首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The 2- and 8-azido trimer 5'-triphosphate photoprobes of 2-5A have been enzymatically synthesized from [gamma-32P]2-azidoATP and [alpha-32P]8-azidoATP by 2-5A synthetase from rabbit reticulocyte lysates. Identification and structural determination of the 2- and 8-azido adenylate trimer 5'-triphosphates were accomplished by enzymatic hydrolyses with T2 RNase, snake venom phosphodiesterase, and bacterial alkaline phosphatase. Hydrolysis products were identified by HPLC and PEI-cellulose TLC analyses. The 8-azido photoprobe of 2-5A displaces p3A4[32P]pCp from RNase L with affinity equivalent to p3A3 (IC50 = 2 X 10(-9) M in radiobinding assays). The 8-azido photoprobe also activates RNase L to hydrolyze poly(U) [32P]pCp 50% at 7 X 10(-9) M in core-cellulose assays. The 2- and 8-azido photoprobes and authentic p3A3 activate RNase L to cleave 28S and 18S rRNA to specific cleavage products at 10(-9) M in rRNA cleavage assays. The nucleotide binding site(s) of RNase L and/or other 2-5A binding proteins in extracts of interferon-treated L929 cells were investigated by photoaffinity labeling. Dramatically different photolabeling patterns were observed with the 2- and 8-azido photoprobes. The [gamma-32P]2-azido adenylate trimer 5'-triphosphate photolabels only one polypeptide with a molecular weight of 185,000 as determined by SDS gel electrophoresis, whereas the [alpha-32P]8-azido adenylate trimer 5'-triphosphate covalently photolabels six polypeptides with molecular weights of 46,000, 63,000, 80,000, 89,000, 109,000, and 158,000. Evidence that the photolabeling by 2- and 8-azido 2-5A photoprobes was highly specific for the p3A3 allosteric binding site was obtained as follows.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
A rapid and convenient new procedure for detecting RNase L activity following Western blot by renaturation of the enzyme on the nitrocellulose sheets is described. This method allows the simultaneous analysis of enzymatic activity (e.g., cleavage of poly(uridylic acid)-3'-[32P]pCp) and RNase L binding to radioactivE probes (e.g., 2-5A-3'-[32P]pCp) in the same sample. Unlike previously published methods, this procedure eliminates interference from proteases or other RNases during the analysis of RNase L activity. The detection of RNase(s) L is also affected by the presence of endogenous 2-5A, 2-5A derivatives, or other possible "inhibitors" in cell extracts; this Western blot assay allows of RNase(s) L to be detected independently of intracellular 2-5A or analogs. Differences between the procedures used so far and this Western blot technique can indeed be demonstrated. It is shown with this Western blot assay that although RNase L has been described as a protein of 185-200 kDa under nondenaturating conditions, its 80-kDa (and 40-kDa) component is able to bind 2-5A and to cleave poly(uridylic acid) in a 2-5A-dependent way, independently of other subunit(s) or cofactor(s).  相似文献   

3.
A 37-kDa binding polypeptide accumulates in peripheral blood mononuclear cell (PBMC) extracts from chronic fatigue syndrome (CFS) patients and is being considered as a potential diagnostic marker (De Meirleir, K., Bisbal, C., Campine, I., De Becker, P., Salehzada, T., Demettre, E., and Lebleu, B. (2000) Am. J. Med. 108, 99-105). We establish here that this low molecular weight 2-5A-binding polypeptide is a truncated form of the native 2-5A-dependent ribonuclease L (RNase L), generated by an increased proteolytic activity in CFS PBMC extracts. RNase L proteolysis in CFS PBMC extracts can be mimicked in a model system in which recombinant RNase L is treated with human leukocyte elastase. RNase L proteolysis leads to the accumulation of two major fragments with molecular masses of 37 and 30 kDa. The 37-kDa fragment includes the 2-5A binding site and the N-terminal end of native RNase L. The 30-kDa fragment includes the catalytic site in the C-terminal part of RNase L. Interestingly, RNase L remains active and 2-5A-dependent when degraded into its 30- and 37-kDa fragments by proteases of CFS PBMC extract or by purified human leukocyte elastase. The 2-5A-dependent nuclease activity of the truncated RNase L could result from the association of these digestion products, as suggested in pull down experiments.  相似文献   

4.
The technique of photoaffinity labeling has been applied to the double-stranded RNA (dsRNA)-dependent enzyme 2',5'-oligoadenylate (2-5A) synthetase to provide a means for the examination of RNA-protein interaction(s) in the dsRNA allosteric binding domain of this enzyme. The synthesis, characterization, and biological properties of the photoaffinity probe poly[( 32P]I,8-azidoI).poly(C) and its mismatched analog poly[( 32P]I,8-azidoI).poly(C12U), which mimic the parent molecules poly(I).poly(C) and poly(I).poly(C12U), are described. The efficacy of poly[( 32P]I,8-azidoI).poly(C) and poly[( 32P]I,8-azidoI).poly(C12U) as allosteric site-directed activators is demonstrated using highly purified 2-5A synthetase from rabbit reticulocyte lysates and from extracts of interferon-treated HeLa cells. The dsRNA photoprobes activate these two 2-5A synthetases. Saturation of 2-5A synthetase is observed at 6 x 10(-4) g/ml poly[( 32P]I,8-azidoI).poly(C) following photolysis for 20 s at 0 degrees C. The photoincorporation of poly[( 32P]I,8-azidoI).poly(C) is specific, as demonstrated by the prevention of photoincorporation by native poly(I).poly(C). DNA, poly(I), and poly(C) are not competitors of poly[( 32P]I,8-azidoI).poly(C). Following UV irradiation of 2-5A synthetase with poly[( 32P]I,8-azidoI).poly(C), the reaction mixture is treated with micrococcal nuclease to hydrolyze azido dsRNA that is not cross-linked to the enzyme. A radioactive band of 110 kDa (the same as that reported for native rabbit reticulocyte lysate 2-5A synthetase) is observed following sodium dodecyl sulfate-polyacrylamide gel electrophoresis and autoradiography. The specific photolabeling of the 2-5A synthetase suggests that the azido dsRNA is intrinsic to the allosteric binding domain. The utility of poly[( 32P]I,8-azidoI).poly(C) for the detection of dsRNA-dependent binding proteins and the isolation of peptides at or near the allosteric binding site is discussed.  相似文献   

5.
2-5A is an intracellular effector that has been implicated in interferon action, hormonal regulation, and cell growth control. 2-5A action is mediated through its activation of 2-5A-dependent RNase (RNase L, RNase F). Affinity resins [2-5A-cellulose and core (2-5A)-cellulose] were chemically synthesized for purification and immobilization of 2-5A-dependent RNase from mouse L cells and rabbit reticulocyte lysates. The breakdown of poly(U)-[3'-32P]Cp to acid-soluble fragments was demonstrated using the 2-5A-dependent RNase:2-5A -cellulose complex; this activity was enhanced by adding (free) 2-5A. In contrast, RNase activity was measured from the 2-5A-dependent RNase:core (2-5A)-cellulose complex only after the addition of free 2-5A. The rabbit reticulocyte 2-5A-dependent RNase is activated only by tetramer or higher oligomers of 2-5A; therefore there was breakdown of poly(U)-[3'-32P]Cp using core (2-5A)-cellulose-bound reticulocyte 2-5A-dependent RNase after addition of tetramer 2-5A but there was no poly(U) degradation in the presence of trimer 2-5A. The absence of significant general nuclease in the assays was demonstrated by the resistance to breakdown of poly(C)-[3'-32P]Cp (not susceptible to 2-5A-dependent RNase). Moreover, core (2-5A)-cellulose was used to develop a sensitive (subnanomolar) assay for the detection of authentic 2-5A. 2-5A, or the material to be tested, was added to mouse L-cell 2-5A-dependent RNase:core (2-5A)-cellulose complex in the presence of poly(U)-[3'-32P]Cp. The concentration of 2-5A in the sample could be measured from the amount of poly(U) degradation. Several closely related analogs of 2-5A were tested and found to be completely inactive. The technology described herein may be applied to the study of the regulation of 2-5A-dependent RNase, the detection of 2-5A from cells and tissues, and other aspects of the 2-5A system.  相似文献   

6.
Biological activities of phosphodiester linkage isomers of 2-5A   总被引:2,自引:0,他引:2  
To determine the relative importance of the 2',5'-phosphodiester bond of 2-5A in its binding to and activation of the 2-5A-dependent ribonuclease (RNase L, RNase F), a number of phosphodiester linkage isomers of 2-5A were prepared. These isomers were obtained either by lead ion-catalyzed polymerization of adenosine 5'-phosphorimidazolidate or by T4 polynucleotide kinase-catalyzed 5'-phosphorylation of adenylyl(3' leads to 5')adenylyl(3' leads to 5')adenosine followed by reaction of the corresponding phosphorimidazolidates with tri(n-butylammonium)pyrophosphate. The following 2-5A isomers thus were prepared: ppp5'A2'p5'A3'p5'A, ppp5'A3'p5'A2'p5'A, ppp5'A3'p5'A3'p5'A("3-5A"), ppp5'A2'p5'A3'p5'A2'p5'A,and ppp5'A3'p5'A2'p5'-A2'p5'A. The ability of these isomeric 2-5As to interact with the 2-5A-dependent endonuclease was ascertained by three different criteria: (i) ability to prevent the protein synthesis inhibitory effects of 2-5A, (ii) activity as an inhibitor of translation in encephalomyocarditis RNA-programmed L cell extracts, and (iii) ability to prevent binding of the radiolabeled probe, ppp5'A2'p5'A2'p5'A2'p5'A3'[32P]p5'Cp, to the endonuclease of L cell extracts. In certain experiments, degradation of oligonucleotide was minimized or eliminated by altering assay conditions, providing alternate phosphodiesterase substrates, or by using purified endoribonuclease of Ehrlich ascites cells. By all criteria, replacement of 2',5'-bond by a 3',5'-bond led to a substantial decrease in biological activity. Generally, replacement of just one 2',5'-phosphodiester bond with a 3',5'-linkage led to at least a one order of magnitude loss of activity. In accord with this trend, ppp5'A3'p5'A3'p5'A(3-5A) was greater than 10,000 less active than 2-5A in binding to the endonuclease or as an inhibitor of protein synthesis.  相似文献   

7.
In continued studies to elucidate the requirements for binding to and activation of the 2',5'-oligoadenylate-dependent endoribonuclease (RNase L), chirality has been introduced into the 2',5'-oligoadenylate (2-5A, p3An) molecule to give the Rp configuration in the 2',5'-internucleotide backbone and the Sp configuration in the alpha-phosphorus of the pyrophosphoryl moiety of the 5'-terminus. This was accomplished by the enzymatic conversion of (Sp)-ATP alpha S to the 2',5'-phosphorothioate dimer and trimer by the 2-5A synthetase from lysed rabbit reticulocytes. The most striking finding reported here is the ability of the 2',5'-phosphorothioate dimer 5'-triphosphate (i.e., p3A2 alpha S) to bind to and activate RNase L. p3A2 alpha S displaces the p3A4[32P]pCp probe from RNase L with an IC50 of 5 X 10(-7) M, compared to an IC50 of 5 X 10(-9) M for authentic p3A3. Further, p3A2 alpha S activates RNase L to hydrolyze poly(U)-3'-[32P]pCp (20% at 2 X 10(-7) M), whereas authentic p3A2 is unable to activate the enzyme. Similarly, the enzymatically synthesized p3A2 alpha S at 10(-6) M activated RNase L to degrade 18S and 28S rRNA, whereas authentic p3A2 was devoid of activity. p3A3 alpha S was as active as authentic p3A3 in the core--cellulose and rRNA cleavage assays. The absolute structural and configurational assignment of the enzymatically synthesized p3A2 alpha S and p3A3 alpha S was accomplished by high-performance liquid chromatography, charge separation, enzymatic hydrolyses, and comparison to fully characterized chemically synthesized (Rp)- and (Sp)-2', 5'-phosphorothioate dimer and trimer cores.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Abstract

The 2-5A/RNase L system is widely accepted to be part of the antiviral mechanism of interferon1, 2an and may also regulate cell growth3, where 2-5A exerts its biological effects by activating RNase L. Numerous 2-5A analogs have been synthesized with the goal of binding to, but not activating, RNase L. However, these analogs have had limitations when studied In vitrQ. We have reported on the unique properties of 2-5A molecules in which Rp and Sp chirality have been introduced into the 2-5A backbone to form the phosphorothioate analogs of 2-5A4-6. By chiral modification of the 2-5A backbone, we have examined the stereochemical requirements for binding to and activation of RNase L. In order to elucidate the mechanism by which 2-5A binds to and activates RNase L, it is essential to ascertain the interactions in the nucleotide binding domain of RNase L and/or other 2-5A binding proteins. By employing photoaffinity labeling using enzymatically synthesized 2 and 8 azido photoprobes of 2-5A, we have characterized the 2- and 8-azido trimer 5′-triphoshate photoprobes of 2-5A and described the biological properties of these photoprobes (Figure 1) of 2-5A and their application in photolabeling of RNase L and/or other 2-5A binding proteins? have been reported. 2- and 8-azidoATP are substrates for the 2-5A synthetase from IFN-8-treated HeLa cell extracts and from rabbit reticulocyte lysates, but not for highly purified 2-5A synthetase from rabbit reticulocyte lysates'. W irradiation results in the photoinsertion of 2- and 8-azidoATP into the catalytic site of the 2-5A synthetase. Analysis of Scatchard plots of the 2-5A synthetase suggests the presence of high affinity and low affinity binding sites that may correspond to the acceptor and the 2′-adenylation sites of the enzyme.  相似文献   

9.
A latent endoribonuclease, RNase L, binds to and is activated by (2'-5')oligoadenylates ((2'-5')(A)n, n = 2-15). Binding to a labeled derivative of (2'-5')(A)n, [32P](2'-5')(A)3pCp, is detected as a protein-ligand complex observed following nondenaturing polyacrylamide gel electrophoresis. One major binding complex and two minor binding complexes are readily seen in cytoplasmic extracts from Ehrlich ascites tumor cells, murine tissue extracts and rabbit liver tissue extracts. At least one of the more rapidly migrating complexes appears to be a proteolytic degradation product of the larger [32P](2'-5')(A)3pCp binding protein. Cell and tissue extracts containing [32P](2'-5')(A)3pCp binding activity can be immobilized onto nitrocellulose filters and [32P](2'-5')(A)3pCp binding activity detected using a simple, rapid, economical affinity blot assay. Detection of [32P](2'-5')(A)3pCp binding proteins following electrophoresis on nondenaturing polyacrylamide gels and the affinity blot assay significantly improve and simplify the analysis of (2'-5')(A)n binding proteins.  相似文献   

10.
2',5'-oligoadenylates known as 2-5A [px(A2'p)nA; chi = 2 or 3, n greater than or equal to 2] are produced in interferon-treated cells in response to double-stranded RNA. 2-5A binds with high affinity to a 2-5A-dependent RNase resulting in the cleavage of single-stranded RNA. An efficient, rapid, and extremely sensitive photoaffinity labeling method was developed to facilitate detection of 2-5A-dependent RNase. A bromine-substituted and radioactive derivative of 2-5A, the 5'-monophosphate, p(A2'p)2(br8A2'p)2A3'-[32P]Cp, was synthesized as probe for 2-5A-dependent RNase. Even though this bromine-substituted analog of 2-5A bore no 5'-terminal triphosphate or diphosphate, it bound to 2-5A-dependent RNase with the same high affinity as did 2-5A per se but it was a less effective activator of the RNase under the present assay conditions. The presence of bromine atoms in the 2-5A analog enhanced by more than 200-fold crosslinking to 2-5A-dependent RNase under a uv lamp; many additional polypeptides were also labeled but at much lower levels. Furthermore, using high-intensity uv laser irradiation (308 nm) covalent attachment of the bromine-substituted 2-5A analog to 2-5A-dependent RNase was readily achieved within 10(-6) s.  相似文献   

11.
The photoaffinity probe 5-azidouridine 5'-[beta-32P]diphosphate glucose (5N3[32P]UDP-Glc) was used to identify a 57-kDa polypeptide as a strong candidate for the UDP-Glc-binding polypeptide of UDP-glucose: (1,3)-beta-glucan (callose) synthase from red beet (Beta vulgaris L.) storage tissue. Unlabeled 5N3UDP-Glc was a competitive inhibitor of callose synthase with a Ki of 310 microM. Callose synthase was purified from plasma membranes by a two-step solubilization with 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate, followed by product entrapment, and photoincorporation of radioactivity from 5N3[32P]UDP-Glc was used to identify UDP-Glc-binding polypeptides that copurified with callose synthase activity. Photoinsertion into the 57-kDa band was closely correlated with all catalytic properties examined. Photolabeling of the 57-kDa polypeptide was enriched upon purification of callose synthase by product entrapment, was abolished with increasing levels of unlabeled UDP-Glc, was dependent upon the presence of divalent cations, and the pH dependence of photolabeling correlated with the pH activity profile of callose synthase. In addition, photolabeling of the 57-kDa band did not occur after phospholipase treatment, which destroys enzyme activity. The extent of labeling of this polypeptide thus correlates closely with the activity of callose synthase under a wide variety of conditions. These results imply that the polypeptide at 57 kDa represents the substrate-binding and cation-regulated component of the callose synthase complex of higher plants.  相似文献   

12.
We employed the photoaffinity probe 8-azido-adenosine 5'-triphosphate (aATP) to identify the nuclear envelope (NE) nucleosidetriphosphatase activity (NTPase) implicated in control of RNA transport. The photoprobe was hydrolyzed at rates comparable to those for ATP, with a Michaelis constant of 0.225 mM. Photolabeling was dependent upon UV irradiation (300-nm max) and was not affected by quercetin. Unlabeled ATP or GTP competed with [32P]aATP in photolabeling experiments, and UTP was a less effective competitor, paralleling the substrate specificity of the NTPase. Incubation of NE with aATP led to a UV, time, and concentration dependent irreversible inactivation of NTPase. The inactivation could be blocked by ATP or GTP. Polyacrylamide gel electrophoresis and autoradiography of photolabeled NE showed selective, UV-dependent labeling of a 46-kDa protein with both [gamma-32P]aATP and [alpha-32P]aATP. This band was not labeled with [gamma-32P]ATP. Since the NE NTPase implicated in RNA transport is modulated by RNA, we examined the effects of RNA on the labeling process. Removal of RNA from the NE preparations (by RNase/DNase digestion) reduced NTPase by 30-40% and eliminated photolabeling of the 46-kDa band. Addition of yeast RNA to such preparations increased NTPase activity to control levels and selectively reinstated photolabeling of the 46-kDa band. These results suggest that the 46-kDa protein represents the major NTPase implicated in RNA transport.  相似文献   

13.
To investigate the relative importance of each of the ribose 3'-hydroxyl groups of 2-5A (ppp5' A2'p5'A2'-p5' A) in determining binding to and activation of the 2-5A-dependent endonuclease (RNase L), the 3'-hydroxyl functionality of each adenosine moiety of 2-5A trimer triphosphate was sequentially replaced by hydrogen. The analog in which the 5'-terminal adenosine was replaced by 3'-deoxyadenosine (viz. ppp5'(3'dA)-2'p5' A2'p5' A) was bound to RNase L as well as 2-5A itself and was only 3 times less potent than 2-5A as an activator of RNase L. On the other hand, when the second adenosine unit was replaced by 3'-deoxyadenosine (viz. ppp5' A2'p5'(3'dA)2'p5' A), binding to RNase L was decreased by a factor of eight relative to 2-5A trimer and, even more dramatically, there was a 500-1000-fold drop in ability to activate the 2-5A-dependent endonuclease. Finally, when the 3'-hydroxyl substituent was converted to hydrogen in the 2'-terminal residue of 2-5A, a significant increase in both binding and activation ability occurred. We conclude that only the 3'-hydroxyl group of the second (from the terminus) nucleotide residue of 2-5A is needed for effective activation of RNase L.  相似文献   

14.
This paper described synthesis of 2',5'-oligoadenylate (2-5A) analogs containing the purine acyclonucleoside, 9-[(2'S,3'R)-2',3',4'-trihydroxybutyl]adenine (2). The ability of the analogs to activate recombinant human RNase L was evaluated using 5'-32P-r(C11U2C7)-3' as a substrate. The EC50 value (the concentration of the 2-5A required to cleave half of the RNA) of the parent 2-5A tetramer 13 was 1.0 nM, whereas those of the analog 14 incorporating 2 at the second position from the 5'-end and the analog 15 incorporating 2 at the third position from the 5'-end were 9.0 and 1.7 nM, respectively. The analogs 14 and 15 were only 9- and 1.7-fold less potent than the parent 2-5A 13 itself, in RNase L activation ability. Furthermore, the oligodeoxynucleotide containing 2 was more resistant to nucleolytic hydrolysis by snake venom phosphodiesterase (a 3'-exonuclease) than the unmodified oligodeoxynucleotide. Thus, incorporation of an acyclonucleoside into 2-5A may be useful for developing an antiviral agent based on the 2-5A system.  相似文献   

15.
The binding of p3A4,3'-32P [pCp] to rabbit reticulocyte RNase L can be displaced by the trimer and tetramer triphosphates of 2',5'-oligoadenylates (2-5A). Using assay conditions of protein synthesis, 2-5A trimer or tetramer triphosphates are shown to be equally effective when the displacement is done at 4 degrees C (on ice). In contrast, at 30 degrees C, the tetramer triphosphates still displace whereas the trimer triphosphates become ineffective. When lysates are preincubated at temperature ranging from 4 degrees-37 degrees C, the same results are obtained even when the subsequent displacement is done on ice. Incubation temperature also significantly affects the ability of metabolically stable dyes cibacron blue and aurintricarboxylic acid to inhibit RNase L binding activity. Taken together, these results suggest that rabbit reticulocyte RNase L may assume multiple conformations which are differentially affected by various forms of 2-5A or other compounds.  相似文献   

16.
The levels of a (2'-5')An-dependent endonuclease (RNase L) were determined in extracts prepared from murine L cells and Ehrlich ascites tumor (EAT) cells by measuring specific binding of protein to a labeled derivative of (2'-5')An, (2'-5')A3[32P]pCp. RNase L levels were found to depend both on interferon (IFN) treatment and on cell growth conditions. Treatment of murine L cells and EAT cells with 100-2,000 IRU IFN beta or IFN gamma resulted in a similar 2-4-fold increase in the levels of RNase L when cells were present at low density. The levels of RNase L were also shown to increase 2-3-fold as cells approached saturation density. Serum-starved cells also displayed relatively high levels of RNase L. RNase L levels in cells maintained at high cell density did not change appreciably following treatment with IFN beta or IFN gamma. Regulation of RNase L levels by cell growth conditions as well as by IFN beta or IFN gamma treatment suggests that RNase L may play an important role in regulating the levels of cellular mRNAs as well as acting to degrade viral RNAs.  相似文献   

17.
Photoaffinity labeling of purified cellulose synthase with [beta-32P]5-azidouridine 5'-diphosphoglucose (UDP-Glc) has been used to identify the UDP-Glc binding subunit of the cellulose synthase from Acetobacter xylinum strain ATCC 53582. The results showed exclusive labeling of an 83-kDa polypeptide. Photoinsertion of [beta-32P]5-azido-UDP-Glc is stimulated by the cellulose synthase activator, bis-(3'----5') cyclic diguanylic acid. Addition of increasing amounts of UDP-Glc prevents photolabeling of the 83-kDa polypeptide. The reversible and photocatalyzed binding of this photoprobe also showed saturation kinetics. These studies demonstrate that the 83-kDa polypeptide is the catalytic subunit of the cellulose synthase in A. xylinum strain ATCC 53582.  相似文献   

18.
The 40-kDa 2'-5'-oligoadenylate [(2'-5') (A)n] synthetase isoenzyme was proven to be a mediator of the inhibition of encephalomyocarditis virus (EMCV) replication by interferon (IFN). When activated by double-stranded RNA, this enzyme converts ATP into 2'-5'-oligoadenylate [(2'-5') (A)n], and (2'-5') (A)n was found to accumulate in IFN-treated, EMCV-infected cells. The only known function of (2'-5') (A)n is the activation of RNase L, a latent RNase, and this was also implicated in the inhibition of EMCV replication. Intermediates or side products in EMCV RNA replication, presumed to be partially double stranded, were shown to activate (2'-5') (A)n synthetase in vitro. These findings served as the basis of the long-standing hypothesis that the activator of (2'-5') (A)n synthetase in IFN-treated, EMCV-infected cells is the viral RNA. To test this hypothesis, we have generated a polyclonal rabbit antiserum to the human 40-kDa (2'-5') (A)n synthetase. The antiserum immunoprecipitated, from IFN-treated HeLa cells that had been infected with EMCV, the 40-kDa (2'-5') (A)n synthetase protein in complex with both strands of EMCV RNA. The immunoprecipitate was active in (2'-5') (A)n synthesis even without addition of double-stranded RNA, whereas the immunoprecipitate from IFN-treated, uninfected cells was not. These and other results demonstrate that in IFN-treated, EMCV-infected cells, viral RNA is bound to the (2'-5') (A)n synthetase and suggest that the agent activating the (2'-5') (A)n synthetase is the bound viral RNA.  相似文献   

19.
Patients with cutaneous T-cell lymphoma (CTCL) were treated with recombinant alfa 2b interferon (rIFN alfa 2b) by intramuscular injection. Therapy-induced changes in Epstein-Barr virus (EBV) induced transformation of patient peripheral blood lymphocytes, 2',5' oligoadenylate (2-5A) synthetase levels and RNase L activation in peripheral blood mononuclear cells were monitored. Inhibition of EBV-induced transformation and elevation of 2-5A synthetase levels correlated with increased activation of RNase L, which provides evidence that intramuscular administration of rIFN alfa 2b induces a sustained anti-EBV state in CTCL patient peripheral blood mononuclear cells which can be detected in vitro.  相似文献   

20.
When added to extracts of mouse L cells containing ATP and an energy regenerating system, the 5'-diphosphate of 2-5A core, pp5'A2'p5'A2'p5'A, as well as a bromoadenylate analog, pp5' (br8A)2'p5'(br8A)2'p5'(br8A), can be phosphorylated to the corresponding 5'-triphosphate, ppp5'A2'p5'A2'p5'A and ppp5'(br8A)2'p5'(br8A)2'p5(br8A), respectively. The extent of this conversion was about 0.5% when the concentration of 5'-diphosphate was about 10(-4) M. Thus, although previous studies have shown that the 5'diphosphate, pp5'A2'p5'A2'p5'A, can activate the 2-5A-dependent endonuclease, this may be related to a phosphorylation reaction in the crude cell extracts employed in these studies and may not represent a true ability of such a 5'-diphosphate to activate directly the endonuclease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号