radiation-induced tumor growth delay (R > 0.8). Our histological studies showed a good match between the perfused vessels marked by Hoechst 33342 dye and the total vessels immunostained by anti-CD31 and indicated extensive perfusion in this tumor line. In summary, the present results suggest that the ability to detect modulation of tumor pO(2), in particular, the residual hypoxic fraction, with respect to an intervention, could have prognostic value for predicting the efficacy of radiotherapy.  相似文献   

2.
The changes in pO2 caused by nicotinamide in the FSaII mouse tumor and three different xenografts of human tumors, HP-56, FaDu, and EO1, grown subcutaneously in the legs of mice were studied. The tumor pO2, as measured with microelectrodes, began to rise soon after the host mice were injected intraperitoneally with 500 mg/kg nicotinamide, and it increased continuously for 100-120 min. The rate and magnitude of the increase in tumor pO2 was dependent on the tumor line and also on the tumor size. In FSaII tumors, the increase in pO2 caused by nicotinamide was relatively small in the well-oxygenated small tumors (173 +/- 5 mm3) compared with that in the larger tumors (515 +/- 25 mm3). The blood perfusion in FSaII tumors as measured with the laser Doppler method was also increased by nicotinamide. The growth delay in FSaII tumors induced by X irradiation was enhanced significantly by nicotinamide. It was concluded that the enhancement of radiation damage in the experimental tumors in mice by nicotinamide, as observed in the present study and reported by others, is due to an increase in intratumor pO2, possibly as a result of an increase in blood perfusion.  相似文献   

3.
Prior studies using pO(2) microelectrodes have shown that RSR13, an allosteric modifier of hemoglobin, increases tissue oxygenation in vivo. Recently, measurements of tissue oxygenation have been performed by many investigators using blood oxygen level-dependent magnetic resonance imaging (BOLD MRI). In this study, we tested the hypothesis that the BOLD MRI signal ratio in tumors will change after administration of RSR13. NCI-H460 human lung carcinoma cells were used as a xenograft in athymic nude mice. Mice with 1-cm(3) tumors in the flank were anesthetized and mounted on the MRI apparatus, and various doses of RSR13 were administered intraperitoneally (i.p.). MR images were then acquired at 10-min intervals for up to 60 min after injection. The effect of RSR13 on tumor response was studied using the same mouse xenograft model with tumor growth delay measurements. RSR13 increased the MRI signal ratio [Intensity(t)/Intensity(t = 0)] in a dose-dependent manner, with maximum increases occurring 30 min after RSR13 was administered. An RSR13 dose of 200 mg/kg proved to be optimum. Since the MRI signal ratio has been shown previously to be linearly related to tissue oxygenation, the changes in the MRI signal ratio can be attributed to changes in tumor oxygen levels. Using a 200-mg/kg dose of RSR13, with a 10-Gy dose of radiation administered to tumors 30 min later, enhancement of radiation-induced tumor growth delay by RSR13 was observed (enhancement factor = 2.8). Thus our MRI results support and verify the previously reported RSR13-induced increase in tumor oxygenation obtained using pO(2) microelectrodes. Based upon these results and other previous studies, the mechanism of enhancement of the effect of radiation by RSR13 probably involves an increase in tumor oxygenation.  相似文献   

4.
Hypoxia has a negative effect on the outcome of radiotherapy and surgery and is also related to an increased incidence of distant metastasis. In this study, tumor pO(2) measurements using a newly developed time-resolved luminescence-based optical sensor (OxyLitetrade mark) were compared with bioreductive hypoxia marker binding (pimonidazole). Single pO(2) measurements per tumor were compared to hypoxia marker binding in tissue sections using image analysis. Both assays were performed in the same tumors of three human tumor lines grown as xenografts. Both assays demonstrated statistically significant differences in the oxygenation status of the three tumor lines. There was also a good correlation between hypoxia marker binding and the pO(2) measurements with the OxyLitetrade mark device. A limitation of the OxyLitetrade mark system is that it is not yet suited for sampling multiple sites in one tumor. An important strength is that continuous measurements can be taken at the same position and dynamic information on the oxygenation status of tumors can be obtained. The high spatial resolution of the hypoxia marker binding method can complement the limitations of the OxyLitetrade mark system. In the future, a bioreductive hypoxic cell marker for global assessment of tumor hypoxia may be combined with analysis of temporal changes in pO(2) with the OxyLitetrade mark to study the effects of oxygenation-modifying treatment on an individual basis.  相似文献   

5.
The effects of pentoxifylline (PTX), a drug commonly used for vascular disorders in humans, on the pO2 in SCK tumors of A/J mice and FSa-II tumors of C3Heb/FeJ mice as well as on the radioresponse of SCK tumors were investigated. When the host mice were injected intraperitoneally (ip) with 5 mg/kg PTX, the tumor pO2 increased slowly, peaked 20-50 min postinjection, and returned to its original level in 70-90 min. The magnitude of the increase in tumor pO2 varied markedly depending on the site and tumors. The magnitude of the changes in tumor pO2 after an ip injection of 25 or 50 mg/kg PTX was similar to that caused by 5 mg/kg PTX, but the pO2 tended to remain elevated longer with the higher dose of PTX. When the A/J mice bearing SCK tumors in the legs were injected ip with 50 mg/kg PTX and the tumors were X-irradiated 20 min later, the radiation-induced growth delay of the tumors was greater than that caused by X irradiation alone. The present study demonstrated that PTX is potentially useful for increasing the pO2 and the radioresponse of human tumors.  相似文献   

6.
Several studies have demonstrated that untreated tumors may show significant fluctuations in tissue oxygen tension (pO(2)). Radiation treatment may induce changes in the tumor microenvironment that alter the pO(2) fluctuation pattern. The purpose of the present study was to investigate whether pO(2) fluctuations may also occur in irradiated tumors. A-07 human melanoma xenografts were irradiated with single doses of 0, 5 or 10 Gy. Fluctuations in pO(2) were recorded with OxyLite probes prior to irradiation and 24 and 72 h after the radiation exposure. Radiation-induced changes in the tumor microenvironment (i.e. blood perfusion and extracellular volume fraction) were assessed by dynamic contrast-enhanced magnetic resonance imaging. Seventy-two hours after 10 Gy, tumor blood perfusion had decreased to approximately 40% of that prior to irradiation, whereas the extracellular volume fraction had increased by approximately 25%. Fluctuations in pO(2) were seen in most tumors, irrespective of radiation dose and time after irradiation. The mean pO(2), the number of fluctuations around the mean pO(2), the number of fluctuations around threshold pO(2) values of 1, 2, 3, 5, 7 and 10 mmHg, and the amplitude of the fluctuations were determined for each pO(2) trace. No significant differences were detected between irradiated and unirradiated tumors. The results showed that pO(2) fluctuations may occur in irradiated tumors and that the pO(2) fluctuation pattern in A-07 tumors exposed to 5 or 10 Gy is similar to that in untreated tumors. Consequently, these doses did not induce changes in the tumor microenvironment that were sufficient to cause detectable alterations in the pO(2) fluctuation pattern.  相似文献   

7.
We recently described a novel approach to measuring regional tumor oxygen tension using (19)F pulse burst saturation recovery (PBSR) nuclear magnetic resonance (NMR) echo planar imaging (EPI) relaxometry of hexafluorobenzene. We now compare oxygen tension measurements in a group of size-matched R3327-AT1 Dunning prostate rat tumors made using this new method with those using a traditional polarographic method: the Eppendorf histograph. Similar oxygen tension distributions were found using the two methods, and both techniques showed that tumors with volume greater than 3.5 cm(3) were significantly (P < 0.0001) less well oxygenated than smaller tumors (volume less than 2 cm(3)). Using the (19)F EPI approach, we also examined the response to respiratory challenge. Increasing the concentration of inspired oxygen from 33% to 100% O(2) produced a significant increase (P < 0.0001) in tumor oxygenation for a group of small tumors. In contrast, no change was observed in the mean pO(2) for a group of large tumors. Consideration of individual tumor regions irrespective of tumor size showed a strong correlation between the maximum pO(2) observed when breathing 100% O(2) compared with mean baseline pO(2). These results further demonstrate the usefulness of (19)F EPI to assess changes in regional tumor oxygenation.  相似文献   

8.
Keyes KA  Mann L  Teicher B  Alvarez E 《Cytokine》2003,21(2):98-104
Tumor microenvironment plays a critical role in tumor growth, angiogenesis, and metastasis. Differences in site of tumor implantation result in differences in tumor growth, metastasis, as well as response to chemotherapy. We hypothesized that tumor-induced angiogenic growth factor production into the plasma will also be influenced by site of tumor implantation. We evaluated the site-dependent production of angiogenic growth factors in the plasma of tumor bearing animals at two different sites of implantation. Plasma levels of tumor necrosis factor-alpha (TNF-alpha), basic fibroblast growth factor (bFGF), and vascular endothelial growth factor (VEGF) were evaluated in nude mice bearing A2780, SKOV-3, or OVCAR-3 human ovarian tumors, as well as Panc-1, AsPC-1, or BxPC-3 human pancreatic tumors grown as subcutaneous (SC) xenografts or in the intraperitoneal (IP) cavity. Plasma VEGF and bFGF levels produced by two ovarian tumor lines and two pancreatic tumor lines were substantially higher when the tumors were implanted in the IP cavity than in the SC space. These studies indicated that the site of tumor implantation was an important determinant in the production of plasma VEGF and bFGF levels. As more and more anti-angiogenic agents are developed, the need for appropriate animal models becomes apparent. These results suggest the demand for an appropriate model for the in vivo evaluation of anti-angiogenesis.  相似文献   

9.
The presence of oxygen-deficient tumor cells is a critical issue in cancer therapy. To identify tumor hypoxia, tissue partial oxygen pressure (pO2) can be measured directly. The OxyLite system allows determination of pO2 in tumors and permits continuous measurements of pO2 at a fixed point. In this study, this system was used to continuously measure pO2 in R3327-AT tumors in animals anesthetized with isoflurane. In addition, continuous pO2 measurement was performed in the muscle in non-tumor-bearing animals. In animals breathing isoflurane balanced by air, tumor pO2 at fixed positions decreased rapidly within 1-2 min of probe positioning but remained stable thereafter. In animals breathing isoflurane balanced by pure oxygen, tumor pO2 was higher and remained high. We also measured pO2 values at multiple positions in R3327-AT tumors of various sizes, with anesthetized animals breathing either air or pure oxygen. Our data showed that the frequency of pO2 measurements below 2.5 or 5.0 mmHg was significantly higher in animals breathing air than in animals breathing pure oxygen. Measurements in different-sized tumors showed that the mean pO2 value decreased as tumor volume increased, with the largest change occurring between tumor volumes of 100 and 200 mm3. Our data demonstrate that the OxyLite system, when used with isoflurane anesthesia, is a valuable tool in the study of tumor hypoxia.  相似文献   

10.
Recently, a system that measures tissue oxygen tension using time-resolved luminescence-based optical sensors has become available commercially (Oxford Optronix, Oxford, England). Two experiments were conducted using this system. First, the oxygen tension distribution was measured in two tumor lines: a spontaneous mouse fibrosarcoma, FSa-II, and a human squamous cell carcinoma xenograft, FaDu. The area in which the pO(2) was equal to or lower than 2.5 mmHg was defined as the hypoxic lesion, and the hypoxic cell fraction was taken as the fraction of these measurements in a tumor. The measured hypoxic cell fractions were compared with those determined by the paired cell survival assay for tumors of various sizes. Second, the tumor tissue pO(2) was measured continuously after administration of two different anesthetics to evaluate the effect of these drugs on tissue pO(2). Results indicated a good agreement between the hypoxic cell fractions measured by this system and those determined by the paired cell survival curve assay for tumors smaller than approximately 500 mm(3). For tumors larger than approximately 500 mm(3), the hypoxic cell fractions measured by the oxygen probe system were higher than those measured by the paired cell survival assay. This may suggest that the hypoxic cell fraction measured by the oxygen probes included both hypoxic and necrotic areas in large tumors where necrotic lesions occupied a significant portion of the tumor. Continuous measurements of pO(2) after anesthesia (Nembutal, or ketamine plus xylazine) showed a consistent rise in the pO(2) during the first 20-30 min of measurement. Subsequently, the pO(2) values became constant or continued to rise slowly. For comparison, the tumor cell survivals were assayed after a dose of 20 Gy given in air at 5, 20 and 60 min after anesthesia. The result showed a decrease in cell survival only in tumors irradiated 20 min after an injection of Nembutal.  相似文献   

11.
Efaproxiral, an allosteric modifier of hemoglobin, reduces hemoglobin-oxygen binding affinity, facilitating oxygen release from hemoglobin, which is likely to increase tissue pO(2). The purpose of this study was to determine the effect of efaproxiral on tumor oxygenation and growth inhibition of RIF-1 tumors that received X radiation (4 Gy) plus oxygen breathing compared to radiation plus oxygen plus efaproxiral daily for 5 days. Two lithium phthalocyanine (LiPc) deposits were implanted in RIF-1 tumors in C3H mice for tumor pO(2) measurements using EPR oximetry. Efaproxiral significantly increased tumor oxygenation by 8.4 to 43.4 mmHg within 5 days, with maximum increases at 22-31 min after treatment. Oxygen breathing alone did not affect tumor pO(2). Radiation plus oxygen plus efaproxiral produced tumor growth inhibition throughout the treatment duration, and inhibition was significantly different from radiation plus oxygen from day 3 to day 5. The results of this study provide unambiguous quantitative information on the effectiveness of efaproxiral to consistently and reproducibly increase tumor oxygenation over the course of 5 days of treatment, modeling the clinical use of efaproxiral. Also, based on the tumor growth inhibition, the study shows the efaproxiral-enhanced tumor oxygenation was radiobiologically significant. This is the first study to demonstrate the ability of efaproxiral to increase tumor oxygenation and to increase the tumor growth inhibition of radiotherapy over 5 days of treatment.  相似文献   

12.
We present direct experimental evidence of the fluence-rate-dependent, radiation-induced variations in intratumor oxygen partial pressure (pO(2)) in HT29 human colon adenocarcinoma xenografts subjected to meta-tetra(hydroxyphenyl)chlorin (mTHPC)-based photodynamic therapy (PDT). The data establish a correlation between tumor oxygenation and treatment outcome. Tumor-bearing mice were injected with 0.3 mg/kg photosensitizer and subjected 72 h later to a 12 J/cm(2) red light dose administered at fluence rates of 5, 30, 90 and 160 mW/cm(2). A significant decrease in mean and median pO(2) was registered at approximately half of the total radiation fluence was delivered in tumors treated at rates of 160 and 90 mW/cm(2). Conversely, with the two lower fluence rates, intratumor pO(2) was maintained at levels comparable to those measured before illumination. Tumor oxygenation values registered shortly after every treatment protocol were at least equal to baseline levels, thus excluding the possibility of significant acute vessel damage during illumination. The tumor regrowth profile correlated with the pO(2) values monitored during irradiation. Tumors treated with fluence rates of 5 and 30 mW/cm(2) exhibited significantly longer tumor quadrupling times than those treated at 160 and 90 mW/cm(2). Improved tumor destruction could be expected by reducing the rate and the extent of oxygen depletion during meta-tetra(hydroxyphenyl)chlorin photodynamic therapy using low fluence rates.  相似文献   

13.
Wen, B., Urano, M., Humm, J. L., Seshan, V. E., Li, G. C. and Ling, C. C. Comparison of Helzel and OxyLite Systems in the Measurements of Tumor Partial Oxygen Pressure (pO(2)). Radiat. Res. 168, 67-75 (2008). It has been demonstrated in both experimental and human malignancies that hypoxic tumor cells are linked with aggressive disease phenotype. One of the methods to identify these cells is by direct physical measurement of tumor pO(2). This study compared pO(2) values measured with two systems, the Helzel Hypoximeter (successor of the polarographic Eppendorf electrode) and the Oxford-Optronix OxyLite (fiber-optic probe), in R3327-AT and R3327-AT/tkeGFP tumors. Partial oxygen pressure was measured in individual tumors with either system or in the same tumor with both systems. The similarities and discrepancies in pO(2) measurements between the two systems were also investigated when tumor-bearing animals were breathing pure oxygen. Our data showed a considerable heterogeneity in pO(2) values in each tumor using both the Helzel and OxyLite systems. Similar results were obtained with both systems for the mean and median pO(2) values, and the distributions of pO(2) values within the interval 0 < pO(2) < 40 mmHg (the range important for defining tumor hypoxia) were found to be statistically equivalent. However, the frequencies of high pO(2) values (>40 mmHg) and zero values measured by the two systems were statistically significantly different.  相似文献   

14.
We report the first treatment of metastatic breast cancer by systemic radioimmunotherapy. The serial therapy doses were chosen based on quantitative imaging data in a treatment planning approach. A terminally ill patient with aggressive, locally advanced breast cancer who had failed radiation treatment and chemotherapy was injected intravenously with radiolabeled I-131 chimeric L6, a human-mouse chimeric lgG1 monoclonal antibody to adenocarcinoma. Initially, an imaging 10 mCi dose of I-131 chimeric L6 (dose 1) deposited 8.8% of the injected dose in her chest wall tumor at 48 hours. Ten days later the patient was given a 150 mCi I-131 chimeric L6 dose (dose 2) followed three weeks later by a 100 mCi dose (dose 3). Tumor uptake and retention were comparable for doses 1 and 2, and decreased for dose 3. Following dose 3 the patient developed a manageable thrombocytopenia and transient Grade IV granulocytopenia. The tumor was observed to decrease in size with peak tumor regression occurring two weeks after dose 3. This partial response (PR) was achieved by radioimmunotherapy at a time when conventional therapy had been unable to impact the growth of the patient's massive and aggressive tumor.  相似文献   

15.
Tumor hypoxia is associated with poor clinical outcome in a variety of tumors, including cervical, head/neck and breast cancer. Administration of erythropoietic factors has been suggested as a means of improving tumor oxygenation (pO2). This study randomized rats to treatment with low-dose or high-dose darbepoetin alfa or a placebo to determine the effect of darbepoetin alfa on the pO2, growth and response to radiation therapy of R3230 mammary adenocarcinoma. Rats received 3 microg/kg (high dose) or 0.2 microg/kg (low dose) darbepoetin alfa or placebo for eight doses prior to either (1) pO2 measurement and pimonidazole staining or (2) irradiation or sham irradiation on post-transplant day 20. In the animals randomized to radiation treatment, placebo or darbepoetin alfa administration at a reduced dose was continued for 9 weeks or until the tumor diameter exceeded 15 mm (defined as failure for survival analysis). Treatment with high-dose and low-dose darbepoetin alfa produced hematocrits of 68 and 56% compared to 44 and 45% in their respective control groups (both P < 10(-5)). At 18 days post-transplant, tumor volume was not different for either darbepoetin alfa group compared to the placebo group. Tumor oxygenation, as measured by the fraction of pO2 measurement <10 mmHg and the intensity of pimonidazole staining, was significantly improved in the high-dose group (P = 0.046 and 0.03, respectively, compared with controls) but not in the low-dose group. Growth delay curves after irradiation did not differ significantly for high- or low-dose darbepoetin alfa compared to placebo. In this nonanemic animal model of mammary adenocarcinoma, darbepoetin alfa does not significantly alter tumor growth or radioresponsiveness, even though it improves oxygenation when administered at high doses.  相似文献   

16.
Hypoxia is important in tumor biology and therapy. This study compared the novel luminescence fiber-optic OxyLite sensor with the Eppendorf polarographic electrode in measuring tumor oxygenation. Using the relatively well-oxygenated P22 tumor, oxygen measurements were made with both instruments in the same individual tumors. In 24 air-breathing animals, pooled electrode pO(2) readings lay in a range over twice that of sensor pO(2(5min)) values (-3.2 to 80 mm Hg and -0.1 to 34.8 mm Hg, respectively). However, there was no significant difference between the means +/- 2 SE of the median pO(2) values recorded by each instrument (11.0 +/- 3.3 and 8.1 +/- 1.9 mm Hg, for the electrode and sensor respectively, P = 0.07). In a group of 12 animals treated with carbon monoxide inhalation to induce tumor hypoxia, there was a small but significant difference between the means +/- 2 SE of the median pO(2) values reported by the electrode and sensor (1.7 +/- 0.9 and 2.9 +/- 0.7 mm Hg, respectively, P = 0.009). A variable degree of disparity was seen on comparison of pairs of median pO(2) values from individual tumors in both air-breathing and carbon monoxide-breathing animals. Despite the differences between the sets of readings made with each instrument from individual tumors, we have shown that the two instruments provide comparable assessments of tumor oxygenation in groups of tumors, over the range of median pO(2) values of 0.6 to 28.1 mm Hg.  相似文献   

17.
Because breast cancer cells often express either Her2/neu or carcinoembryonic antigen (CEA) or both, these tumor markers are good targets for radioimmunotherapy using Y-90-labeled antibodies. We performed studies on nude mice bearing xenografts from MCF7, a cell line that has low Her2 and CEA expression, to more accurately reflect the more usual situation in breast cancer. Although uptake of In-111 anti-CEA into tumors was lower than that for In-111-labeled anti-Her2, radioimmunotherapy (RIT) with Y-90 anti-CEA was equivalent to that of Y-90 anti-Her2. When either Y-90 antibody was combined with a split-dose treatment with Taxol, the antitumor effect was greater than with either agent alone. When Y-90 anti-CEA was combined with a single dose of Taxol, the results were equivalent to the split-dose regimen. RIT plus cold Herceptin had no additional effects on tumor size reduction over RIT alone. When animals were first treated with Y-90 anti-Her2 and imaged 1-2 weeks later with In-111 anti-CEA or anti-Her2, tumor uptake was higher for anti-CEA and improved over tumor uptake with no prior RIT. These results suggest that a split dose of RIT with anti-Her2 antibody followed by anti-CEA antibody would be more effective than a single dose of either. This prediction was partially confirmed in a controlled study comparing single- vs split-dose anti-Her2 RIT followed by either anti-Her2 or anti-CEA RIT. These studies suggest that combined RIT and Taxol therapy are suitable in breast cancers expressing either low amounts of Her2 or CEA, thus expanding the number of eligible patients for combined therapies. They further suggest that split-dose RIT using different combinations of Y-90-labeled antibodies is effective in antitumor therapy.  相似文献   

18.
A method is reported for the study of early phases of neovascularization in syngeneic murine tumors and human tumor xenografts in nude mice. Using this method, the effect of irradiation of tumor cells or tumor bed on tumor angiogenesis was studied. Tumor cells were injected intradermally in the abdominal skin flap, which was reopened at 2-day intervals to quantify newly formed blood vessels at the site of tumor cell injection. Both tumor cell injection and blood vessel counting were performed under a dissecting microscope. Using three syngeneic murine tumors and two clones of a human colonic adenocarcinoma, it was observed that new blood vessels started appearing within a few days after tumor cell injection and that this event preceded measurable tumor growth. The number of blood vessels increased exponentially for several days but then their further growth slowed. The extent of angiogenesis depended on the tumor type and the number of tumor cells injected. The exposure of the skin flap to ionizing radiation prior to tumor cell injection reduced neovascularization. We further observed that heavily irradiated tumor cells retained their ability to induce angiogenic response and that lymphoid cells (peritoneal exudate and spleen cells) could also elicit an angiogenic response, although it is weaker than the response elicited by tumor cells. Thus this method is suitable for quantification and kinetics of early phases of tumor angiogenesis in individual mice bearing transplants of syngeneic tumors or human tumor xenografts, and it can be useful for investigating various regulators of tumor angiogenesis.  相似文献   

19.
We have shown that thymoquinone (TQ) is a potent antitumor agent in human colorectal cancer cells. In this study, we evaluated TQ's therapeutic potential in two different mice colon cancer models [1,2-dimethyl hydrazine (DMH) and xenografts]. We also examined TQ effects on the growth of C26 mouse colorectal carcinoma spheroids and assessed tumor invasion in vitro. Mice were treated with saline, TQ, DMH, or combinations once per week for 30 weeks and the multiplicity, size and distribution of aberrant crypt foci (ACF) and tumors were determined at weeks 10, 20 and 30. TQ injected intraperitoneally (i.p.) significantly reduced the numbers and sizes of ACF at week 10; ACF numbers were reduced by 86%. Tumor multiplicity was reduced at week 20 from 17.8 in the DMH group to 4.2 in mice injected with TQ. This suppression was observed at week 30 and was long-term; tumors did not re-grow even when TQ injection was discontinued for 10 weeks. In a xenograft model of HCT116 colon cancer cells, TQ significantly (P < 0.05) delayed the growth of the tumor cells. Using a matrigel artificial basement membrane invasion assay, we demonstrated that sub-cyto-toxic doses of TQ (40 microM) decreased C26 cell invasion by 50% and suppressed growth in three-dimensional spheroids. Apoptotic signs seen morphologically were increased significantly in TQ-treated spheroids. TUNEL staining of xenografts and immunostaining for caspase 3 cleavage in DMH tumors confirmed increased apoptosis in mouse tumors in response to TQ. These data should encourage further in vivo testing and support the potential use of TQ as a therapeutic agent in human colorectal cancer.  相似文献   

20.
In normal tissues, thyroid hormones play a major role in the metabolic activity and oxygen consumption of cells. Because the rate of oxygen consumption is a key factor in the response of tumors to radiation, we hypothesized that thyroid hormones may affect the metabolic activity of tumor cells and hence modulate the response to cytotoxic treatments. We measured the influence of thyroid status on the tumor microenvironment in experimental tumors. Hypothyroidism and hyperthyroidism were generated in mice by chronic treatment with propyl thiouracil and l-thyroxine. Thyroid status significantly modified tumor pO(2) as measured with EPR oximetry. Mechanistically, this was the result of the profound changes in oxygen consumption rates. Thyroid status was associated with a significant change in tumor radiosensitivity since the regrowth delay was increased in hypothyroid mice compared to euthyroid mice, an effect that was abolished when temporarily clamped tumors were irradiated. This study provides unique insights into the impact of modulating tumor oxygen consumption and could have implications in the management of cancer patients with thyroid disorders.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号