首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The interaction of various N-alkyl- and N-aryl-N'-hydroxyguanidines with recombinant NOS containing or not containing tetrahydrobiopterin (BH(4)) was studied by visible, electronic paramagnetic resonance (EPR), and resonance Raman (RR) spectroscopy. N-Hydroxyguanidines interact with the oxygenase domain of BH(4)-free inducible NOS (BH(4)-free iNOS(oxy)), depending on the nature of their substituent, with formation of two types of complexes that are characterized by peaks around 395 (type I) and 438 nm (type II') during difference visible spectroscopy. The complex formed between BH(4)-free iNOS(oxy) and N-benzyl-N'-hydroxyguanidine 1 (type II') exhibited a Soret peak at 430 nm, EPR signals at g = 1.93, 2.24, and 2.38, and RR bands at 1374 and 1502 cm(-)(1) that are characteristic of a low-spin hexacoordinated Fe(III) complex. Analysis of its EPR spectrum according to Taylor's equations indicates that the cysteinate ligand of native BH(4)-free iNOS(oxy) is retained in that complex. Similar iron(III)-ligand complexes were formed upon reaction of 1 and several other N-hydroxyguanidines with BH(4)-free full-length iNOS and BH(4)-free nNOS(oxy). However, none of the tested N-hydroxyguanidines were able to form such iron(III)-ligand complexes with BH(4)-containing iNOS(oxy), indicating that a major factor involved in the mode of binding of N-hydroxyguanidines to NOS is the presence (or absence) of BH(4) in their active site. Another factor that plays a key role in the mode of binding of N-hydroxyguanidines to NOS is the nature of their substituent. The N-hydroxyguanidines bearing an N-alkyl substituent exclusively or mainly led to type II' iron-ligand complexes. Those bearing an N-aryl substituent mainly led to type II' complexes, even though some of them exclusively led to type I complexes. Interestingly, the K(s) values calculated for BH(4)-free iNOS(oxy)-N-hydroxyguanidine complexes were always lower when their substituents bore an aryl group (140-420 microM instead of 1000-3900 microM), suggesting the existence of pi-pi interactions between this group and an aromatic residue of the protein. Comparison of the spectral and physicochemical properties of the N-hydroxyguanidine complexes of BH(4)-free iNOS(oxy) (type II') with those of the previously described corresponding complexes of microperoxidase (MP-8) suggests that, in both cases, N-hydroxyguanidines bind to iron(III) via their oxygen atom after deprotonation or weakening of the O-H bond. The aforementioned results are discussed in relation with recent data about the transient formation of iron-product intermediates during the catalytic cycle of l-arginine oxidation by eNOS. They suggest that N-hydroxyguanidines could constitute a new class of good ligands of heme proteins.  相似文献   

2.
The spectral properties of both ferric and ferrous cytochromes c' from Alcaligenes sp. N.C.I.B. 11015 are reported. The EPR spectra at 77 K and the electronic, resonance Raman, CD and MCD spectra at room temperature have been compared with those of the other cytochromes c' and various hemoproteins. In the ferrous form, all the spectral results at physiological pH strongly indicated that the heme iron(II) is in a high-spin state. In the ferric form, the EPR and electronic absorption spectra were markedly dependent upon pH. EPR and electronic spectral results suggested that the ground state of heme iron(III) at physiological pH consists of a quantum mechanical admixture of an intermediate-spin and a high-spin state. Under highly alkaline conditions, identification of the axial ligands of heme iron(III) was attempted by crystal field analysis of the low-spin EPR g values. Upon the addition of sodium dodecyl sulfate to ferric and ferrous cytochrome c', the low-spin type spectra were induced. The heme environment of this low-spin species is also discussed.  相似文献   

3.
Microperoxidase 8 (MP8) is able to react with alkyl- and aryl-isonitriles (RNC) both in its reduced and oxidized states, to form MP8Fe(II)- and MP8Fe(III)-CNR complexes. The coordination and spin states of these complexes have been fully characterized by UV-visible and resonance Raman spectroscopies. Both MP8Fe(II)- and MP8Fe(III)-CNR complexes are hexacoordinate low-spin complexes, which bear a single RNC ligand on the distal face of the heme and keep the His 18 ligand on its proximal face, trans to the RNC ligand. A comparison of these characteristics with those of the Fe-CNR complexes of other hemoproteins suggests that both MP8Fe(II)- and MP8Fe(III)-CNR complexes present a Fe-C-N linear arrangement. This may be due to the lack of any interactions of the RNC ligand with the octapeptide of MP8 that is mainly located over the opposite face of the heme. Finally the formation of hexacoordinate low-spin MP8Fe(II)- and MP8Fe(III)-CNR complexes constitutes a new example of the reactivity of MP8 with a new class of weak sigma-donating and strong pi-accepting ligands, which adds to its already very rich coordination chemistry.  相似文献   

4.
In order to evaluate the steric and electronic effects of mixed axial ligations on the heme c structure, lysine (Lys) and N-acetylmethionine (AcMet) complexes of ferric and ferrous microperoxidase-8 (MP8(III) and MP8(II), respectively) are characterized by absorption and resonance Raman (RR) spectroscopies. Spectrophotometric titrations establish that MP8(III) binds one molecule of exogenous ligand while MP8(II) forms mono(ligated) and bis(ligated) compounds. The Soret-excited RR spectra of the six-coordinated low-spin MP8(III) complexes show that the macrocycle can adopt different structures between planar and ruffled conformations. The ferriheme c conformation is primarily determined by the ionization state of the His side chain of MP8(III) and, secondarily, by the bonding and nonbonding heme-ligand interactions. As far as the RR spectra of the MP8(II) complexes are concerned, they permit us to conclude that the mixed His/Lys and His/AcMet coordinations induce a nonplanar heme conformation, the extent of deformation again depending on the ionization state of the endogenous His ligand. In contrast, the RR spectra of the bis(Lys) and bis(AcMet) compounds are associated with a planar heme structure. When the His of MP8 is bound to heme c, the stabilization of distorted heme conformations is thus associated with constraints exerted by the Cys-Ala-Gln-Cys-His-peptide on the porphyrin macrocycle. More generally, the spectroscopic data obtained in this study can be used to predict both the axial coordination and the structure of heme in c-type cytochromes. Received: 19 January 1998 / Revised version: 23 March 1998 / Accepted: 27 March 1998  相似文献   

5.
The nonsymbiotic tomato hemoglobin SOLly GLB1 (Solanum lycopersicon) is shown to form a homodimer of approximately 36 kDa with a high affinity for oxygen. Furthermore, our combined ultraviolet/visible, resonance Raman, and continuous wave electron paramagnetic resonance (EPR) measurements reveal that a mixture of penta- and hexacoordination of the heme iron is found in the deoxy ferrous form, whereas the ferric form shows predominantly a bis-histidine ligation (F8His-Fe(2+/3+)-E7His). This differs from the known forms of vertebrate hemoglobins and myoglobins. We have successfully applied our recently designed pulsed-EPR strategy to study the low-spin ferric form of tomato hemoglobin. These experiments reveal that, in ferric SOLly GLB1, one of the histidine planes is rotated 20 degrees (+/-10 degrees ) away from a N(heme)-Fe-N(heme) axis. Additionally, the observed g-values indicate a quasicoplanarity of the histidine ligands. From the HYSCORE (hyperfine sublevel correlation) measurements, the hyperfine and nuclear quadrupole couplings of the heme and histidine nitrogens are identified and compared with known EPR/ENDOR data of vertebrate Hbs and cytochromes. Finally, the ligand binding kinetics, which also indicate that the ferrous tomato Hb is only partially hexacoordinated, will be discussed in relation with the heme-pocket structure. The similarities and differences with other known nonsymbiotic plant hemoglobins will be highlighted.  相似文献   

6.
Structural changes accompanying the change in the redox state of microperoxidase-8 (MP8), the heme-octapeptide obtained from cytochrome c, and its complexes with (methyl)imidazole ligands were studied by electrochemically induced Fourier transform IR (FTIR) difference spectroscopy. To correlate with confidence IR modes with a specific electronic state of the iron, we used UV-vis and electron paramagnetic resonance spectroscopy to define precisely the heme spin state in the samples at the millimolar concentration of MP8 required for FTIR difference spectroscopy. We identified four intense redox-sensitive IR heme markers, nu38 at 1,569 cm(-1) (ox)/1,554 cm(-1) (red), nu42 at 1,264 cm(-1) (ox)/1,242 cm(-1) (red), nu43 at 1,146 cm(-1) (ox), and nu44 at 1,124-1,128 cm(-1) (ox). The intensity of nu42 and nu43 was clearly enhanced for low-spin imidazole-MP8 complexes, while that of nu44 increased for high-spin MP8. These modes can thus be used as IR markers of the iron spin state in MP8 and related c-type cytochromes. Moreover, one redox-sensitive band at 1,044 cm(-1) (red) is attributed to an IR marker specific of c-type hemes, possibly the delta(CbH3)(2,4) heme mode. Other redox-sensitive IR bands were assigned to the MP8 peptide backbone and to the fifth and sixth axial heme ligands. The distinct IR frequencies for imidazole (1,075 cm(-1)) and histidine (1,105 cm(-1)) side chains in the imidazole-MP8 complex allowed us to provide the first direct determination of their pKa at pH 9 and 12, respectively.  相似文献   

7.
Plant nitrite reductase (NiR) catalyzes the reduction of nitrite (NO(2)(-)) to ammonia, using reduced ferredoxin as the electron donor. NiR contains a [4Fe-4S] cluster and an Fe-siroheme, which is the nitrite binding site. In the enzyme's as-isolated form ([4Fe-4S](2+)/Fe(3+)), resonance Raman spectroscopy indicated that the siroheme is in the high-spin ferric hexacoordinated state with a weak sixth axial ligand. Kinetic and spectroscopic experiments showed that the reaction of NiR with NO(2)(-) results in an unexpectedly EPR-silent complex formed in a single step with a rate constant of 0.45 +/- 0.01 s(-)(1). This binding rate is slow compared to that expected from the NiR turnover rates reported in the literature, suggesting that binding of NO(2)(-) to the as-isolated form of NiR is not the predominant type of substrate binding during enzyme turnover. Resonance Raman spectroscopic characterization of this complex indicated that (i) the siroheme iron is low-spin hexacoordinated ferric, (ii) the ligand coordination is unusually heterogeneous, and (iii) the ligand is not nitric oxide, most likely NO(2)(-). The reaction of oxidized NiR with hydroxylamine (NH(2)OH), a putative intermediate, results in a ferrous siroheme-NO complex that is spectroscopically identical to the one observed during NiR turnover. Resonance Raman and absorption spectroscopy data show that the reaction of oxidized NiR ([4Fe-4S](2+)/Fe(3+)) with hydroxylamine is binding-limited, while the NH(2)OH conversion to nitric oxide is much faster.  相似文献   

8.
Six-coordinate low-spin iron(III) porphyrinates adopt either common (d(xy))(2)(d(xz),d(yz))(3) or less common (d(xz),d(yz))(4)(d(xy))(1) ground state. In this review article, three major factors that affect the electronic ground state have been examined. They are (i) nature of the axial ligand, (ii) electronic effect of peripheral substituents, and (iii) deformation of porphyrin ring. On the basis of the (1)H NMR, (13)C NMR, and EPR data, it is now clear that (i) the axial ligands with low-lying pi* orbitals such as tert-butylisocyanide and 4-cyanopyridine, (ii) the electron donating groups at the meso-carbon atoms, and (iii) the ruffled deformation of porphyrin ring stabilize the (d(xz),d(yz))(4)(d(xy))(1) ground state. By manipulating these factors, we are able to prepare various low-spin iron(III) porphyrinates with unusual electronic structures such as bis(imidazole) complexes with the (d(xz),d(yz))(4)(d(xy))(1) ground state or bis(tert-butylisocyanide) complexes with the (d(xy))(2)(d(xz),d(yz))(3) ground state; bis(imidazole) and bis(tert-butylisocyanide) complexes usually adopt the (d(xy))(2)(d(xz),d(yz))(3) and (d(xz),d(yz))(4)(d(xy))(1) ground state, respectively.  相似文献   

9.
Sato E  Sagami I  Uchida T  Sato A  Kitagawa T  Igarashi J  Shimizu T 《Biochemistry》2004,43(44):14189-14198
SOUL is specifically expressed in the retina and pineal gland and displays more than 40% sequence homology with p22HBP, a heme protein ubiquitously expressed in numerous tissues. SOUL was purified as a dimer in the absence of heme from the Escherichia coli expression system but displayed a hexameric structure upon heme binding. Heme-bound SOUL displayed optical absorption and resonance Raman spectra typical of 6-coordinate low-spin heme protein, with one heme per monomeric unit for both the Fe(III) and Fe(II) complexes. Spectral data additionally suggest that one of the axial ligands of the Fe(III) heme complex is His. Mutation of His42 (the only His of SOUL) to Ala resulted in loss of heme binding, confirming that this residue is an axial ligand of SOUL. The K(d) value of heme for SOUL was estimated as 4.8 x 10(-9) M from the association and dissociation rate constants, suggesting high binding affinity. On the other hand, p22HBP was obtained as a monomer containing one heme per subunit, with a K(d) value of 2.1 x 10(-11) M. Spectra of heme-bound p22HBP were different from those of SOUL but similar to those of heme-bound bovine serum albumin in which heme bound to a hydrophobic cavity with no specific axial ligand coordination. Therefore, the heme-binding properties and coordination structure of SOUL are distinct from those of p22HBP, despite high sequence homology. The physiological role of the new heme-binding protein, SOUL, is further discussed in this report.  相似文献   

10.
Iron-57 M?ssbauer, electron paramagnetic resonance (EPR) and H-1 nuclear magnetic resonance (NMR) studies of iron-bleomycin complexes in the pH range from 1.0 to 6.0 are reported. Sequential protonation of the ligands produces a variety of high-spin and low-spin complexes of the metal. Of particular interest is the reversible equilibrium between Fe(III)- and oxygen-stable Fe(II)-bleomycin. Below pH 3.5 Fe(II) complexes form, with maximal reduction occurring at approximately pH 2. At still lower pH, Fe(III) complexes unassociated with bleomycin become dominant. The observed reduction in the absence of exogenous reducing agents suggests the possible involvement of intramolecular autoreduction in bleomycin-mediated DNA degradation.  相似文献   

11.
1. The reductions of a number of sperm-whale Fe(III) myoglobin-ligand complexes by electrons generated by gamma-irradiation in ethylene glycol/water glass, have been investigated by using low-temperature spectrophotometry. The ligands are azide, fluoride, imidazole and water. 2. The reduction of the Fe(III) myoglobin-ligand complexes at 77 K leads to the formation of low-spin liganded Fe(II) myoglobin, in the case of the azide, imidazole and water derivatives, while the reduction of the fluoride derivative proceeds both by a pathway involving prior dissociation of the ligand and with the ligand in position. 3. Investigation of the effect of temperature on the stability of the Fe(II) myoglobin-ligand complexes indicates that more than one bound states exists in dissociation of the ligand molecule from the ferrous heme iron of the reduced azide and imidazole derivatives. 4. The results are discussed in terms of the possible structure of the Fe(II) myoglobin complexes and it is suggested that the low-spin state is created by a strained configuration of the heme center with the iron atom in an intermediate position relative to the heme plane.  相似文献   

12.
 The coordination state of Fe(III)- and Fe(II)-mimochrome I, a covalent peptide-deuteroheme sandwich involving two nonapeptides bearing a histidine residue in a central position, was studied by UV-visible, EPR, and resonance Raman spectroscopy. The ferric and ferrous states of this new iron species mainly exist, at pH 7, in a low-spin hexacoordinate form with two axial histidine ligands coming from the peptide chains. A minor amount of high-spin form for the ferric state is also present at pH 7. However, it is mainly high-spin at pH 2 or in DMSO. Fe(II)-mimochrome I binds CO with an affinity comparable to that of myoglobin and hemoglobin. Fe(III)-mimochrome I reacts with alkylhydroxylamine and arylhydrazines, leading to the corresponding Fe(II)-nitrosoalkyl and Fe(III)-σ-aryl complexes, respectively. These reactions were greatly dependent on the solvent used and on the pH, and were much slower than the corresponding reactions performed by deuterohemin in the presence of excess imidazole. All these results indicate that the reactivity of iron-mimochrome I is controlled by the binding of the peptide chains to the iron. The reactivity shown by this complex at neutral pH is intermediate between that observed for iron porphyrins in the presence of excess imidazole and that of hemoproteins characterized by a strong bis-histidine axial coordination, such as cytochrome b 5. Fe(III)-mimochrome I is able to catalyze styrene epoxidation by using a [Fe(III)-mimochrome I]/[H2O2]/[stryrene] ratio of 1 : 10 : 2000 in phosphate buffer solution (pH 7.2) containing 2% CTAB both under strictly anaerobic conditions and in the presence of oxygen, at 0  °C. Received: 26 May 1998 / Accepted: 20 August 1998  相似文献   

13.
14.
The EcDos protein belongs to a group of heme-based sensors that detect their ligands with a heme-binding PAS domain. Among these various heme-PAS proteins, EcDos is unique in having its heme iron coordinated at both axial positions to residues of the protein. To achieve its high affinities for ligands, one of the axial heme-iron residues in EcDos must be readily displaceable. Here we present evidence from mutagenesis, ligand-binding measurements, and magnetic circular dichroism, resonance Raman, and electron paramagnetic resonance spectroscopies about the nature of the displaceable residue in the heme-PAS domain of EcDos, i.e., EcDosH. The magnetic circular dichroism spectra in the near-infrared region establish histidine-methionine coordination in met-EcDos. To determine whether in deoxy-EcDos coordination of the sixth axial position is also to methionine, methionine 95 was substituted with isoleucine. This substitution caused the ferrous heme iron to change from an exclusively hexacoordinate low-spin form (EcDosH) to an exclusively pentacoordinate high-spin form (M95I EcDosH). This was accompanied by a modest acceleration of the dissociation rates of ligands but a dramatic increase (60-1300-fold) in the association rate constants for binding of O(2), CO, and NO. As a result, the affinity for O(2) was enhanced 10-fold in M95I EcDosH, but the partition constant M = [K(d)(O(2))/K(d)(CO)] between CO and O(2) was raised to about 30 from the extraordinarily low EcDosH value of 1. Thus a major consequence of the increased O(2) affinity of this sensor was the loss of its unusually strong ligand discrimination.  相似文献   

15.
16.
The Fe(III) complex of bleomycin (BLM) is, at pH 4, in the high-spin form. At pH 7, the coordination of the alpha-amino group of the beta-aminoalanine moiety of BLM converts it to a low-spin species: BLM X Fe(III) X alpha NH2. The conversion of the high-spin species to the low-spin one can also take place at pH 4 (i) by addition of ligands L such as N3-, S2O3(2-), and SCN- or (ii) through interaction with DNA. Moreover, the addition, at pH 7, of DNA to BLM X Fe(III) that has been previously complexed with one of these ligands L displaces this latter from its position. These results suggest that (i) the ligand L occupies the same site of coordination as the alpha-amino group and (ii) an interaction occurs between the beta-aminoalanine moiety of BLM and DNA that lowers the pKd of the alpha-amino group, promoting its coordination to iron.  相似文献   

17.
The genome of the cold-adapted bacterium Pseudoalteromonas haloplanktis TAC125 contains multiple genes encoding three distinct monomeric hemoglobins exhibiting a 2/2 ??-helical fold. In the present work, one of these hemoglobins is studied by resonance Raman, electronic absorption and electronic paramagnetic resonance spectroscopies, kinetic measurements, and different bioinformatic approaches. It is the first cold-adapted bacterial hemoglobin to be characterized. The results indicate that this protein belongs to the 2/2 hemoglobin family, Group II, characterized by the presence of a tryptophanyl residue on the bottom of the heme distal pocket in position G8 and two tyrosyl residues (TyrCD1 and TyrB10). However, unlike other bacterial hemoglobins, the ferric state, in addition to the aquo hexacoordinated high-spin form, shows multiple hexacoordinated low-spin forms, where either TyrCD1 or TyrB10 can likely coordinate the iron. This is the first example in which both TyrCD1 and TyrB10 are proposed to be the residues that are alternatively involved in heme hexacoordination by endogenous ligands.  相似文献   

18.
Polarized resonance Raman spectra of horse heart ferricytochrome c as a function of pH in the range 1.0–12, in the presence of the extrinsic ligands imidazole, cyanide, and azide, and in 4 M urea, are reported, as are resonance Raman spectra of heme undecapeptide in the presence of imidazole, pH 6.8 and pH 2.0, and with cyanide at pH 6.8. The range of investigation is 140–1700 cm?1, using the 5145-, 4880-, and 4579-Å excitations. The spectra have been analyzed in terms of complexity, sensitivity, and the conformation-heme energetics of the systems. The state of heme in various forms is analyzed with regard to heme energetics, core size, nature of planarity, and coordination configuration. All low-spin forms of heme c systems, cytochrome c, and heme models are concluded to be hexacoordinated, in-plane heme iron systems. The effect of the location of the heme in the protein environment is found to be a slight expansion of the porphyrin core, ~0.01 Å, while the covalent linkage of heme to protein and a mixed nature of axial coordination configuration seem to have little effect on the energetics of the heme group. Complex formation with extrinsic ligand, imidazole, cyanide, or azide, results in a slight contraction of the heme core. The formation of cytochrome c form IV, the alkaline form, is shown to follow a process with apK a of about 8.4, and similarly, acidic form II is created following the prior formation of an intermediate form with apK a of about 3.6. The precursor to form IV is interpreted as containing perturbation of the pyrrol rings, whereas the precursor to the acidic form seems to reflect alteration of the energetics of the CαCm α structures of the heme group. The acidic form of heme undecapeptide is a hexacoordinated high-spin heme with an estimated displacement of 0.25 Å from the heme plane. The pH 2 form of cytochrome c is also a hexacoordinated high-spin form with two weak axial ligands, but iron is in the plane of the porphyrin ring.  相似文献   

19.
Thiol-containing penta (Leu-Ala-Cys-Ser-Leu) and nona (Leu-Ala-Cys-Ser-Leu-Ile-Glu-Ser-Leu) peptides corresponding to residues 132-136 and 132-140, respectively, of apo-P450 from Psuedomonas putida were synthesized to examine heme-binding by the enzymes in the oxidized (ferric) form. The peptide-hemin complexes prepared in solution were characterized by their optical and ESR spectra. In these complexes without nitrogenous ligands, no ferric complexes in the low-spin state were observed, suggesting that simultaneous axial coordination of Cys-134 (thiolate) and Ser-139 (hydroxyl) of apo-P450cam to the heme is unlikely to occur. In the presence of nitrogenous ligands, such as py, Im and MeIm, the resulting complexes were good models of apo-P450cam-nitrogenous ligand adducts in the low-spin ferric state retaining a thiolate-Fe(III)-nitrogen axial coordination mode, as judged by their spectral pattern as well as by crystal field analysis of ESR g-values.  相似文献   

20.
Microperoxidase 8 (MP8), a heme octapeptide obtained by hydrolytic digestion of cytochrome c, was adsorbed at the surface of a roughened silver electrode in order to provide a new supported biomimetic system for hemoproteins. A combination of two techniques was used to study its redox and coordination properties: electrochemistry and surface-enhanced resonance Raman (SERR) spectroscopy. This allowed us to show that MP8 could be adsorbed as a monolayer at the surface of the roughened silver electrode, where it could undergo a reversible electron transfer. Under those conditions, a redox potential of –0.4 V vs. SCE (–0.16 V vs. NHE) was measured for MP8, which was almost identical to that reported for N-acetyl-MP8 in aqueous solution. In addition, whereas MP8 appeared to aggregate in solution, and led to a mixture of high-spin penta-coordinated (5cHS) and low-spin hexa-coordinated (6cLS) iron(III) or iron(II) species, it was recovered almost exclusively as a monomeric high-spin penta-coordinated species at the surface of the electrode, both in the reduced and in the oxidized states. This then allowed a free coordination site on the iron, on the distal face of MP8 accessible to ligands. Accordingly, experiments performed in the presence of potassium cyanide demonstrated that MP8 adsorbed on a silver electrode could be ligated by a sixth CN ligand. Thus there is the possibility of binding several kinds of ligands such as O2 or H2O2, which will open the way to biocatalysis of oxidation reactions at the surface of an electrode, or ligands such as drugs which will lead to the design of new biosensors for molecules of biological interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号