首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The structures of two octasaccharides, one nonasaccharide, and one undecasaccharide, isolated from human milk, have been investigated by 1H- and 13C-nuclear magnetic resonance spectroscopy. The structures of these oligosaccharides are: beta-D-Galp-(1----4)-[alpha-L-Fucp- (1----3)]-beta-D-GlcpNAc-(1----3)-beta-D-Galp-(1----4)-[alpha-L-Fucp+ ++- (1----3)]-beta-D-GlcpNAc-(1----3)-beta-D-Galp-(1----4)-D-Glc; beta-D-GALp-(1----3)-[alpha-L-Fucp-(1----4)]-beta-D-GlcpNAc-(1---- 3)-beta-D - Galp-(1----4)-[alpha-L-Fucp-(1----3)]-beta-D-GlcpNAc-(1----3)-beta -D-Galp- (1----4)-D-Glc; beta-D-Galp-(1----4)-[alpha-L-Fucp-(1----3)]-beta-D-GlcpNAc-(1---- 6)-(alpha - L-Fucp-(1----2)-beta-D-Gal-(1----3)-[alpha-L-Fucp-(1----4)]- beta-D-GlcpNAc- (1----3))-beta-D-Galp-(1----4)-D-Glc; and alpha-L-Fucp-(1----2)-beta-D-Galp-(1----3)-beta-D-GlcpNAc-(1----3) -beta-D- Galp-(1----4)-[alpha-L-Fucp-(1----3)]-beta-D-GlcpNAc-(1----6)-[alp ha-L- Fucp-(1----2)-beta-D-Galp-(1----3)-beta-D-GlcpNAc-(1----3)]-beta-D -Galp- (1----4)-D-Glc. The two octasaccharides have been previously isolated from human milk as a mixture, and in a pure form from new-born feces, but the n.m.r. data were not provided. These two octasaccharides display the di-Lewis X and the composite Lewis A-Lewis X antigenic determinant, previously described as neo-antigens of adenocarcinoma cell lines.  相似文献   

2.
The asparagine-linked sugar chains of bovine brain ribonuclease were quantitatively released as oligosaccharides from the polypeptide backbone by hydrazinolysis. After N-acetylation, they were converted into radioactively-labeled oligosaccharides by NaB3H4 reduction. The radioactive oligosaccharide mixture was fractionated by ion-exchange chromatography, and the acidic oligosaccharides were converted into neutral oligosaccharides by sialidase digestion. The neutral oligosaccharides were then fractionated by Bio-Gel P-4 column chromatography. Structural studies of each oligosaccharide by sequential exoglycosidase digestion in combination with methylation analysis revealed that bovine brain ribonuclease showed extensive heterogeneity. It contains bi- and tri-antennary, complex-type oligosaccharides having alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Manp -(1----4)-beta-D- GlcpNAc-(1----4)-[alpha-L-Fucp-(1----6)]-D-GlcNAc as their common core. Four different outside oligosaccharide chains, i.e., beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----, alpha-Neu5Ac-(2----6)-beta-D- Galp-(1----4)-beta-D-GlcpNAc-(1----, alpha-Neu5Ac-(2----3)-beta-D-Galp-(1----4)- beta-D-GlcpNAc-(1----, and alpha-D-Galp-(1----3)-beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----, were found. The preferential distribution of the alpha-D-Galp-(1----3)-beta-D-Galp-(1----4)-beta-D-GlcpNAc group on the alpha-D-Manp-(1----6) arm is a characteristic feature of the sugar chains of this enzyme.  相似文献   

3.
The complete 1H- and 13C-n.m.r. assignments for beta-D-Galp-(1----4)-beta-D-GlcpNAc-6-SO3H-(1----6)-[beta-D-Galp-(1----3 )]- D-GalNAcol and alpha-NeuAcp-(2----3)-beta-D-Galp-(1----3)-[beta-D-Galp-(1----4)-b eta-D- GlcpNAc-6-SO3H-(1----6)]-D-GalNAcol were made by a combination of 2-D correlation experiments (Relayed-Cosy; and 13C,1H Correlation-shift n.m.r. spectroscopy), and 1-D n.m.r. spectroscopy. The results illustrate the ability of these methods to locate sulphate and NeuAc groups in anionic mucinous glycoproteins.  相似文献   

4.
N-Phthaloylation of lactosamine gave various glycosyl donors (beta-chloride, beta-trichloroacetimidate) and glycosyl acceptors (3',4'-diol). Coupling of the chloride with a methyl beta-D-glycoside led to the tetrasaccharide fragment, beta-D-Galp-(1----4)-beta-D-GlcpNac-(1----3)-beta-D-Galp-(1----4)- beta-D-GlcpNAcOMe. Acetolysis of the protected tetrasaccharide, followed by treatment with hydrogen chloride, gave a tetrasaccharide chloride which was coupled with the methyl beta-glycoside of lactosamine. A hexasaccharide fragment, [beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)]2-beta-D-Galp-(1----4)-bet a- D-GlcpNAcOMe, was thus obtained by this ("n + 1") method. A more efficient ("n + n") method was applied for the synthesis of an octasaccharide fragment, [beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)]3-beta-D-Galp- (1----4)-beta-D-GlcpNAcOMe (38), where di- and tetra-saccharide intermediates having a 3,4-O-isopropylidene-beta-D-galactopyranosyl nonreducing terminal group and a benzyl beta-D-glycoside group were precursors, either as glycosyl donors (beta-trichloroacetimidates) or glycosyl acceptors (3,4-diols as nonreducing terminal groups). Thus, doubling the length of the repetitive oligosaccharide sequence could be efficiently accomplished at each glycosylation step.  相似文献   

5.
The isomeric sialyl-Lea-terminating pentasaccharide derivatives, alpha-Neup5Ac-(2----3)-beta-D-Galp-(1----3)-[alpha-L-Fucp-(1 ----4)]-beta- D-GlcpNAc-(1----3)-beta-D-Galp-O(CH2)8COOMe and alpha-Neup5Ac-(2----3)-beta-D-Galp-(1----3)-[alpha-L-Fucp-(1 ----4)]- beta-D-GlcpNAc-(1----6)-beta-D-Galp-O(CH2)8COOMe, have been prepared by the action in sequence of a porcine submaxillary (2----3)-alpha-sialyltransferase and a human-milk (1----3/4)-alpha-fucosyltransferase on the chemically synthesized trisaccharides beta-D-Galp-(1----3)-beta-D-GlcpNAc-(1----3)- and -(1----6)-beta-D-Galp- O(CH2)8COOMe, respectively.  相似文献   

6.
The chemo-enzymatic synthesis is described of beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->O(CH(2))(6)NH(2) (1), beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->O(CH(2))(6)NH(2) (2), beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->O(CH(2))(6)NH(2) (3), and beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->O(CH(2))(6)NH(2) (4), representing fragments of the repeating unit of the Streptococcus pneumoniae serotype 14 capsular polysaccharide. Linear intermediate oligosaccharides 5-8 were synthesized via chemical synthesis, followed by enzymatic galactosylation using bovine milk beta-1,4-galactosyltransferase as a catalyst. The title oligosaccharides form suitable compounds for conjugation with carrier proteins, to be tested as potential vaccines in animal models.  相似文献   

7.
Oligosaccharides formed by a transgalactosylation reaction during lactose hydrolysis with Bifidobacterium bifidum were separated into eight fractions by gel-permeation chromatography and their structures studies determined by trimethylsilylation analysis, methylation analysis, f.a.b.-m.s., g.l.c.-m.s. and enzymic hydrolysis as beta-D-Galp-(1----3)-D-Glc, beta-D-Galp-(1----6)-D-Glc, beta-D-Galp-(1----6)-D-Gal, beta-D-Galp-(1----3)-beta-D-Galp-(1----4)-D-Glc, beta-D-Galp-(1----6)[beta-D-Galp-(1----4)]-D-Glc, beta-D-Galp-(1----2)[beta-D-Galp-(1----6)]-D-Glc, beta-D-Galp-(1----3)-beta-D-Galp-(1----3)-beta-D-Galp-(1----4)-D-Glc, beta-D-Galp-(1----3)-beta-D-Galp-(1----3)-beta-D-Galp-(1----3)-beta-D-Ga lp- (1----4)-D-Glc, beta-D-Galp-(1----3)-beta-D-Galp-(1----3)-beta-DGalp-(1----3)-beta -D-Galp-(1----3)-beta-D-Galp-(1----4)-D-Glc, and beta-D-Galp-(1----3)-beta-D-Galp-(1----3)-beta-D-Galp-(1----3)-beta-D-Ga lp-(1----3)-beta-D-G-alp-(1----3) beta-D-Galp-(1----4)-D-Glc.  相似文献   

8.
Three neutral trisaccharides, which comprise 25.1% of the neutral oligosaccharide other than lactose, were isolated from bovine colostrum, obtained 6 h after parturition, by l.c. on amino silica gel. The chemical structures were identified, by methylation analysis with direct m.s. and g.l.c.-m.s., and by structural analysis with 13C-n.m.r., as beta-D-Galp-(1----4)-[alpha-L-Fucp-(1----3)-]-D-GlcNAc (3-fucosyl-N-acetyllactosamine), beta-D-Galp-(1----3)-beta-D-Galp-(1----4)-D-Glc (3'-galactosyllactose), and beta-D-Galp-(1----6)-beta-D-Galp-(1----4)-D-Glc (6'-galactosyllactose). The The first-named compound was a novel oligosaccharide from mammalian milk.  相似文献   

9.
Eleven oligosaccharides were purified form the urine of sheep with swainsonine toxicosis induced by the feeding of Astragalus lentiginosus. Oligosaccharides were extracted by charcoal adsorption, chromatographed on Bio-Gel P-2, and partially fractionated by preparative-layer chromatography. Separation into individual compounds was completed by semi-preparative high pressure liquid chromatography. Structures were determined by a combination of high pressure liquid chromatography and exo- and endo- glycosidase action, methanolysis followed by gas-liquid chromatography, methylation analysis, and high resolution nuclear magnetic resonance spectroscopy. Two homologous series of oligosaccharides were identified: (a) alpha-D-Manp-(1----6)-beta-D-Manp-(1----4)-D-GlcpNAc, alpha-D-Manp(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Manp+ ++-(1----4)-D-GlcpNAc, alpha-D-Manp-(1----2)-alpha-D-Manp(1----3)-[alpha-D-Manp+ ++-(1----6)]-beta-D-Manp-(1----4)-D-GlcpNAc, and alpha-D-Manp-(1----2)-alpha-D-Manp-(1----2)-alpha-D-Manp+ ++-(1----3)-[alpha- D-Manp-(1----6)]-beta-D-Manp-(1----4)-D-GlcpNAc (minor series); (b) alpha-D-Manp-(1----6)-beta-D-Manp-(1----4)-beta-D-GlcpNAc- (1----4)-D-GlcpNAc, alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Manp -(1----4)-beta-D-GlcpNAc-(1----4)-D-GlcpNAc, alpha-D-Manp(1----3)-alpha-D-Manp-(1----6)-beta-D-Manp -(1----4)-beta-D-GlcpNAc- (1----4)-D-GlcpNAc, alpha-D-Manp-(1----6)-alpha-D-Manp-(1----6)-beta-D-Manp++ +-(1----4)-beta-D-GlcpNAc - (1----4)-D-GlcpNAc, alpha-D-Manp-(1----3)-alpha-D-Manp-(1----6)-[alpha-D-Manp -(1----3)]-beta-D- Manp-(1----4)-beta-D-GlcpNAc-(1----4)-D-GlcpNAc, alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-alpha-D-Man p-(1----6)-beta-D- Manp-(1----4)-beta-D-GlcpNAc-(1----4)-D-GlcpNAc, and alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-alpha-D-Man p-(1----6)- [alpha-D-Manp-(1----3)]-beta-D-Manp-(1----4)-beta-D-GlcpNAc- (1----4)-D- GlcpNAc (major series).  相似文献   

10.
The chemo-enzymatic synthesis is described of tetrasaccharide beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->O(CH(2))(6)NH(2) (1) and octasaccharide beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->3)-beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->O(CH(2))(6)NH(2) (2), representing one and two tetrasaccharide repeating units of Streptococcus pneumoniae serotype 14 capsular polysaccharide. In a chemical approach, the intermediate linear trisaccharide 3 and hexasaccharide 4 were synthesized. Galactose residues were beta-(1-->4)-connected to the internal N-acetyl-beta-D-glucosamine residues by using bovine milk beta-1,4-galactosyltransferase. Both title oligosaccharides will be conjugated to carrier proteins to be tested as potential vaccines in animal models.  相似文献   

11.
On human erythrocytes, the membrane components associated with Pk and P1 blood-group specificity are glycosphingolipids that carry a common terminal alpha-D-Galp-(1----4)-beta-D-Gal unit, the biosynthesis of which is poorly understood. Human kidneys typed for P1 and P2 (non-P1) blood-group specificity have been assayed for (1----4)-alpha-D-galactosyltransferase activity by use of lactosylceramide [beta-D-Galp-(1----4)-beta-D-Glcp-ceramide] and paragloboside [beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)-beta-D-Galp- (1----4)-beta-D-Glcp-ceramide] as acceptor substrates. The linkage and anomeric configuration of the galactosyl group transferred into the reaction products were established by methylation analysis before and after alpha- and beta-D-galactosidase treatments, as well as by immunostaining using specific monoclonal antibodies directed against the Pk and P1 antigens. The results demonstrated that the microsomal proteins from P1 kidneys catalyze the synthesis of Pk [alpha-D-Galp-(1----4)-beta-D-Galp-(1----4)-beta-D-Glcp-ceramide] and P1 [alpha-D-Galp-(1----4)-beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----3)-beta -D-Galp-(1----4)-beta-D-Glcp-ceramide] glycolipids, whereas microsomes from P2 kidney catalyze the synthesis of the Pk glycolipid, but not of the P1 glycolipid. Competition studies using a mixture of two oligosaccharides (methyl beta-lactoside and methyl beta-lacto-N- neotetraoside) or of two glycolipids (lactosylceramide and paragloboside) as acceptors indicated that these substrates do not compete for the same enzyme in the microsomal preparation from P1 kidneys. The results suggested that the Pk and P1 glycolipids are synthesized by two distinct enzymes.  相似文献   

12.
A synthesis of alpha-D-Manp-(1----3)-[beta-D-GlcpNAc-(1----4)]-[alpha-D-Manp++ +-(1----6)]- beta-D-Manp-(1----4)-beta-D-GlcpNAc-(1----4)-[alpha-L-Fucp-( 1----6)]-D- GlcpNAc was achieved by employing benzyl O-(3,4,6-tri-O-benzyl-2-deoxy-2-phthalimido-beta-D-glucopyranosyl)-(1--- -4)-O- (2-O-benzyl-beta-D-mannopyranosyl)-(1----4)-O-(3,6-di-O-benzyl-2-deoxy-2 - phthalimido-beta-D-glucopyranosyl)-(1----4)-3-O-benzyl-2-deoxy-6-O-p- methoxyphenyl-2-phthalimido-beta-D-glucopyranoside as a key glycosyl acceptor. Highly stereoselective mannosylation was performed by taking advantage of the 2-O-acetyl group in the mannosyl donors. The alpha-L-fucopyranosyl residue was also stereoselectively introduced by copper(II)-mediated activation of methyl 2,3,4-tri-O-benzyl-1-thio-beta-L-fucopyranoside.  相似文献   

13.
The binding properties of a spacer-linked synthetic Sd(a) tetrasaccharide beta-D-GalpNAc-(1-->4)-alpha-Neu5Ac-(2-->3)]-beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->O)-(CH(2))(5)-NH(2) (1), two tetrasaccharide mimics beta-D-Galp-(1-->4)-alpha-Neu5Ac-(2-->3)]-beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->O)-(CH(2))(5)-NH(2) (2) and beta-D-GlcpNAc-(1-->4)-alpha-Neu5Ac-(2-->3)]-beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->O)-(CH(2))(5)-NH(2) (3), and two trisaccharide mimics beta-D-GalpNAc-(1-->4)-3-O-(SO(3)H)-beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->O)-(CH(2))(5)-NH(2) (4) and beta-D-GalpNAc-(1-->4)-3-O-(CH(2)COOH)-beta-D-Galp-(1-->4)-beta-D-GlcpNAc-(1-->O)-(CH(2))(5)-NH(2) (5) with lectins from Dolichos biflorus (DBL), Maackia amurensis (MAL), Phaseolus limensis (PLL), Ptilota plumosa (PPL), Ricinus communis 120 (RCL120) and Triticum vulgaris (wheat germ agglutinin, WGA) have been investigated by surface plasmon resonance (SPR) detection. MAL, PPL, RCL120 and WGA did not display any binding activity with compounds 1-5. However, DBL and PLL, both exhibiting GalNAc-specificity, showed strong binding activity with compounds 1, 4 and 5, and 1, 3, 4 and 5, respectively. The results demonstrate that SPR is a very useful analysis system for identifying biologically relevant oligosaccharide mimics of the Sd(a) determinant.  相似文献   

14.
Li A  Kong F 《Carbohydrate research》2004,339(11):1847-1856
Two arabinogalactosyl nonasaccharides, beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->3)]-beta-D-Galp-(1-->6)-beta-D-Galp-(1-->6)-beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->5)-alpha-L-Araf-(1-->3)]-beta-D-Galp-(1-->6)-beta-D-Galp and beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->5)-alpha-L-Araf-(1-->3)]-beta-D-Galp-(1-->6)-beta-D-Galp-(1-->6)-beta-D-Galp-(1-->6)-[alpha-L-Araf-(1-->3)]-beta-D-Galp-(1-->6)-beta-D-Galp, were synthesized as their 4-methoxyphenyl glycosides with 2,3,4,6-tetra-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (1), 6-O-acetyl-2,3,4-tri-O-benzoyl-alpha-D-galactopyranosyl trichloroacetimidate (14), 4-methoxyphenyl 3-O-allyl-2,4-di-O-benzoyl-beta-D-galactopyranoside (2), 4-methoxyphenyl 2,3,4-tri-O-benzoyl-beta-D-galactopyranoside (5), 2,3,5-tri-O-benzoyl-alpha-L-arabinofuranosyl trichloroacetimidate (8), and 2,3,5-tri-O-benzoyl-alpha-L-arabinofuranosyl-(1-->5)-2,3-di-O-benzoyl-alpha-L-arabinofuranosyl trichloroacetimidate (11), as the key synthons. The tetra- (10) and pentasaccharide donor (13), and the tetra- (20) and pentasaccharide acceptor (22) were synthesized based on these synthons through simple transformations. Coupling of 22 with 10, and coupling of 20 with 13 and subsequent deacylation gave nonasaccharides 24 and 26, respectively, consisting of beta-(1-->6)-linked glactopyranosyl backbone and alpha-(1-->3)-linked arabinofuranosyl side chains of different size.  相似文献   

15.
An N-acetyl-beta-D-glucosaminyltransferase activity involved in the initiation of poly-N-acetyllactosamine chain biosynthesis can be solubilized from Ehrlich ascites tumor cell microsomal membranes. The ability of this enzyme to act on linear and branched acceptor substrates has been studied. The results indicate that complex-type tri- and tetra-antennary oligosaccharides exhibiting the branching pattern beta-D-Galp-(1----4)-beta-D-GlcpNAc-(1----6)-[beta-D-Galp-(1----4)-beta- D- Glcp-NAc-(1----2)]-D-Man are the preferred substrates for the enzyme, and therefore, may represent the structures upon which the generation of poly-N-acetyllactosamine chains proceeds more efficiently.  相似文献   

16.
alpha-Neup5Ac-(2----3)-beta-D-Galp-(1----3)-D-GlcpNAc (2) and, alpha-Neup5Ac-(2----3)-beta-D-Galp-(1----3)-beta-D-GlcpNAcOMBn+ ++ were prepared on a large scale by the action of beta-D-Galp-(1----3)-D-GalpNAc (2----3)-alpha-sialyltransferase (partially purified from porcine liver) on beta-D-Galp-(1----3)-D-GlcpNAc and beta-D-Galp-(1----3)-beta-D-GlcpNAcOMBn, respectively. The trisaccharide 2 is the epitope of the tumor-associated carbohydrate antigen CA 50, highly expressed in human pancreatic adenocarcinoma.  相似文献   

17.
A pentasaccharide mimic of a fragment of the capsular polysaccharide of Streptococcus pneumoniae type 15C beta-D-Galp-(1-->4)-beta-D-Glcp-(1-->6)-[alpha-D-Galp-(1-->2)-beta-D-Galp-(1-->4)]-beta-D-GlcpNAc-(1-->OCH2CH2N3) (1) was synthesized in a regio- and stereoselective manner. The 2-azidoethyl-spacered pentasaccharide mimic 1 can be used to construct a neoglycoconjugate antigen.  相似文献   

18.
The oligosaccharide glycosides beta-D-Glcp-(1----6)-beta-D-Glcp-(1----6)-[beta-D-Galp-(1----6)]n-beta-D - Glcp-(1----6)-beta-D-Glcp-1----OMe (n = 1-4) were prepared by a convergent block synthesis. Haloacetyl, tert-butyldiphenylsilyl, and dimethylthexylsilyl groups were used as temporary protective groups for the preparation of the intermediate glycosyl donors and acceptors. The deoxygenated trisaccharide glycosides beta-D-Glcp-(1----6)-beta-D-Galp-(1----6)-4-deoxy-beta-D-xylo-Hexp -1----OMe and beta-D-Glcp-(1----6)-4-deoxy-beta-D-xylo-Hexp-(1----6)-beta-D-Galp -1----OMe were also synthesized. The binding of each glycoside to the monoclonal antigalactan antibody IgA J539 was studied and the results support the previous finding that J539 can bind to internal antigenic epitopes. The data are consistent with the interpretation that subsite C of that antibody binds glucose with a Ka of approximately 6 (cf. 10.9 for galactose).  相似文献   

19.
The conformational analysis of the recently synthesized tetrasaccharides alpha-D-Manp (1----3)-[alpha-D-Manp-(1----6)]-4-deoxy-beta-D-lyx-hexp+ ++-(1----4)-D-GlcNAc (2) and alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Talp -(1----4)-D-GlcNAc (3) will be described. The preferred solution conformation of 2 and 3 is a gt-conformation, which is nearly identical with the preferred conformation of the naturally occurring tetrasaccharide alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Manp -(1----4)-D-GlcNAc (1). The main structural feature is the backfolding of the alpha-(1----6)-linked D-Man to the reducing D-GlcNAc unit. Conformational analysis of the tetrasaccharides alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Manp -(1----4)-1,6- anhydro-beta-D-GlcNAc (4), alpha-D-Manp-(1----3)-alpha-D-Manp-(1----6)]-4-deoxy-beta-D- lyx-hexp-(1----4)- 1,6-anhydro-beta-D-GlcNAc (5), and alpha-D-Manp-(1----3)-[alpha-D-Manp-(1----6)]-beta-D-Talp -(1----4)- 1,6-anhydro-beta-D-GlcNAc (6) gave additional proof for this backfolding. The substitution of the reducing unit leads to a smaller amount of gt- and a greater amount of gg-conformers. The method used for conformational analysis of 2-6 is a combination of n.m.r.-experiments and HSEA-calculations with the program GESA. Concerning the application of new 2D-techniques, the COLOC-experiment turned out to be extremely useful in sequencing oligosaccharides.  相似文献   

20.
Regenerating rat liver microsomes contain a beta-D-galactoside alpha-(2----3)- and a 2-acetamido-2-deoxy-beta-D-glucoside alpha-(2----6)-sialyltransferase that are involved in the synthesis of the terminal alpha-NeuAc-(2----3)-beta-D-Galp-(1----3)-alpha-[NeuAc-(2----6)]-beta- D-GlcpNAc-(1----R) group occurring in human milk oligosaccharides and the glycan chains of several N-glycoproteins. Analysis by liquid chromatography and methylation of the products of sialylation obtained when lacto-N-tetraose [beta-D-Galp-(1----3)-beta-D-GlcpNAc-(1----3)-beta-D-Galp-(1----4) -D-Glc] was used as a substrate in the incubations in vitro indicated that the disialylated sequence is formed for greater than 95% through the tetrasaccharide alpha-NeuAc-(2----3)-beta-D-Gal-(1----3)-beta-D-GlcNAc-(1----3)-beta-D-G al- (1----4)-D-Glc as one of two possible intermediates. This indicates that in the synthesis of the disialylated sequence the alpha-(2----3)- and the alpha-(2----6)-sialyltransferase act in a highly preferred order in which the alpha-(2----3) enzyme acts first. This order is imposed by the specificity of the alpha-(2----6)-sialyltransferase, which requires an alpha-NeuAc-(2----3)-beta-D-Gal-(1----3)-beta-D-GlcNAc-(1----R) sequence for optimal activity, and shows very low and no activity with beta-D-Gal-(1----3)-beta-D-GlcNAc-(1----R) and beta-D-GlcNAc-(1----R) acceptor structures, respectively. Results obtained with normal rat, fetal calf, rabbit and human liver, and human placenta indicated that very similar or identical sialyltransferases occur in these tissues. It is suggested that these enzymes differ from the sialyltransferases that previously had been identified in fetal calf liver and human placenta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号