首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of two common West African farm-made feeds on postprandial metabolism were assessed in adult Nile tilapia (Oreochromis niloticus) by quantifying the oxygen consumption rates (MO2) and total ammonia-nitrogen (TAN) excretion over a 24-h period. Measurements followed the ingestion of a single meal of a fishmeal-based control diet and two diets containing 30% copra (CM) or palm kernel meal (PKM) inclusions by groups of 15 adult O. niloticus per tank. The mean net MO2 (postprandial oxygen consumption corrected for routine metabolic rate) during digestion for the different tilapia groups varied narrowly between 112.2 ± 9.9 and 129.9 ± 20.4 mg O2 kg?1 h?1 with the fish fed the CM diet recording a significantly lower (p = 0.04) net MO2 response relative to the other two diets. Net TAN excretion rates of the different dietary groups varied between 3.4 ± 1.4 and 4.4 ± 1.6 mg TAN kg?1 h?1. Under the standardized experimental conditions, copra and PKMs appeared to be promising candidates as partial replacements to fishmeal in tilapia diets as far as rates of oxygen consumption and ammonia-nitrogen excretion are concerned.  相似文献   

2.
The effect of ration on the growth of pairs of juvenile sea bass Dicentrarchus labrax fed squid mantle was recorded at four temperatures: 6, 10, 14 and 18) C, covering the range typical of Welsh coastal waters. Initial weight of the fish ranged from 2.8 to 15.9 g. A predictive model for the maximum meal size (Mmax) at temperatures between 10 and 18) C, accounted for 95% of the variance in lnMmax. Even when offered excess food, bass at 6) C had a low rate of food consumption [0.19% body weight (BW) day?1] and lost weight (G=?0.04% day?1). Predictive regression models for specific growth rate (G) accounted for 86% of the variance at reduced rations and 70% at maximum meals. The relationship between G (calculated for total biomass per tank) and ration was a decelerating curve. G at maximum meals increased with temperature, at lower rations G decreased with temperature. For a pair of bass with a combined weight of 15 g, predicted maintenance ration ranged between 0.7 and 2.3% BW day?1 and increased with temperature. Maximum meal size was more sensitive to temperature than maintenance ration. At 18) C optimum ration was 7.4% BW day?1. At lower temperatures, the optimum ration was the maximum meal. The maximum gross growth efficiency was 17.4% at 18) C. Mean absorption efficiency was 94.8%. Ration level had no significant effect on absorption efficiency, which was lowest at 6) C. Condition indices (Fulton condition factor, wet and dry liver—somatic indices and body depth index) increased with meal size at all temperatures except 6) C. An increase in temperature between 10 and 18) C generally resulted in a decrease in condition indices at a given ration. When comparisons were made at a given standard length, gut and carcass weight increased with ration. Visceral fat and gut weight decreased with increased temperature.  相似文献   

3.
The aim of the study was to identify the diet composition, feeding preferences, size and sex related diet changes, and to calculate the consumption rates of common dolphinfish, Coryphaena hippurus, in the eastern Arabian Sea. Fish were caught using longline gear during the years 2006–2009. Stomachs of 238 specimens with fork lengths ranging from 324 to 1250 mm were analysed; 72 (30.25%) of the stomachs were empty. Epipelagic finfishes were the predominant prey followed by cephalopods and crustaceans. Occurrence of items such as sargassum, sea fans, corals, plastics and pieces of wood in the stomachs indicate an opportunistic and voracious feeding nature. Flyingfishes (family Exocoetidae), especially Exocoetus monocirrhus (%IRI 16.92), dominated the diet. Unidentified filefishes (family Monacanthidae), Sthenoteuthis oualaniensis, Euthynnus affinis, Cheilopogon furcatus and Cubiceps pauciradiatus were other important food items. The diet varied between sexes and different size classes. Juveniles and adults (size classes <75 cm, 75–95 and 95–115 cm) fed mainly on epipelagic finfishes, whereas the large adults (>115 cm) fed preferentially on cephalopods. Food consumption rate was higher in females (6.37% BW day?1) compared to males (4.04% BW day?1), and increased with their increase in size up to 75–95 cm length classes, thereafter decreasing. The daily meal and daily ration was 332.63 g day?1 and 5.25% BW day?1, respectively, and average annual food consumption was 121.41 kg.  相似文献   

4.
Oxygen consumption by Thais varied seasonally with higher values in summer than in winter. This seasonal difference was due in part to the effects of temperature and in part to those of feeding. During feeding, rates of oxygen consumption were high, but declined in the period between meals. There was little evidence of acclimation of oxygen consumption to changes in temperature; low (winter) rates of consumption were more sensitive to increases in temperature than were high (summer) rates. A polynomial expression, including terms for temperature and ‘time since last meal’, was derived for the constant a′ in the allometric equation relating oxygen consumption (o2) to dry body weight: o2 = a′.W0.511.  相似文献   

5.
The aim of this study was to determine: (1) salinity that maximizes arm regeneration in the starfish Luidia clathrata; and (2) if low food consumption or low salinity is the cause of the reduced rate of arm regeneration seen at low salinities.. An estimated salinity of 33 g kg?1 produced maximum regeneration of two arms in L. clathrata. This salinity is typically greater than that found in bays that are the usual habitat for the species. Equivalent food consumption by L. clathrata in salinities of 20 g kg?1 and 30 g kg?1 resulted in greater regeneration in salinity of 30 g kg?1, suggesting lower food consumption at low salinities is not the primary reason for lower regeneration. Higher food consumption compared to lower food consumption, both tested in salinity of 30 g kg?1, did not increase regeneration, but resulted in more storage of energy in the pyloric caeca.  相似文献   

6.
Radial oxygen loss (ROL) from the roots of two semiaquatic rushes, Juncus effusus L. and Juncus inflexus L., was studied in reducing titanium citrate buffer, using both closed incubations and a flow-through, titrimetric system. In closed experiments, roots released oxygen at a constant rate over a wide range of external oxygen demands, with the ROL rate only depending on sink strength at low demands, and no oxygen release into oxidized solutions. In the titrimetric experiments, roots continued to release oxygen at constant rates when provided with a constant external oxygen demand. ROL was higher in J. effusus (9·5 ± 1 × 10?7 mol O2 h?1 root?1) than in J. inflexus (4·5 ± 0·5 × 10?7 mol O2 h?1 root?1). Light and dark changes around the shoots did not affect the ROL rate in J. inflexus, whereas in J. effusus ROL was ≈ 1·75 times higher in the light than in the dark, presumably due to changes in stomatal aperture. These results suggest that ROL is controlled by the external oxygen demand at low to moderate reducing intensities, but that structural limitations to oxygen diffusion rates prevent ROL from continuing to increase at higher external oxygen demands.  相似文献   

7.
In this study, the oxygen consumption, ammonia excretion, and filtration rate were monitored in Mytilus edulis in response to administration of the two pesticides, methamidophos and omethoate. Five sublethal concentrations (1, 10, 50, 100, and 200 µgL?1) were administered over 96 h. Oxygen consumption rates increased following administration of all concentrations of methamidophos for 96 h and to the lower concentrations of omethoate (1, 10, and 50 µg L?1) from 6 to 24 h. Over 24 h, oxygen consumption decreased significantly. Ammonia excretion rates were higher than the control after 36 h of exposure to methamidophos, while reduction was observed when M. edulis was exposed to omethoate. The O:N ratios increased when the animals were first exposed to these two pesticides and then decreased at all the concentrations. At the concentrations of 100 and 200 µgL?1, the O:N ratio was below 30 after 72 h. The filtration rate of M. edulis decreased with the increasing concentration of pesticide exposure.  相似文献   

8.
The relationship between rates of food consumption (C) and somatic growth (G) and the effect of temperature (T) on rates of mass lost during food deprivation were examined in 9–10 cm total length (TL) [1.0–1.5 g dry mass (DM)] juvenile Atlantic herring (Clupea harengus L.) in the laboratory. One feeding‐growth trial was conducted at 16°C using groups of herring feeding on known rations of brine shrimp (Artemia spp.) nauplii to quantify gross and net growth efficiency. Rates of mass lost by groups of herring (a proxy for metabolic rate, M) were measured in trials conducted at 9.7, 14.2 and 17.9°C. Gross growth efficiency (GGE = 100*G*C?1) at 16°C was 25% at the highest rations (5.8–6.6% DM). The maintenance ration (Cmain = C at zero G) was equal to 432 J*fish?1*d?1 or 2.0% DM*d?1. At 16°C, net growth efficiency (100*G*(C?Cmain)?1) was 42%. The nucleic acid content (RNA‐DNA ratio, RD) in herring muscle tissue was strongly related to somatic growth (G, % DM*d?1 = ?0.36*RD2 + 3.21*RD ?3.92, r2 = 0.90, P < 0.05, n = 8 groups). The effect of T (9.7–17.9°C) on M was described by a second order polynomial equation = ?1.24*+ 38.2*T ? 218 (J*g DM?1*d?1) and = ?10*+ 310*T ? 1815 (J*fish?1*d?1). This was the first study to investigate the influence of temperature on the metabolic rate of juvenile Atlantic herring under stress‐free conditions in the laboratory and provides the first estimates of gross and net growth efficiency for this species feeding on live prey.  相似文献   

9.
Oxygen consumption and ammonia excretion rates were investigated in young Octopus maya (hatching to 139 days old; 0.11–81.23 g wet body weight, BW; 22.5–23.9°C), young squids of Loligo forbesi (hatching to 45 days old; 9.4–115.3 mg BW; 12.3–13.1°C) and young squids of Lolliguncula brevis (2.00–39.98 g BW; 23.8–24.7°C). Except at hatching, oxygen consumption and ammonia excretion rates on an individual basis (M) of these three cephalopods increased linearly with increasing body weight (BW) expressed as M = aBWb . Values of b for oxygen consumption were 0.900, 0.910 and 0.848 and for ammonia excretion were 0.744, 0.809 and 0.751 for O. maya, L. forbesi and L. brevis, respectively. Among the three species the value a varied widely, while b was similar for both oxygen consumption and ammonia excretion rates. Based upon these data, metabolism for hatchlings of O. maya and L. forbesi was estimated to be relatively lower than that of older juveniles. The O/N ratios for hatchlings of O. maya and L. forbesi were relatively high and indicate an apparent dependence upon lipids in the immediate post‐hatching period, followed by standard protein energy utilization thereafter.  相似文献   

10.
The heat increment of feeding (HIF), a transient postprandial increase in metabolic rate, is the energy cost of processing a meal. We measured HIF in house wren chicks (Troglodytes aedon) ranging in mass from 1.6 to 10.3 g. This mass range (age 2–10 days) spanned a transition from blind, naked, ectothermic chicks through alert, endothermic birds with nearly complete feathering. We fed chicks crickets (2.7–10% of chick body mass) and determined HIF from continuous measurements of oxygen consumption rate (O2) before and after meals. At warm ambient temperatures (T a) of 33–36 °C, the magnitude of HIF (in ml O2 or joules) was linearly related to meal mass and was not affected by chick mass. HIF accounted for 6.3% of ingested energy, which is within the range of results for other carnivorous vertebrates. The duration of HIF was inversely related to chick mass; 10-g chicks processed a standard meal approximately twice as fast as 2-g chicks. HIF duration increased with increasing meal mass. The peak O2 during HIF, expressed as the factorial increase above resting metabolism, was independent of body mass and meal mass. In large, endothermic chicks ( > 8 g), HIF substituted for thermoregulatory heat production at low T a. Accepted: 11 December 1996  相似文献   

11.
Oxygen consumption rates were measured in a school of 56 horse mackerel Trachurus trachurus while at rest and while swimming at steady sustained speeds. Resting values of 38.76 and 42.10mg O2 kg?1 h?1 were measured in a sealed cylindrical tank (535 l) while observing that the fish school remained neutrally buoyant and inactive with only gentle pectoral fin movements and no swimming motion. The same school was trained to swim with projected light patterns within a 10-m diameter annular doughnut respirometer. The oxygen consumption increased from the resting level through 51 mg O2 kg?1 h?1 at the slowest swimming speeds of 0.29 m s?1 (0.95 L s?1) to around 259 mg O2 kg?1 h?1 at the higher measured swimming speed of 0.87 m s?1 (2.82 L s?1). The data fitted a curve where oxygen consumption rose in proportion to velocity to the power of 2.56 with the intercept at the resting level. The maximum sustained speed (80 min) of 1.12 m s?1 (3.63 Ls?1) was not achieved within the respirometer but corresponded to an estimated oxygen consumption of 458.33 mg O2 kg?1 h?1 giving a scope for aerobic activity of 419.02 mg O2 kg?1 h?1. At a speed of 0.87 m s?1, there was a lower bound on the aerobic efficiency of at least 38% and at 1.12 m s?1, the highest aerobic speed, of 40%. Sustained speeds swum in a curved path as here should be increased by 5% for a straight path giving a maximum sustained 80 min speed of 1.18 m s?1.  相似文献   

12.
Total Hg concentrations were determined in muscle tissue of some fishes with different feeding habits (12 fish species) obtained from the main fishing locations along the Alexandria coast, a region particularly impacted by historic industrial Hg activities. Health risks to human via dietary intake of the edible portion of fish were assessed by the target hazard quotients (THQs). Mercury maximum concentrations corresponding to fish muscle tissue were found in L. mormyrus, S. rivulatus, and S. luridus (3.56, 2.94, and 1.35 μg g?1 wet weight, respectively). Thence most of these three species bass (75% of L. mormyrus, 76% of S. rivulatus, and 54% of S. luridus) were greater than a 0.47 μg g?1 threshold corresponding to a 1 meal per month consumption limit. M. cephalus, S. aurita, S. chrysotaenia, B. boops, and A. djedaba bass (100%) were less than a 0.12 μg g?1 threshold corresponding to a 4 meals per month safe consumption limit. Mercury THQs values, ranging from 0.11–1.76, were of concern. In particular, the health risk was mainly ascribed to consumption of S. rivulatus (1.72) and L. mormyrus (1.76), although also the TEQs values caused by consuming S. luridus (0.64) were rather high, being close to 1.  相似文献   

13.
Daily food intake of adult burbot, Lota lota, fed on vendace, Coregonus albula, were estimated experimentally at four different water temperatures (2.4, 5.1, 10.8 and 23.4°C). Mean daily food intake (MDI; g d–1) and relative daily food intake (RDI; g g–1 d–1) increased with temperature from 2.4 to 10.8°C and decreased at 23.4°C. Temperatures of maximum daily food intake values were 13.6°C for MDI and 14.4°C for RDI. No correlation between food intake values and burbot weight was observed. RDI values were used to estimate annual food consumption of burbot population. Annual food consumption estimates were 9.7kg ha–1 and 24.3kg ha–1 when burbot biomass was 2.0 or 5.0kg ha–1, respectively.  相似文献   

14.
The energetic costs associated with feeding by juvenile cod were determined by means of an open-circuit respirometer. Fish acclimated to several temperatures (7, 10, 15 and 18°C) were kept at natural lighting levels, and fed inside their individual respirometers. They consumed a diet compounded from natural foods, at five different ration levels, their oxygen consumption being monitored continually over an 11–16 day period.
After each meal the rate of oxygen consumption increased to above the pre-feeding level, reaching a peak 8–10 h later. With each successive meal the oxygen consumption showed a cumulative increase, reaching a maximum usually after the last meal.
The elevation in metabolic rate associated with feeding was dependent upon ration size, increasing linearly as the food intake increased. The effect was also dependent upon temperature; for fish fed to satiation the total energy cost was equivalent to 11.9, 10.9, 16.4 and 17.1% of the ingested energy at 7, 10, 15 and 18°C respectively. For resting satiated fish the rate of oxygen consumption was close to the maximum rate for active fish.  相似文献   

15.
Swimming dynamics of the giant Australian cuttlefish, Sepia apama, were investigated using swimtunnel respirometry. Relationships between jet pressure, fin frequency, swimming speed and oxygen consumption were defined. Laboratory calibration of swimming parameters is necessary to allow estimates of swimming costs in the field.

Jet pressure was the best predictor of oxygen consumption with an averaged equation of MO2?=?722 (jet pressure)?+?107?r 2?=?0.51. Individually, fin frequency and jet pressure correlated highly to swimming speed, but due to the complicated usage of finning and jetting, the correlation between swimming speed and oxygen consumption was weaker. Cuttlefish were not optimal swimtunnel subjects and could not swim at high speeds for extended periods. At 15°C and a swimming speed of 0.06?m?s?1, the gross cost of transport was calculated to be 10.1?kg?1?m??1, with a net cost of 4.1?kg?1?m?1.  相似文献   

16.
The effects of oxygen concentration and light intensity on the rates of apparent photosynthesis, true photosynthesis, photorespiration and dark respiration of detached spruce twigs were determined by means of an infra-red carbon dioxide analyzer (IRCA). A closed circuit system IRCA was filled with either 1 per cent of oxygen in nitrogen, air (21 % O2) or pure oxygen (100 % O2). Two light intensities 30 × 103 erg · cm ?2· s?1 and 120 × 103 erg · cm?2· s?1 were applied. It has been found that the inhibitory effect of high concentration of oxygen on the apparent photosynthesis was mainly a result of a stimulation of the rate of CO2 production in light (photorespiration). In the atmosphere of 100 % O2, photorespiration accounts for 66–80 per cent of total CO2 uptake (true photosynthesis). Owing to a strong acceleration of photorespiration by high oxygen concentrations, the rate of true photosynthesis calculated as the sum of apparent photosynthesis and photorespiration was by several times less inhibited by oxygen than the rate of apparent photosynthesis. The rates of dark respiration were essentially unaffected by the oxygen concentrations used in the experiments. An increase in the intensity of light from 30 × 103 erg · cm?3· s?1 to 120 · 103 erg · cm?2· s?1 enhanced the rate of photorespiration in the atmospheres of 21 and 100 % oxygen but not in 1 % O2. The rate of apparent photosynthesis, however, was little affected by light intensity in an atmosphere of 1 % oxygen.  相似文献   

17.
Walking performance of the shore crab Carcinus maenas (L.) in sea water at 15 °C was assessed. In large crabs there was an inverse relationship between fatigue time and speed; crabs ran for $?10 min at 3.2 m·min?1 and for only 2 min at 14 m·min?1. There were linear relationships between oxygen consumption and walking speeds for small and large animals walking at up to 4 m·min?1 Estimates of maximum oxygen consumption were proportional to W0.13 whereas inactive consumption is proportional to W0.44 this resulted in aerobic scope (i.e. the difference between inactive and maximal rates of oxygen consumption) remaining almost constant across a weight range of animals whereas the aerobic expansibility (maximal rates/inactive rates) declined from 7- to 4-fold with increasing size. After a 12-h period without handling (settled animals) the animals could immediately become active and reach maximal rates of oxygen consumption similar to those of animals handled 1 h before the experiment. The aerobic expansibility of these settled animals could range from 21 to 8 times their inactive rates of oxygen consumption in small and large animals respectively. After 10 min of exercise oxygen consumption and whole body lactate levels returned to pre-exercise values within 5 to 25 min. The net oxygen debts range from 16 to 64% of the net oxygen consumption increase during exercise in small and large animals respectively.Calculations of the energy gained from lactate accumulation indicated that the net aerobic energy production during walking was supplemented from 4 to 71 % by anaerobic metabolism in small and large animals respectively. With increasing animal size the decline in aerobic expansibility was offset by an increased capacity for lactate production so that the overall maximum energy production during sustained activity remained almost constant at around seven times the inactive rate. The cost of transport (the net increase in oxygen consumption per g per m) falls with increased walking speed and increased animal size.  相似文献   

18.
Oxygen consumption was measured in fifth and sixth instar larvae of Spodoptera exempta (Walker) (Lepidoptera, Noctuidae) at 25d?C using Warburg manometry. The mean rate of oxygen consumption while feeding on maize or sorghum leaves was approximately twice that at rest. The increment in oxygen consumption attributable to feeding was 583±207 μlg-1 h-l (mean±95% confidence limits) or, for maize, 6.1±3.5 μl O2 per mg of leaf eaten.  相似文献   

19.
The increase in metabolism during digestion--the heat increment of feeding--is often regarded as an energetic waste product. However, it has been suggested that this energy could offset thermoregulatory costs in cold environments. We investigated this possibility by measuring the rate of oxygen consumption of four juvenile Steller sea lions (Eumetopias jubatus) before and after they ingested a meal in water temperatures of 2 degrees-8 degrees C. Rates of oxygen consumption of fasted and fed animals increased in parallel with decreasing water temperature, such that the apparent heat increment of feeding did not change with water temperature. These results suggest that Steller sea lions did not use the heat released during digestion to offset thermoregulatory costs.  相似文献   

20.
An aquatic fern, Azolla microphylla (strain 175 MI, Catholic University of Louvain, Belgium), a natural source of protein, was used in this study to produce low‐cost feeds for the omnivorous–phytoplanktonophagous tilapia, Oreochromis niloticus L. Fish were grown in a recirculating system and fed with six different diets in triplicate groups. Diets were formulated with approximately similar total protein, ranging from 27.25 to 27.52% dry weight (dw), gross energy content ranging from 85.1 to 96.5 MJ kg?1 dw, and with different levels of dry meal Azolla (0, 15, 20 30 40, 45% diet dw). All diet levels with incorporated Azolla meal exhibited weight gain, thus it can be assumed that Azolla in good combination with local products can be used to promote fish culture development. The Azolla‐free diet and the diet containing 15%Azolla produced the same growth performance. However, the least expensive diet containing 45%Azolla also exhibited growth and can be used as a complementary diet for tilapia raised in fertilized ponds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号