首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In a model hyperaccumulation study a Cd/Zn hyperaccumulator Thlaspi caerulescens accession Ganges and a recently reported Cd/Zn hyperaccumulator Thlaspi praecox grown in increasing Cd and Zn concentrations in the substrate and in field collected polluted soil were compared. Plant biomass, concentrations of Cd and Zn, total chlorophylls and anthocyanins, antioxidative stress parameters and activities of selected antioxidative enzymes were compared. Increasing Cd, but not Zn in the substrate resulted in the increase of biomass of roots and shoots of T. praecox and T. caerulescens. The two species hyperaccumulated Cd in the shoots to a similar extent, whereas T. caerulescens accumulated more Zn in the shoots than T. praecox. Cadmium amendment decreased total chlorophyll concentration and glutathione reductase activity, and increased non-protein thiols concentration only in T. praecox, suggesting that it is less tolerant to Cd than T. caerulescens. In the field-contaminated soil, T. caerulescens accumulated higher Cd concentrations; but as T. praecox produced higher biomass, both species have similar ability to extract Cd.  相似文献   

2.
In a model hyperaccumulation study a Cd/Zn hyperaccumulator Thlaspi caerulescens accession Ganges and a recently reported Cd/Zn hyperaccumulator Thlaspi praecox grown in increasing Cd and Zn concentrations in the substrate and in field collected polluted soil were compared. Plant biomass, concentrations of Cd and Zn, total chlorophylls and anthocyanins, antioxidative stress parameters and activities of selected antioxidative enzymes were compared. Increasing Cd, but not Zn in the substrate resulted in the increase of biomass of roots and shoots of T. praecox and T. caerulescens. The two species hyperaccumulated Cd in the shoots to a similar extent, whereas T. caerulescens accumulated more Zn in the shoots than T. praecox. Cadmium amendment decreased total chlorophyll concentration and glutathione reductase activity, and increased non-protein thiols concentration only in T. praecox, suggesting that it is less tolerant to Cd than T. caerulescens. In the field-contaminated soil, T. caerulescens accumulated higher Cd concentrations; but as T. praecox produced higher biomass, both species have similar ability to extract Cd.  相似文献   

3.
Arabis gemmifera is a hyperaccumulator of Cd and Zn   总被引:1,自引:0,他引:1  
Hyperaccumulators are essential for phytoremediation of heavy metals. In Europe and North America, many studies have been conducted to find more effective plants for phytoremediation of various pollutants. In Japan, this field of research has just recently come more into focus. A type of fern in Japan, Athyrium yokoscense, is well known as a hyperaccumulator of Cd and Zn. However, it is not suitable for phytoremediation because it is a summer green and grows slowly. Therefore, in order to find hyperaccumulators other than from A. yokoscense, we surveyed plants growing at polluted sites in Japan. We found that the Brassicae Arabis gemmifera is a hyperaccumulator of Cd and Zn, with phytoextraction capacities almost equal to Thlaspi caerulescens.  相似文献   

4.
Summary In the frame of a project financed by the General Secretariat of Research and Technology, the Institute of Botany has undertaken to measure the degree of pollution in the marine area by means of physicochemical and biotic parameters. Bioaccumulation of heavy metals in the macrophyceae has also been examined. Since the latter are immobile, they form strong indicators of pollution for the respective biotopes. Comparing the measurements carried out in marine macrophyceae obtained from the Gulf of Kavala and Pylos, we have made the following conclusions. Seasonal variations were detected in the Cd and Zn content of nine marine macrophyceae species which had already been investigated. Cadmium, one of the toxic metals, was, in certain cases, present in a large number of species. Fluctuations in the quantities were seasonally detected, but more obvious differences were those between species from different classes of macrophyceae. In contrast, the amount of Zn was generally lower. When we compared the values of Zn to those of Cd in the same algal species, we detected an antagonism between them (i.e. higher values for Cd were accompanied by lower values for Zn). Finally, on comparing the biotopes, we found there was slightly more Cd in Pylos than in Kavala. In the harbour of Kavala, in particular, where there is strong evidence of domestic sewage, the amount of Cd is very low. It is well known that Cd is derived mostly from industrial waste waters; in the city of Kavala, the domestic waste does not include high quantities of heavy toxic metals.  相似文献   

5.
6.
Metal accumulating plants exposed to toxic levels of zinc (Zn) and cadmium (Cd) uptake metals through extracellular and intracellular complexation with inorganic and organic ligand formation. However, little is known about the nature and formation mechanism of these metal–ligand complexes. Though, Zn and Cd have many similar chemical properties, yet their complexation and compartmentalization in plants vary with plant species. In principal, the question arises what factors govern Zn and Cd partitioning in plants? What form of the metal is taken up by the root, and is further distributed and accumulated in both vegetative and reproductive tissues? Therefore, the aim of present study is to address several questions concerning the mechanisms of Zn and Cd coordination and compartmentalization in plants using X-ray absorption spectroscopy (XAS) technique. XAS allows direct determination of elemental oxidation states and coordination environments in different plant tissues. This review article briefly explains some other important techniques of XAS; EXAFS (extended X-ray absorption fine structure) and XANES (X-ray absorption near edge structure), which are employed for determining Zn and Cd complexation within the plant. Therefore, In present review, the predominant as well as the minor chemical forms of Zn and Cd present in particular plant tissue have been discussed which could give better insight towards metal accumulation and detoxification mechanisms operated in plants. This information could assist in employing suitable hyperaccumulator plants for metal phytoextraction and reclamation of metal contaminated sites.  相似文献   

7.
Most metals disperse easily in environments and can be bioconcentrated in tissues of many organisms causing risks to the health and stability of aquatic ecosystems even at low concentrations. The use of plants to phytoremediation has been evaluated to mitigate the environmental contamination by metals since they have large capacity to adsorb or accumulate these elements. In this study we evaluate Salvinia minima growth and its ability to accumulate metals. The plants were cultivated for about 60 days in different concentrations of Cd, Ni, Pb and Zn (tested alone) in controlled environmental conditions and availability of nutrients. The results indicated that S. minima was able to grow in low concentrations of selected metals (0.03 mg L?1 Cd, 0.40 mg L?1 Ni, 1.00 mg L?1 Pb and 1.00 mg L?1 Zn) and still able to adsorb or accumulate metals in their tissues when cultivated in higher concentrations of selected metals without necessarily grow. The maximum values of removal metal rates (mg m2 day?1) for each metal (Cd = 0.0045, Ni = 0.0595, Pb = 0.1423 e Zn = 0.4046) are listed. We concluded that S. minima may be used as an additional tool for metals removal from effluent.  相似文献   

8.
Soil pH Effects on Uptake of Cd and Zn by Thlaspi caerulescens   总被引:6,自引:0,他引:6  
For phytoextraction to be successful and viable in environmental remediation, strategies that can optimize plant uptake must be identified. Thlaspi caerulescens is an important hyperaccumulator of Cd and Zn, whether adjusting soil pH is an efficient way to enhance metal uptake by T. caerulescens must by clarified. This study used two soils differing in levels of Cd and Zn, which were adjusted to six different pH levels. Thlaspi caerulescens tissue metal concentrations and 0.1 M Sr(NO3)2 extractable soil metal concentrations were measured. The soluble metal form of both Cd and Zn was greatly increased with decreasing pH. Lowering pH significantly influenced plant metal uptake. For the high metal soil, highest plant biomass was at the lowest soil pH (4.74). The highest shoot metal concentration was at the second lowest pH (5.27). For low metal soil, due to low pH induced Al and Mn toxicity, both plant growth and metal uptake was greatest at intermediate pH levels. The extraordinary Cd phytoextraction ability of T. caerulescens was further demonstrated in this experiment. In the optimum pH treatments, Thlaspi caerulescens extracted 40% and 36% of total Cd in the low and high metal soils, respectively, with just one planting. Overall, decreasing pH is an effective strategy to enhance phytoextraction. But different soils had various responses to acidification treatment and a different optimum pH may exist. This pH should be identified to avoid unnecessarily extreme acidification of soils.  相似文献   

9.
Epidermal uptake of Pb,Cd, and Zn in tubificid worms   总被引:1,自引:0,他引:1  
Hans Back 《Oecologia》1990,85(2):226-232
Summary The epidermal uptake of Pb, Cd, and the essential element Zn by tubificid worms was investigated. The animals were starved and contaminated via the water column at 4°C and 25°C. Atomic absorption spectroscopy (AAS), energy-dispersive X-ray microanalysis (EDX), laser induced mass analysis (LAMMA), electron microscopy, and the sulfide-silver method at the electron microscopical level were used. The sulfidesilver method revealed many reaction products indicating heavy metals in membrane-limited lysosomal structures in epidermal cells of contaminated Limnodrilus udekemianus. In these lysosomes, which were particularly abundant in the epidermis of the hind end, Pb, Cd, and Zn were detected by LAMMA and EDX analysis. Beside this distinct occurrence of the three elements a uniform pattern of reaction products was found in epidermal cells after contamination with Cd and Zn, but not after treatment with Pb. As shown by atomic absorption spectroscopy, Cd was the most enriched element at 25°C, followed by Pb and Zn. Simultaneous application of Zn reduced the uptake of Cd, whereas the uptake of Pb was increased. At 4° C uptake of Pb and Cd was slower than at 25° C, while Zn uptake was blocked completely. This shows that heavy metal uptake can be strongly dependent on environmental conditions, which has to be taken into account if animals are used as monitor organisms for heavy metal pollution in the environment.  相似文献   

10.
Solubility of metal in contaminated soils is a key factor which controls the phytoavailability and toxic effects of metals on soil environment. The chemical equilibria of metal ions between soil solution and solid phases govern the solubility of metals in soil. Hence, an attempt was made to identify the probable solid phases (minerals), which govern the solubility of Zn2+ and Cd2+ in zinc smelter effluent-irrigated soils. Estimation of free ion activities of Zn2+ (pZn2+) and Cd2+ (pCd2+) by Baker soil test indicated that metal ion activities were higher in smelter effluent-irrigated soils as compared to that in tubewell water-irrigated soils. Identification of solid phases further reveals that free ion activity of Zn2+ and Cd2+ in soil highly contaminated with Zn and Cd due to long-term irrigation with zinc smelter effluent is limited by the solubility of willemite (Zn2SiO4) in equilibrium with quartz and octavite (CdCO3), respectively. However, in case of tubewell water-irrigated soil, franklinite (ZnFe2O4) in equilibrium with soil-Fe and exchangeable Cd are likely to govern the activity of Zn2+ and Cd2+ in soil solution, respectively. Formation of highly soluble minerals namely, willemite and octavite indicates the potential ecological risk of Zn and Cd, respectively in smelter effluent irrigated soil.  相似文献   

11.
Mammalian metallothioneins (MTs) are a family of small cysteine rich proteins believed to have a number of physiological functions, including both metal ion homeostasis and toxic metal detoxification. Mammalian MTs bind 7 Zn2+ or Cd2+ ions into two distinct domains: an N-terminal β-domain that binds 3 Zn2+ or Cd2+, and a C-terminal α-domain that binds 4 Zn2+ or Cd2+. Although stepwise metalation to the saturated M7-MT (where M = Zn2+ or Cd2+) species would be expected to take place via a noncooperative mechanism involving the 20 cysteine thiolate ligands, literature reports suggest a cooperative mechanism involving cluster formation prior to saturation of the protein. Electrospray ionization mass spectrometry (ESI-MS) provides this sensitivity through delineation of all species (Mn-MT, n = 0-7) coexisting at each step in the metalation process. We report modeled ESI-mass spectral data for the stepwise metalation of human recombinant MT 1a (rhMT) and its two isolated fractions for three mechanistic conditions: cooperative (where the binding affinities are: K1 < K2 < K3 < ··· < K7), weakly cooperative (where K1 = K2 = K3 = ··· = K7), and noncooperative, (where K1 > K2 > K3 > ··· > K7). Detailed ESI-MS metalation data of human recombinant MT 1a by Zn2+ and Cd2+ are also reported. Comparison of the experimental data with the predicted mass spectral data provides conclusive evidence that metalation occurs in a noncooperative fashion for Zn2+ and Cd2+ binding to rhMT 1a.  相似文献   

12.
重金属Cd-Zn对水稻的复合污染和生态效应   总被引:38,自引:1,他引:37  
重金属Cd-Zn对水稻的复合污染和生态效应周启星(浙江农业大学,杭州310029)吴燕玉,熊先哲(中国科学院沈阳应用生态研究所,110015)CompoundpollutionofCdandZnanditsecologicaleffectonrice...  相似文献   

13.
镉和锌在皖景天细胞内的分布及化学形态   总被引:11,自引:0,他引:11  
运用差速离心法和化学试剂逐步提取法,分析了Cd和Zn在皖景天根、茎和叶的亚细胞分布及其化学形态.结果表明:10 μmol·L-1 Cd处理下,Cd在皖景天细胞内的主要分布位点是其可溶部分;在100 μmol·L-1 Cd处理下,Cd在根中主要分布在细胞壁、茎中主要分布在细胞壁和可溶部分、叶中超过90%的Cd分布在可溶部分.高Cd浓度处理时,皖景天根、茎和叶的细胞壁中Cd分布比例增加,而可溶部分Cd分布比例相对减少.在1和800 μmol·L-1 Zn处理条件下,Zn在皖景天根、茎和叶的主要分布位点是可溶部分;高Zn浓度处理时,皖景天叶、茎和根的可溶部分和细胞壁中Zn的分布比例无明显变化.细胞器中Zn和Cd分布都很少.Cd在皖景天根、茎和叶内主要以氯化钠提取态和水提取态存在,Zn在皖景天根、茎和叶内以多种化学形态存在.  相似文献   

14.
Synthesis of complexes with the formulations [M(CPI)2Cl2] (M = Zn, 1; M = Cd, 4) and [M(CPI)6](X)2 (M = Zn, X = NO3, 2; X = ClO4, 3; M = Cd, X = NO3, 5; X = ClO4, 6) have been achieved from the reactions of MCl2, M(NO3)2·xH2O and M(ClO4)2·xH2O (M = Zn, Cd) with 1-(4-cyanophenyl)-imidazole (CPI). Complexes 1-6 have been characterized by elemental analyses and spectral studies (IR, 1H, 13C NMR, electronic absorption and emission). Molecular structures of 1, 2, 3 and 6 have been determined crystallographically. Weak interaction studies on the complexes revealed presence of various interesting motifs resulting from C-H···N, C-H···Cl and π-π stacking interactions. The complexes under study exhibit strong luminescence at ∼450 nm in DMSO at room temperature.  相似文献   

15.
Methods have been developed for the addition of different metal ion species to the three distinct pairs of metal sites (A, B, and C) found in the dimer of apoalkaline phosphatase. This allows the preparation of hybrid alkaline phosphatases in which A and B sites of each monomer contain two different species of metal ion or the A and B sites of one monomer contain the same species of metal ion, while the adjacent monomer contains a second species. The following hybrids have been characterized in detail: (Zn(II)ACd(II)B)2 alkaline phosphatase, (Zn(II)AMg(II)B)2 alkaline phosphatase, (Cd(II)AZn(II)B)2 alkaline phosphatase, and (Zn(II)AZn(II]B)(Cd(II)ACd(II)B) alkaline phosphatase. 31P and, where appropriate, 113Cd NMR have been used to monitor the behavior of the covalent (E-P) and noncovalent (E X P) phosphointermediates and of the A and B metal ions. From the pH dependencies of the E-P in equilibrium E X P in equilibrium E + Pi equilibria, it is clear that A site metal is the dominant influence in dephosphorylation of E-P and may have a coordinated water molecule, which ionizes to ZnOH- at a low pH providing the nucleophile for dephosphorylation. A site metal also serves to coordinate phosphate in the E X P complex. B site metal has a much smaller effect on dephosphorylation rates, although it does dramatically alter the Pi dissociation rate, which is the rate-limiting step for the native enzyme at alkaline pH, and is probably important in neutralizing the charge on the phosphoseryl residue, thus potentiating the nucleophilic attack of the OH- bound at A site. Phosphate dissociation is slowed markedly by replacement of B site zinc by cadmium. There is clear evidence for long range effects of subunit-subunit interactions, since metal ion and phosphate binding at one active center alters the environments of A and B site metal ions and phosphoserine at the other active site.  相似文献   

16.
重金属镉、锌在菹草叶细胞中的超微定位观察   总被引:19,自引:0,他引:19  
水环境污染中十分突出的是重金属的污染 ,主要来源为流入物、渗漏和大气沉降 (Larcher ,1995 )。由于重金属污染物不但不能被微生物所分解 ,而且能在生物体内富集 ,并通过水生食物链的生物放大作用而对高营养级的生物甚至人类造成危害 ,因此日益引起人们的特别关注。许多研究从超微结构损伤和生理生化的角度研究了重金属对植物的毒害机制。施国新等 (2 0 0 0 )观察了重金属汞、镉污染对水生植物黑藻叶细胞的超微结构损伤。彭鸣等 (1991)研究了重金属镉、铅诱导的玉米超微结构的变化。李荣春 (2 0 0 0 )研究了Cd、Pb及其复合污染…  相似文献   

17.
Litter accumulation in woodlands contaminated by Pb,Zn, Cd and Cu   总被引:4,自引:0,他引:4  
Summary Close to a primary lead-zinc-cadmium smelter the standing crop of litter in woodlands was found to be elevated relative to more distant sites. The total litter accumulation is similar to that from contaminated sites reported by other authors but in this case the concentrations of heavy metals are considerably lower than those reported for other sites. Evidence is provided to support the hypothesis that within the woodlands studied, litter accumulation is not closely pH dependent, but is clearly related to both cadmium and zinc concentrations in litter. Litter accumulation occurs in certain particle size ranges and fractionation shows that the weight of accumulated litter in these size ranges is highly correlated to cadmium concentrations. These results are discussed in relation to the reported possible long term effects of metal contamination on decomposition processes and the possibility of adaptation to these adverse effects.  相似文献   

18.
胶质芽孢杆菌对Zn2+、Cd2+的生物吸附   总被引:2,自引:0,他引:2  
目的:考察胶质芽孢杆菌对Cd2 、Zn2 的耐受能力.方法:通过改变培养条件及吸附条件研究胶质芽孢杆菌对Cd2 、Zn2 的生物吸附性能.在此实验基础上,在含有Cd2 、Zn2 的培养基中对胶质芽孢杆菌进行不同浓度梯度驯化,提高其对Cd2 Zn2 的生物富集能力.结果:胶质芽孢杆菌最大Cd2 耐受浓度在100mg·L-1左右,最大Zn2 耐受浓度在100~110mg·L-1.通过改变吸附条件,考察吸附时间、吸附pH值、菌体投加量对其生物吸附性能的影响,结果表明:当Cd2 、Zn2 浓度均为5mmol·L-1,菌投量分别为40.0gdry cell·L-1、29.8gdry cell·L-1时,胶质芽孢杆菌对Cd2 、zn2 的吸附率分别可达87.45%、97.50%.胶质芽孢杆菌经重金属离子浓度梯度驯化培养数代,经过8、9代的驯化,对Cd2 、Zn2 吸附性能均有改善.结论:胶质芽孢杆菌经过驯化,在适宜的吸附条件下可以对Cd2 、Zn2 进行有效的生物吸附,在处理重金属离子废水方面有潜在的应用前景.  相似文献   

19.
Biosorption is becoming an important component in the integrated approach to the treatment of aqueous effluents. The economics of biomass technical applications are improved by using waste biomass instead of purposely-produced biomass. Biomass derived from an alginate extraction industry - Sargassum sp. - was examined for its ability to function as a biosorbent for metals such as cadmium, zinc and copper. For use in column applications, biomass should be immobilized. To the algae reinforcement, the biomass was embedded in polyethleneimine (PEI), followed by glutaraldehyde crosslinking. Equilibrium Zn and Cu isotherms were analysed using the immobilization ratio that showed the best Cd performance. Either Freundlich or Langmuir models can describe the passive biosorption equilibrium of cadmium, zinc and cooper. The preference for this series of metals by the biomass was found to be Cd > Zn > Cu, with maximum uptake values of 157.8, 118.5 and 77.4 mg/g dry weight biomass for Cd, Zn and Cu. respectively. The metal binding capacity by non-living biomass is an important quality for industrial use.  相似文献   

20.
One hundred and eighteen algal isolates comprising seven classes were obtained from a range of sites from polluted rivers running through Cu or Zn mining regions, and from unpolluted rivers. All the isolates were tested for photosynthetic activity when exposed to Cu, Cd or Zn. The tolerance levels of Bacillariophyceae, Charophyceae, Cyanophyceae and Chlorophyceae to Cu showed significant positive correlations with Cu concentrations in the field. However the distribution of metal sensitivities of the algae from the sites with the same metal concentration was broad. Both Bacillariophyceae and Charophyceae had a number of strains whose sensitivity to Cu differed more widely in relation to Cu levels in the environment than Cyanophyceae and Chlorophyceae. Cyanophyceae were sensitive to all three metals, whether or not isolates were obtained from polluted sites, whereas Chlorophyceae tended to have high tolerance even in isolates from unpolluted sites. For Cd and Zn the correlation between tolerance levels and concentrations in the field was not so clear as for Cu. The occurrence of Cu tolerance was shown in 4 diatom species and one Charophyceae, whereas metal resistance occurred in some Chlorophyceae. Cu-tolerant isolates tended also to be Zn-tolerant in Bacillariophyceae, and Cd-resistant isolates tended also to be Zn-resistant in Chlorophyceae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号