首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Novel C-5 aminomethyl pyrrolotriazines were prepared and optimized for dual EGFR and HER2 protein tyrosine kinase inhibition. The homopiperazine, 1p, emerged as a key lead and it showed promising oral efficacy in EGFR and dual EGFR/HER2 driven human tumor xenograft models. It is hypothesized that the C-5 homopiperazine side chain binds in the ribose-phosphate portion of the ATP binding pocket.  相似文献   

2.
A novel series of dual EGFR and HER2 inhibitors based on the pyrrolo[2,1-f][1,2,4]triazine nucleus is described. A general route toward their synthesis, which enables functionalization at multiple sites, has been developed. Biological evaluation in enzymatic and cell-based assays has identified a series of C-6 carbamates with potent biochemical and cellular activities.  相似文献   

3.
Pyrrolotriazine dual EGFR/HER2 kinase inhibitors with a 5-((4-aminopiperidin-1-yl)methyl) solubilizing group were found to be superior to analogs with previously reported C-5 solubilizing groups. New synthetic methodology was developed for the parallel synthesis of C-4 analogs with the new solubilizing group. Interesting new leads were evaluated in tumor xenograft models and the C-4 aminofluorobenzylindazole, 1c, was found to exhibit the best antitumor activity. It is hypothesized that this solubilizing group extends into the ribose-phosphate portion of the ATP binding pocket and enhances the binding affinity of the inhibitor.  相似文献   

4.
We herein disclose a novel series of 4-aminopyrimidine-5-carbaldehyde oximes that are potent and selective inhibitors of both EGFR and ErbB-2 tyrosine kinases, with IC(50) values in the nanomolar range. Structure-activity relationship (SAR) studies elucidated a critical role for the 4-amino and C-6 arylamino moieties. The X-ray co-crystal structure of EGFR with 37 was determined and validated our design rationale.  相似文献   

5.
Novel 4-benzylamino benzo-anellated pyrrolo[2,3-b]pyridines have been synthesized with varied substitution patterns both at the molecular scaffold of the benzo-anellated ring and at the 4-benzylamino residue. With a structural similarity to substituted thieno[2,3-d]pyrimidines as epidermal growth factor receptor (EGFR) inhibitors, we characterized the inhibition of EGFR for our novel compounds. As receptor heterodimerization gained certain interest as mechanism of cancer cells to become resistant against novel protein kinase inhibitors, we additionally measured the inhibition of insulin-like growth factor receptor IGF-1R which is a prominent receptor for such heterodimerizations with EGFR. Structure–activity relationships are discussed for both kinase inhibitions depending on the varied substitution patterns. We discovered novel dual inhibitors of both receptor tyrosine kinases with interest for further studies to reduce inhibitor resistance developments in cancer treatment.  相似文献   

6.
5-Alkenyl or 5-alkynyl-4-anilinopyrimidines were prepared and evaluated for in vitro inhibition of EGFR/Her-2 kinase activity and the growth of tumor cell lines (BT474 and N87). Several of these compounds inhibited the growth of BT474 and N87 at concentrations below 200nM. Structure-activity relationship studies revealed a critical role for the 5-alkynyl moieties. The representative compound 19 exhibited significant antitumor potency in a mouse xenograft model.  相似文献   

7.
A novel series of 5-((4-aminopiperidin-1-yl)methyl)-pyrrolo[2,1-f][1,2,4]triazin-4-amines with small aniline substituents at the C4 position were optimized for dual EGFR and HER2 protein tyrosine kinase inhibition. Compound 8l exhibited promising oral efficacy in both EGFR and HER2-driven human tumor xenograft models.  相似文献   

8.
Targeting EGFR has proven to be beneficial in the treatment of several types of solid tumours. So, a series of novel 2-(4-oxo-3-(4-sulfamoylphenyl)-3,4-dihydrobenzo[g]quinazolin-2-ylthio)-N-substituted acetamide 519 were synthesised from the starting material 4-(2-mercapto-4-oxobenzo[g]quinazolin-3(4H)-yl) benzenesulfonamide 4, to be evaluated as dual EGFR/HER2 inhibitors. The target compounds 519, were screened for their cytotoxic activity against A549 lung cancer cell line. The percentage inhibition of EGFR enzyme was measured and compared with erlotinib as the reference drug. Compounds 6, 8, 10, and 16 showed excellent EGFR inhibitory activity and were further selected for screening as dual EGFR/HER2 inhibitors. The four selected compounds showed IC50 ranging from 0.009 to 0.026?µM for EGFR and 0.021 to 0.069?µM for the HER2 enzyme. Compound 8 was found to be the most potent in this study with IC50 0.009 and 0.021?µM for EGFR and HER2, respectively.  相似文献   

9.
The quinazoline scaffold is the main part of many marketed EGFR inhibitors. Resistance developments against those inhibitors enforced the search for novel structural lead compounds. We developed novel benzo-anellated 4-benzylamine pyrrolopyrimidines with varied substitution patterns at both the molecular scaffold and the attached residue in the 4-position. The structure-dependent affinities towards EGFR are discussed and first nanomolar derivatives have been identified. Docking studies were carried out for EGFR in order to explore the potential binding mode of the novel inhibitors. As the receptor tyrosine kinase VEGFR2 recently gained an increasing interest as an upregulated signaling kinase in many solid tumors and in tumor metastasis we determined the affinity of our compounds to inhibit VEGFR2. So we identified novel dually acting EGFR and VEGFR2 inhibitors for which first anticancer screening data are reported. Those data indicate a stronger antiproliferative effect of a VEGFR2 inhibition compared to the EGFR inhibition.  相似文献   

10.

Background

The response rate to EGFR tyrosine kinase inhibitors (TKIs) may be poor and unpredictable in cancer patients with EGFR expression itself being an inadequate response indicator. There is limited understanding of the mechanisms underlying this resistance. Furthermore, although TKIs suppress the growth of HER2-overexpressing breast tumor cells, they do not fully inhibit HER2 oncogenic function at physiological doses.

Methodology and Principal Findings

Here we have provided a molecular mechanism of how HER2 oncogenic function escapes TKIs'' inhibition via alternative HER receptor activation as a result of autocrine ligand release. Using both Förster Resonance Energy Transfer (FRET) which monitors in situ HER receptor phosphorylation as well as classical biochemical analysis, we have shown that the specific tyrosine kinase inhibitors (TKIs) of EGFR, AG1478 and Iressa (Gefitinib) decreased EGFR and HER3 phosphorylation through the inhibition of EGFR/HER3 dimerization. Consequent to this, we demonstrate that cleavage of HER4 and dimerization of HER4/HER2 occur together with reactivation of HER3 via HER2/HER3, leading to persistent HER2 phosphorylation in the now resistant, surviving cells. These drug treatment–induced processes were found to be mediated by the release of ligands including heregulin and betacellulin that activate HER3 and HER4 via HER2. Whereas an anti-betacellulin antibody in combination with Iressa increased the anti-proliferative effect in resistant cells, ligands such as heregulin and betacellulin rendered sensitive SKBR3 cells resistant to Iressa.

Conclusions and Significance

These results demonstrate the role of drug-induced autocrine events leading to the activation of alternative HER receptors in maintaining HER2 phosphorylation and in mediating resistance to EGFR tyrosine kinase inhibitors (TKIs) in breast cancer cells, and hence specify treatment opportunities to overcome resistance in patients.  相似文献   

11.
The clinical success of multitargeted kinase inhibitors has stimulated efforts to identify promiscuous drugs with optimal selectivity profiles. It remains unclear to what extent such drugs can be rationally designed, particularly for combinations of targets that are structurally divergent. Here we report the systematic discovery of molecules that potently inhibit both tyrosine kinases and phosphatidylinositol-3-OH kinases, two protein families that are among the most intensely pursued cancer drug targets. Through iterative chemical synthesis, X-ray crystallography and kinome-level biochemical profiling, we identified compounds that inhibit a spectrum of new target combinations in these two families. Crystal structures revealed that the dual selectivity of these molecules is controlled by a hydrophobic pocket conserved in both enzyme classes and accessible through a rotatable bond in the drug skeleton. We show that one compound, PP121, blocks the proliferation of tumor cells by direct inhibition of oncogenic tyrosine kinases and phosphatidylinositol-3-OH kinases. These molecules demonstrate the feasibility of accessing a chemical space that intersects two families of oncogenes.  相似文献   

12.
Two new series of potent and selective dual EGFR/ErbB-2 kinase inhibitors derived from novel thienopyrimidine cores have been identified. Isomeric thienopyrimidine cores were evaluated as isosteres for a 4-anilinoquinazoline core and several analogs containing the thieno[3,2-d]pyrimidine core showed anti-proliferative activity with IC50 values less than 1 μM against human tumor cells in vitro.  相似文献   

13.
Src-family kinases (SFKs) are protooncogenic enzymes controlling mammalian cell growth and proliferation. The activity of SFKs is primarily regulated by two tyrosine phosphorylation sites: autophosphorylation of a conserved tyrosine (Y(A)) in the kinase domain results in activation while phosphorylation of the regulatory tyrosine (Y(T)) near the C-terminus leads to inactivation. The phosphorylated Y(T) (pY(T)) engages in intramolecular interactions that stabilise the inactive conformation of SFKs. These inhibitory intramolecular interactions include the binding of pY(T) to the SH2 domain and the binding of the SH2-kinase linker to the SH3 domain. Thus, SFKs are active upon (i) disruption of the inhibitory intramolecular interactions, (ii) autophosphorylation of Y(A) and/or (iii) dephosphorylation of pY(T). Since aberrant activation of SFKs contributes to cancer, SFKs in normal cells are kept inactive by multiple endogenous inhibitors classified as catalytic and non-catalytic inhibitors. The catalytic inhibitors include C-terminal Src kinase (CSK) and CSK-homologous kinase (CHK) that phosphorylate Y(T) of SFKs, as well as the protein tyrosine phosphatases that dephosphorylate pY(A) of the activated SFKs. The non-catalytic inhibitors inactivate SFKs by direct binding. CHK is unique among these inhibitors because it employs both catalytic and non-catalytic mechanisms to inhibit SFKs. Other known non-catalytic inhibitors include WASP, caveolin and RACK1, which function to down-regulate SFKs in specific subcellular locations. This review discusses how the various endogenous SFK inhibitors cooperate to regulate SFKs in normal cells. As chemical compounds that can selectively inhibit SFKs in vivo are potential anti-cancer therapeutics, this review also discusses how investigation into the inhibitory mechanisms of the endogenous inhibitors will benefit the design and screening of these compounds.  相似文献   

14.
We have identified a novel class of 6-thiazolylquinazolines as potent and selective inhibitors of both ErbB-2 and EGFR tyrosine kinase activity, with IC(50) values in the nanomolar range. These compounds inhibited the growth of both EGFR (HN5) and ErbB-2 (BT474) over-expressing human tumor cell lines in vitro. Using xenograft models of the same cell lines, we found that the compounds given orally inhibited in vivo tumor growth significantly compared with control animals.  相似文献   

15.
Two series of novel tricyclic oxazine and oxazepine fused quinazolines have been designed, synthesized and evaluated for their inhibitory activity against EGFR and HER2. Structure-activity relationship (SAR) of these compounds was discussed. From the SAR studies, we found that intramolecular cyclization which possessed a functional Michael acceptor group can enhance the antitumor activities. Compounds 1e and 1h were identified as lead compounds which displayed almost 3–4 times more potent inhibition of EGFR and HER2 than the approved drug lapatinib. The satisfactory physicochemical properties of these compounds were also supported by ACD labs. The results presented here will promote the development of newer dual inhibitors of EGFR and HER2.  相似文献   

16.
A novel 7,6 fused bicyclic scaffold, pyrimido[4,5-b]azepine was designed to fit into the ATP binding site of the HER2/EGFR proteins. The synthesis of this scaffold was accomplished by an intramolecular Claisen-type condensation. As the results of optimization lead us to 4-anilino and 6-functional groups, we discovered 6-substituted amide derivative 19b, which has a 1-benzothiophen-4-yloxy group attached to the 4-anilino group. An X-ray co-crystal structure of 19b with EGFR demonstrated that the N-1 and N-3 nitrogens of the pyrimido[4,5-b]azepine scaffold make hydrogen-bonding interactions with the main chain NH of Met793 and the side chain of Thr854 via a water-mediated hydrogen bond network, respectively. In addition, the NH proton at the 9-position makes an additional hydrogen bond with the carbonyl group of Met793, as we expected. Compound 19b revealed potent HER2/EGFR kinase (IC50: 24/36 nM) and BT474 cell growth (GI50: 18 nM) inhibitory activities based on its pseudo-irreversible (PI) profile.  相似文献   

17.
Several synthetic random polymers of tyrosine containing glutamic acid, alanine, and lysine in various proportion served as substrates for tyrosine-specific protein kinases. The Km values for these substrates were much lower than for small polypeptides such as angiotensin. For the protein kinase coded by Fujinami virus, the best substrates (with the lowest Km) were polymers containing glutamic acid, alanine, and 8 to 10% tyrosine; for the insulin receptor protein kinase, the best substrate was a polymer containing 80% glutamic acid and 20% tyrosine. These polymers serve as inexpensive and tyrosine-specific substrates that can be used even with crude extracts and analyzed by the convenient filter paper assay. Several synthetic polymers with ordered sequences were found to be potent inhibitors of these tyrosine-specific protein kinases.  相似文献   

18.
To determine whether protein tyrosine kinase (PTK) modulates volume-sensitive chloride current (I(Cl.vol)) in human atrial myocytes and to identify the PTKs involved, we studied the effects of broad-spectrum and selective PTK inhibitors and the protein tyrosine phosphatase (PTP) inhibitor orthovanadate (VO(4)(-3)). I(Cl.vol) evoked by hyposmotic bath solution (0.6-times isosmotic, 0.6T) was enhanced by genistein, a broad-spectrum PTK inhibitor, in a concentration-dependent manner (EC(50) = 22.4 microM); 100 microM genistein stimulated I(Cl.vol) by 122.4 +/- 10.6%. The genistein-stimulated current was inhibited by DIDS (4,4'-diisothiocyanostilbene-2,2'-disulfonic acid, 150 microM) and tamoxifen (20 microM), blockers of I(Cl.vol). Moreover, the current augmented by genistein was volume dependent; it was abolished by hyperosmotic shrinkage in 1.4T, and genistein did not activate Cl(-) current in 1T. In contrast to the stimulatory effects of genistein, 100 microM tyrphostin A23 (AG 18) and A25 (AG 82) inhibited I(Cl.vol) by 38.2 +/- 4.9% and 40.9 +/- 3.4%, respectively. The inactive analogs, daidzein and tyrphostin A63 (AG 43), did not alter I(Cl.vol). In addition, the PTP inhibitor VO(4)(-3) (1 mM) reduced I(Cl.vol) by 53.5 +/- 4.5% (IC(50) = 249.6 microM). Pretreatment with VO(4)(-3) antagonized genistein-induced augmentation and A23- or A25-induced suppression of I(Cl.vol). Furthermore, the selective Src-family PTK inhibitor PP2 (5 microM) stimulated I(Cl.vol), mimicking genistein, whereas the selective EGFR (ErbB-1) kinase inhibitor tyrphostin B56 (AG 556, 25 microM) reduced I(Cl.vol), mimicking A23 and A25. The effects of both PP2 and B56 also were substantially antagonized by pretreatment with VO(4)(-3). The results suggest that I(Cl.vol) is regulated in part by the balance between PTK and PTP activity. Regulation is complex, however. Src and EGFR kinases, distinct soluble and receptor-mediated PTK families, have opposing effects on I(Cl.vol), and multiple target proteins are likely to be involved.  相似文献   

19.
A series of 6-alkoxy-4-anilinoquinazoline compounds was prepared and evaluated for in vitro inhibition of the erbB2 and EGFR kinase activity. The IC(50) values of the best compounds were below 0.10 uM. Further, several of these compounds inhibit the growth of erbB2 and EGFR over-expressing tumor cell lines at concentrations below 1 uM.  相似文献   

20.
Anilinoalkynylpyrimidines were prepared and evaluated as dual EGFR/ErbB2 kinase inhibitors. A preference was found for substituted phenyl and heteroaromatic rings attached to the alkyne. In addition, the presence of a potential hydrogen bond donor appended to this ring was favored. Selected molecules in the series demonstrated some activity against human tumor cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号