首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unsaturated fatty acids that rapidly accumulate during ischemia are thought to participate in inducing irreversible brain injury, especially because they are highly susceptible to peroxidation when the tissue is reoxygenated. Our hypothesis was that peroxidation products of unsaturated fatty acids interfere with the reacylation of synaptic phospholipids, a process essential to membrane repair. To test this hypothesis, we have examined the effect of fatty acid hydroperoxides on incorporation of [1-14C]arachidonic acid into synaptosomal phospholipids. Rat forebrain synaptosomes were incubated with arachidonic or linoleic acid hydroperoxides and [14C]arachidonate, and then lipids were extracted and separated by TLC. Both hydroperoxides inhibited [14C]arachidonate incorporation into phospholipids in a concentration-dependent manner, with 50% inhibition occurring at less than 25 microM hydroperoxide, in both the absence and presence of exogenous lysophospholipids. The inhibition was of the non-competitive type. It is concluded that (a) low levels of fatty acid hydroperoxides inhibit the reacylation of synaptosomal phospholipids, and (b) this inhibition may constitute an important mechanism whereby peroxidative processes contribute to irreversible brain damage.  相似文献   

2.
3.
Dietary hydroperoxides are being discussed as potential health hazards contributing to oxidative stress-related diseases. However, how food-born hydroperoxides could exert systemic effects remains elusive in view of the limited chances to be absorbed. Therefore, the metabolic fate of 13-HPODE (13-hydroperoxy octadecadienoic acid), 13-HODE (13-hydroxy octadecadienoic acid) and linoleic acid (LA) was investigated in a CaCo-2 cell monolayer as a model of the intestinal epithelium. [1-14C]-13-HPODE, up to a non-cytotoxic concentration of 100 microM, did not cross the CaCo-2 cell monolayer unreduced if applied to the luminal side. The [1 -14C]-HPODE-derived radioactivity was preferentially recovered from intracellular and released diacylglycerols (DG), phospholipids (PL) and cholesterol esterified with oxidized fatty acids (oxCE). A similar distribution pattern was obtained with 13-HODE. In contrast, LA is preferentially incorporated into triacylglycerols (TG), cholesteryl esters (CE) and PL (but mainly released as TG). 13-HPODE dose-dependently decreased the incorporation of LA into released TG, while LA accumulated in cellular and released DGs, effects similarily exerted by 13-HODE. We concluded that food-born hydroperoxy fatty acids are instantly reduced by the gastrointestinal glutathione peroxidase, which was previously shown to persist in selenium deficiency. Accordingly, modulation of the glutathione peroxidases by selenium deprivation/repletion did not modify the disturbance of the lipid metabolism by 13-HPODE. Thus, hydroperoxy fatty acids disturb intestinal lipid metabolism by being esterified as hydroxy fatty acids into complex lipids, and may render lipoproteins synthesized thereof susceptible to further oxidative modifications.  相似文献   

4.
The effect of hypoglycemia on the uptake of [1-14C]arachidonate and [1-14C]oleate into a synaptosomal and microsomal glycerophospholipids was investigated. In the presence of ATP, Mg2+ and CoA, rat brain synaptosomes and micorsomes catalyze the transfer of arachidonate and oleatc into glycerophospholipids. Arachidonate was mainly incorporated into phosphatidylinositol (PI) and phosphatidylcholine (PC), whereas oleate was incorporated into phosphatidylcholine and phosphatidylethanolamine (PE).Hypoglycemia was produced by intraperitoneal injection of 10 or 100 units of crystalline insulin per kg body weight. Two hours after injection the blood glucose level decreased to 10–20 mg%. The content of brain phospholipids was slightly decreased but the change was not statistically significant. The level of free fatty acids (FFA) was increased. More pronounced and reproducible changes were found when hypoglycemia was produced by injection of 100 units of insulin per/kg body weight. Changes in brain cortex were similar to those observed in microsomes and synaptosomes. Hypoglycemia affected the incorporation of arachidonic acid into glycerophospholipids of brain membranes. Uptake of [1-14C]arachidonate was decreased selectively by 50% (into phosphatidic acid /PA/) when hypogiycemia was produced by injection of 10 units of insulin per kg body weight. The Higher dose of insulin 100 units per kg body weight produced a 20% inhibition of arachidonate incorporation into synaptosomal PI and a 13% decrease of incorporation into microsomal phosphatidylcholine. Incorporation of [1-14C]oleate into membrane phospholipids was not changed by hypoglycemic insult. It is proposed that the disturbances in fatty acid level, particularly arachidonate, and decreased uptake of arachidonic acid by synaptosomal glycerophospholipids may be responsible for alteration of membrane function and changes of synaptic processes.  相似文献   

5.
Hydroxy and hydroperoxy fatty acids were labeled with 9-bromomethylacridine at room temperature. They were separated from the degradation products and less polar fatty acid derivatives on an octyl silicagel column, and put on an octadecyl silicagel column by on-line column switching. By this method, picomolar levels of the derivatives were measured with good reproducibility. The detection limit of 16-hydroxy-hexadecanoic acid as a representative was 0.9 pmol (S/N =3) and the relative standard deviation of its peak areas was 2.5% (18.5 pmol, n = 7). The method was used for the measurement of hydroxy fatty acids derived from hydroperoxy fatty acids and phosphatidylcholine (PC) hydroperoxides spiked in human plasma. By incubation at 37°C for 4h with human plasma, the hydroperoxy fatty acid was reduced to the corresponding hydroxy fatty acid. In this condition, the PC hydroperoxides showed a considerable decrease, however, a small portion (2.5–3%) of PC hydroperoxides decomposed gave the corresponding hydroxy fatty acids.  相似文献   

6.
This study has examined the thrombin-stimulated release of polyunsaturated fatty acids from endothelial glycerolipids. Human umbilical vein endothelial cells were incubated with 1.25 microM [14C]arachidonate or [14C]eicosapentaenoate and then exposed to thrombin in buffered saline plus albumin. After an incorporation period of 0.5 h, the thrombin-stimulated release of the two radiolabeled fatty acids was quite similar. By contrast, after 24 h of fatty acid incorporation, the thrombin-stimulated release of radiolabeled fatty acid from cells incubated with [14C]eicosapentaenoate was only 25-30% of that from cells with [14C]arachidonate. Analysis of cellular glycerolipids indicated that 23 and 72%, respectively, of the incorporated [14C]arachidonate and [14C]eicosapentaenoate had been elongated to 22-carbon fatty acids in 24 h. Both 20- and 22-carbon 14C-labeled fatty acids were released to albumin in the medium in control incubations. Addition of thrombin stimulated the release of [14C]arachidonate and [14C]eicosapentaenoate, but not of their respective elongation products. Furthermore, endothelial cells incorporated exogenous [14C]docosatetraenoate into cellular glycerolipids but did not release it in response to thrombin. Thus, the thrombin-stimulated release of polyunsaturated fatty acids from vascular endothelial cells is highly selective for arachidonate and eicosapentaenoate. These results suggest that the extensive elongation of eicosapentaenoate by these cells serves to remove n - 3 polyunsaturated fatty acids from the pool of cellular acyl groups which are released in response to thrombin and are thus made available for metabolism by cyclooxygenase and lipoxygenase enzymes.  相似文献   

7.
[1-14C]Arachidonic acid was incubated with homogenates of the fungus, Saprolegnia parasitica. The products consisted of comparable amounts of two epoxy alcohols, 15-Ls-hydroxy-11,12-epoxy-5cis,8cis,13trans- eicosatrienoic acid and 15-hydroxy-13,14-epoxy-5cis,8cis,11cis-eicosatrienoic acid. Results of incubations carried out in the presence of nordihydroguaiaretic acid, 5,8,11,14-eicosatetraynoic acid, p-hydroxymercuribenzoate as well as glutathione peroxidase plus reduced glutathione demonstrated that transformation of arachidonic acid into epoxy alcohols occurred with the formation of 15-Ls-hydroperoxy-5cis,8cis,11cis,13trans- eicosatetraenoic acid (15-HPETE) as an intermediate. The pathway involved a lipoxygenase catalyzing the oxygenation of arachidonic acid at the 15L position to produce 15-HPETE, and a hydroperoxide isomerase activity which catalyzed conversion of 15-HPETE into the two epoxy alcohols. Studies with 15-[18O2]HPETE demonstrated that both oxygens of 15-HPETE were retained in the epoxy alcohols. Furthermore, experiments with mixtures of 15-[18O2]-and 15-[16O2]HPETE showed that conversion of 15-HPETE into epoxy alcohols occurred by an intramolecular transfer of hydroperoxide oxygen.  相似文献   

8.
In this study, the initial incorporation of arachidonic acid into human neutrophils has been examined. Neutrophils pulse labeled for 5 min with [3H]arachidonic acid rapidly incorporated this fatty acid into 1,2-diacylglycerophosphocholine. However, when neutrophils were pulse labeled with [3H]arachidonic acid for 5 min, washed, and allowed to incubate for an additional 120 min, the relative amount of [3H]arachidonic acid increased in alkylacylglycerophosphocholine molecular species. Similar, when neutrophils were pulse labeled, washed, and allowed to incubate in the presence of 30 microM unlabeled arachidonic acid for 120 min, [3H]arachidonic acid was also remodeled into alkylacylglycerophosphocholine. These results implied that the initial incorporation of [3H]arachidonic acid proceeded via a free fatty acid intermediate into 1,2-diacyl-GPC, while the subsequent remodeling of arachidonate-containing glycerophospholipids did not. This initial incorporation was further investigated in a number of cell-free systems. Disrupted neutrophils incubated with [14C]arachidonoyl-CoA incorporated [14C]arachidonic acid into 1,2-diacyl-GPC containing 16:0, 18:0, and 18:1 at their sn-1 position in a pattern similar to that seen when whole neutrophils were incubated with arachidonic acid for 5 min. A small percentage of [14C]arachidonate from [14C]arachidonoyl-CoA was incorporated into 1-alkyl-2-acyl-GPC. The enzymatic activity responsible was found predominately in the membrane fraction of the broken cell preparation. This selectivity of the CoA-dependent acyltransferase for 1-acyl-linked glycerophosphocholine was further examined by adding [14C]arachidonoyl-CoA and various 1-radyl-2-lyso-GPC to neutrophil membrane preparations. These studies provide evidence that the initial incorporation of arachidonic acid into sn-glycero-3-phosphocholine takes place by an arachidonoyl-CoA: lysophosphatidylcholine acyltransferase(s) which is selective for the 1-acyl-2-lyso-GPC.  相似文献   

9.
We have examined the fatty acid substrate specificity of arachidonoyl-CoA synthetase from human platelet membranes. A variety of positional isomers and chain-length analogs of arachidonic acid [20:4(5, 8, 11, 14)] were synthesized, and assayed for their ability to inhibit arachidonoyl-CoA formation or to serve as substrates for the synthetase. The chain-length specificity of the synthetase for delta 8,11,14 trienoic fatty acids was C19 greater than C18 = C20 much greater than C21 greater C22. Inhibition activity by positional isomers of arachidonate was 20:4(5, 8, 11, 14) approximately equal to 20:4(6, 9, 12, 15) = 20:4(7, 10, 13, 16) much greater than 20:4(4, 7, 10, 13), however, Vmax for arachidonate was greater than that for 20:4(6, 9, 12, 15). The enzyme apparently "counts" double bonds from the carboxyl terminus. As counted from the methyl terminus we found that several n-6,-9,-12 fatty acids were ineffective as inhibitors [18:3(6, 9, 12); 19:4)4, 7, 10, 13); 21:3(9, 12, 15)], whereas all methylene-interrupted tri- and tetraenoic fatty acids which contained delta 8 and delta 11 double bonds were potent inhibitors. The delta 11 double bond was best associated with optimal inhibition: 20:3(5, 11, 14) had a lower Ki than 20:3(5, 8, 14). 13-Methyl-20:3(8, 11, 14) did not inhibit the enzyme. Partially purified enzyme from calf brain, depleted of nonspecific long-chain acyl-CoA synthetase, exhibited the same fatty acid specificity as crude platelet enzyme.  相似文献   

10.
Conversion of arachidonic acid into the vicinal diol fatty acid 12R,13S-dihydroxy-5Z,8Z,10E,14Z-eicosatetraenoic acid using an acetone powder of the marine red alga, Gracilariopsis lemaneiformis, occurred via intermediate formation of 12S-hydroperoxy-5Z,8Z,10E,14Z-eicosatetraenoic acid. Incubations of the linoleic acid-derived 13S- and 13R-hydroperoxy-9Z,11E-octadecadienoic acids led to the formation of 13R,14S-dihydroxy-9Z,11E-octadecadienoic acid and 13S,14S-dihydroxy-9Z,11E-octadecadienoic acid, respectively, whereas incubation of 9S-hydroperoxy-10E,12Z-octadecadienoic acid resulted in the formation of 8S,9R-dihydroxy-10E,12Z-octadecadienoic acid. Experiments with 18O2-labeled 13S-hydroperoxyoctadecadienoic acid demonstrated that the oxygens of the two hydroxyl groups of 13R,14S-dihydroxy-9Z,11E-octadecadienoic acid originated in the hydroperoxy group of the substrate. Furthermore, experiments with mixtures of unlabeled and 18O2-labeled 13S-hydroperoxyoctadecadienoic acid showed that conversion into 13R,14S-dihydroxyoctadecadienoic acid occurred by a reaction involving an intramolecular hydroxylation at C-14 by the distal hydroperoxide oxygen. The existence of a hydroperoxide isomerase in G. lemaneiformis which catalyzes the conversion of fatty acid hydroperoxides into vicinal diol fatty acids is postulated.  相似文献   

11.
Heme-catalyzed decomposition of unsaturated hydroperoxy fatty acids has been proposed to proceed via carbon-centered free radicals (delocalized at positions C11, C12, and C13 for 15-hydroperoxy-eicosatetraenoic acid (15-HPETE). The stable products are usually epoxy fatty acids and epoxy alcohols. Hydroperoxides from arachidonic acid can decompose via this mechanism to form leukotrienes of potential biological significance and can catalyze the epoxidation of proximal carcinogens to ultimate carcinogenic metabolites. We have used electron spin resonance spin-trapping techniques to detect carbon-centered radicals formed by heme- or ram seminal vesicle-catalyzed decomposition of 15-HPETE. For both systems we detect both a short- and a long-lived radical adduct. We proposed that these radical adducts are derived from C11 and C13 carbon-centered free radicals generated in the decomposition of 15-HPETE.  相似文献   

12.
The 15,000xg supernatant of sonicated rat PMN contains 5-lipoxygenase that converts arachidonic acid to 5-hydroperoxyeicosatetraenoic acid (5-HPETE) and leukotriene A4 and an HPETE peroxidase that catalyzes reduction of the 5-HPETE. The specificity of this HPETE peroxidase for peroxides, reducing agents, and inhibitors has been characterized to distinguish this enzyme from other peroxidase activities. In addition to 5-HPETE, the HPETE peroxidase will catalyze reduction of 15-hydroperoxyeicosatetraenoic acid, 13-hydroperoxyoctadecadienoic acid, and 15-hydroperoxy-8,11,13-eicosatrienoic acid, but not cumene or t-butylhydroperoxides. The HPETE peroxidase accepted 5 of 11 thiols tested as reducing agents. However, glutathione is greater than 15 times more effective than any other thiol tested. Other reducing agents, ascorbate, NADH, NADPH, phenol, p-cresol, and homovanillic acid, were not accepted by HPETE peroxidase. This enzyme is not inhibited by 10 mM KCN, 2 mM aspirin, 2 mM salicylic acid, or 0.5 mM indomethacin. When 5-[14C]HPETE is generated from [14C]arachidonic acid in the presence of unlabeled 5-HPETE and the HPETE peroxidase, the 5-[14C]HETE produced is of much lower specific activity than the [14C]arachidonic acid. This indicates that the 5-[14C]HPETE leaves the active site of 5-lipoxygenase and mixes with the unlabeled 5-HPETE in solution prior to reduction and is a kinetic demonstration that 5-lipoxygenase has no peroxidase activity. Specificity for peroxides, reducing agents, and inhibitors differentiates HPETE peroxidase from glutathione peroxidase, phospholipid-hydroperoxide glutathione peroxidase, a 12-HPETE peroxidase, and heme peroxidases. The HPETE peroxidase could be a glutathione S-transferase selective for fatty acid hydroperoxides.  相似文献   

13.
Elongation of C20 polyunsaturated fatty acids by human skin fibroblasts   总被引:2,自引:0,他引:2  
Human skin fibroblasts actively elongate a portion of incorporated C20 polyunsaturated fatty acids to their respective C22 derivatives. As much as 40% of incorporated [14C]eicosapentaenoate is elongated within 8 h and 85% by 48 h. Elongation of [14C]arachidonate is initially less than half that of [14C]eicosapentaenoate and plateaus at 20-30% of incorporated 14C-labeled fatty acid. The elongation of 5,8,11-[14C]eicosatrienoate is intermediate between that of 20:4(n-6) and 20:5(n-3). Docosatetraenoate is not an effective inhibitor of the elongation of arachidonate, thus suggesting that the observed plateau is not due to product inhibition. When concentrations of exogenous fatty acids are increased, these cells elongate substantial quantities of C20 polyunsaturated fatty acids; elongation of eicosapentaenoate is consistently more extensive than that of arachidonate. Eicosapentaenoate is also an effective inhibitor of the elongation of [14C]arachidonate. Increases in exogenous arachidonate up to 10 microM result in an increase in elongation of [14C]arachidonate both in absolute quantities and as a percentage of that incorporated; the arachidonate thus acts as a positive modulator of its own elongation. Increased eicosapentaenoate also enhances the elongation of [14C]eicosapentaenoate, but only at lower concentrations (0.02-0.15 microM). The factors which regulate the elongation of C20 polyunsaturated fatty acids in human skin fibroblasts serve to permit extensive elongation of eicosapentaenoate while retaining incorporated arachidonate primarily in its C20 form.  相似文献   

14.
Liver fatty acid binding protein (L-FABP) binds avidly the arachidonic acid metabolites, hydroperoxyeicosatetraenoic acids (HPETEs) and hydroxyeicosatetraenoic acids (HETEs). Binding of 15-[3H]HPETE was specific, saturable, reversible, and rapid. Protein specificity was indicated by the following order: L-FABP greater than bovine serum albumin greater than ovalbumin = beta-lactoglobulin greater than ribonuclease. Ligand specificity was evidenced by the following order of apparent competition: 15-HPETE greater than or equal to 5-HETE greater than or equal to 5-HPETE = oleic acid greater than 12-HETE greater than 12-HPETE greater than or equal to 15-HETE greater than prostaglandin E1 much greater than leukotriene C4 greater than prostaglandin E2 much greater than thromboxane B2 = leukotriene B4. Once bound, 15-HPETE was reversibly displaced. Ligand was recovered from the protein complex and confirmed to be 15-[3H]HPETE by TLC. L-FABP bound HPETE with a dissociation constant of 76 nM,5-HETE at 175 nM, and 15-HETE at 1.8 microM, and the reference fatty acids oleic acid at 1.2 microM and arachidonic acid at 1.7 microM. Thus, the affinity was approximately 16-fold greater for 15-HPETE, and 7-fold higher for 5-HETE, than for oleic acid. The need exists for studies of complexes of L-FABP with the HPETEs and HETEs in hepatocytes, especially since L-FABP has previously been associated with mitosis in normal hepatocytes, and shown to be the target protein of two liver carcinogens, and these arachidonic acid metabolites have been found to be able to modulate activities related to cell growth.  相似文献   

15.
The 15,000xg supernatant of sonicated rat PMN contains 5-lipoxygenase that converts arachidonic acid to 5-hydroperoxyeicosatetraenoic acid (5-HPETE) and leukotriene A4 and an HPETE peroxidase that catalyzes reduction of the 5-HPETE. The specificity of this HPETE peroxidase for peroxides, reducing agents, and inhibitors has been characterized to distinguish this enzyme from other peroxidase activities. In addition to 5-HPETE, the HPETE peroxidase will catalyze reduction of 15-hydroperoxyeicosatetraenoic acid, 13-hydroperoxyoctadecadienoic acid, and 15-hydroperoxy-8,11,13-eicosatrienoic acid, but not cumene or t-butylhydroperoxides. The HPETE peroxidase accepted 5 of 11 thiols tested as reducing agents. However, glutathione is >15 times more effective than any other thiol tested. Other reducing agents, ascorbate, NADH, NADPH, phenol, p-cresol, and homovanillic acid, were not accepted by HPETE peroxidase. This enzyme is not inhibited by 10 mM KCN, 2 mM aspirin, 2 mM salicylic acid, or 0.5 mM indomethacin. When 5-[14C]HPETE is generated from [14C]arachidonic acid in the presence of unlabeled 5-HPETE and the HPETE peroxidase, the 5-[14C]HETE produced is of much lower specific activity than the [14C]arachidonic acid. This indicates that the 5-[14C]HPETE leaves the active site of 5-lipoxygenase and mixes with the unlabeled 5-HPETE in solution prior to reduction and is a kinetic demonstration that 5-lipoxygenase has no peroxidase activity. Specificity for peroxides, reducing agents, and inhibitors differentiates HPETE peroxidase from glutathione peroxidase, phospholipid-hydroperoxide glutathione peroxidase, a 12-HPETE peroxidase, and heme peroxidases. The HPETE peroxidase could be a glutathione S-transferase selective for fatty acid hydroperoxides.  相似文献   

16.
Monolayers of Caco-2 cells, a human enterocyte cell line, were incubated with [1-14C]15-hydroxyeicosatetraenoic acid (15-HETE), a lipid mediator of inflammation, and [1-14C]arachidonic acid. Both fatty acids were taken up readily and metabolized by Caco-2 cells. [1-14C]Arachidonic acid was directly esterified in cellular phospholipids and, to a lesser extent, in triglycerides. When [1-14C]15-hydroxyeicosatetraenoic acid was incubated with Caco-2 cells, about 10% was directly esterified into cellular lipids but most (55%) was beta-oxidized to ketone bodies, CO2, and acetate, with very little accumulation of shorter carbon chain products of partial beta-oxidation. The radiolabeled acetate generated from beta-oxidation of [1-14C]15-hydroxyeicosatetraenoic acid was incorporated into the synthesis of new fatty acids, primarily [14C]palmitate, which in turn was esterified into cellular phospholipids, with lesser amounts in triglycerides. Caco-2 cells were also incubated with [5,6,8,9,11,12,14,15-3H]15-hydroxyeicosatetraenoic acid; most of the radiolabel was recovered either in ketone bodies or in [3H]palmitate esterified in phospholipids and triglycerides, demonstrating that most of the [3H]15-hydroxyeicosatetraenoic acid underwent several cycles of beta-oxidation. The binding of both 15-hydroxyeicosatetraenoic acid and arachidonic acid to hepatic fatty acid binding protein, the only fatty acid binding protein in Caco-2 cells, was measured. The Kd (6.0 microM) for 15-HETE was three-fold higher than that for arachidonate (2.1 microM).  相似文献   

17.
Prostaglandin H synthase has two distinct catalytic activities: a cyclooxygenase activity that forms prostaglandin G2 from arachidonic acid; and a peroxidase activity that reduces prostaglandin G2 to prostaglandin H2. Lipid hydroperoxides, such as prostaglandin G2, also initiate the cyclooxygenase reaction, probably via peroxidase reaction cycle enzyme intermediates. The relation between the binding sites for lipid substrates of the two activities was investigated with an analysis of the effects of arachidonic and docosahexaenoic acids on the reaction kinetics of the peroxidase activity, and their effects on the ability of a lipid hydroperoxide to initiate the cyclooxygenase reaction. The cyclooxygenase activity of pure ovine synthase was found to have an apparent Km value for arachidonate of 5.3 microM and a Ki value (competetive inhibitor) for docosahexaenoate of 5.2 microM. When present at 20 microM neither fatty acid had a significant effect on the apparent Km value of the peroxidase for 15-hydroperoxyeicosatetraenoic acid: the values were 7.6 microM in the absence of docosahexaenoic acid and 5.9 microM in its presence, and (using aspirin-treated synthase) 13.7 microM in the absence of arachidonic acid and 15.7 microM in its presence. Over a range of 1 to 110 microM the level of arachidonate had no significant effect on the initiation of the cyclooxygenase reaction by 15-hydroperoxyeicosatetraenoic acid. The inability of either arachidonic acid or docosahexaenoic acid to interfere with the interaction between the peroxidase and lipid hydroperoxides indicates that the cyclooxygenase and peroxidase activities of prostaglandin H synthase have distinct binding sites for their lipid substrates.  相似文献   

18.
Incorporation of exogenous [14C] arachidonate by human skin fibroblasts was found to be significantly greater than that of either [14C]linoleate or alpha-[14C] linolenate. Arachidonate was preferentially esterified in the PI + PS and PE classes of phospholipids. Over 40% of the incorporated [14C] arachidonate was chain elongated in 24 hours. Cells were also grown in lipid-free medium to enhance PUFA desaturation and elongation and the utilization of various omega 6 and omega 3 metabolites examined. Whereas [14C] linoleate partitioned approximately 50:50 between PL and TAG, eicosatrienoate (20:3 omega 6) was selectively sequestered in TAG. Arachidonate and docosatetraenoate (22:4 omega 6) were preferentially incorporated into phospholipids; the PI + PS fraction was most highly enriched with arachidonate. Modification of alpha-[14C] linolenate was more extensive than that of [14C] linoleate. Docosapentaenoate (22:5 omega 3) was the major omega 3 [14C] PUFA of PI + PS and PE. Eicosapentaeonate was not selectively incorporated into phospholipids; within phospholipids the 20:5 omega 3 was primarily in PC. These results indicate that human skin fibroblasts exhibit acyl specificity in the esterification of polyunsaturated fatty acids, including preferential utilization of arachidonate rather than other prostaglandin precursors in the PI + PS fraction.  相似文献   

19.
Our recent findings indicate that glucose-induced insulin secretion from isolated pancreatic islets is temporally associated with accumulation of substantial amounts of free arachidonic acid and that arachidonate may serve as a second messenger for intracellular calcium mobilization in islets. In an effort to determine the source of this released arachidonate, the endogenous fatty acid composition of phospholipids from islets has been determined by thin-layer chromatographic separation of the phospholipids, methanolysis to the fatty acid methyl esters, and quantitative gas chromatographic analyses. The relative abundance of phospholipids in islets as judged by their fatty acid content was phosphatidylcholine (PC), 0.63; phosphatidylethanolamine (PE), 0.23; phosphatidylinositol (PI), 0.067; phosphatidylserine (PS), 0.049. Arachidonate constituted 17% of the total islet fatty acid content, and PC contained 43% of total islet arachidonate. Islets incubated with [3H]arachidonate in the presence of 28 mM D-glucose incorporated radiolabel into PC with a considerably higher specific activity than that of PE, PS or PI. The total fatty acid content of PC from islets incubated with 28 mM glucose for 30 min was significantly lower than that of islets incubated with 3 mM glucose, and smaller effects were observed with PE, PS and PI. The molar decrement in PC arachidonate was 3.2 pmol/islet under these conditions, which is sufficient to account for the previously observed accumulation of free arachidonate (2 pmol/islet). A sensitive method involving negative ion-chemical ionization-mass spectrometric analyses of the pentafluorobenzyl esters of fatty acids derived from trace amounts of lysophosphatidylcholine (lyso-PC) was developed, and glucose-stimulation was found to reduce islet lyso-PC content by about 10-fold. These findings indicate that the insulin secretagogue D-glucose induces phospholipid hydrolysis in islets and suggest that PC may be the major source of free arachidonate which accumulates in glucose-stimulated islets.  相似文献   

20.
The cytosolic fraction of human polymorphonuclear leukocytes precipitated with 60% ammonium sulfate produced 5-lipoxygenase products from [14C]arachidonic acid and omega-6 lipoxygenase products from both [14C]linoleic acid and, to a lesser extent, [14C]- and [3H]arachidonic acid. The arachidonyl 5-lipoxygenase products 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid (5-HPETE) and 5-hydroxy-6,8,11,14-eicosatetraenoic acid (5-HETE) derived from [14C]arachidonic acid, and the omega-6 lipoxygenase products 13-hydroperoxy-9,11-octadecadienoic acid (13-OOH linoleic acid) and 13-hydroxy-9,11-octadecadienoic acid (13-OH linoleic acid) derived from [14C]linoleic acid and 15-hydroxyperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE), and 15-hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) derived from [14C]- and [3H]arachidonic acid were identified by TLC-autoradiography and by reverse-phase high-performance liquid chromatography (RP-HPLC). Products were quantitated by counting samples that had been scraped from replicate TLC plates and by determination of the integrated optical density during RP-HPLC. The arachidonyl 5-lipoxygenase had a pH optimum of 7.5 and was 50% maximally active at a Ca2+ concentration of 0.05 mM; the Km for production of 5-HPETE/5-HETE from arachidonic acid was 12.2 +/- 4.5 microM (mean +/- S.D., n = 3), and the Vmax was 2.8 +/- 0.9 nmol/min X mg protein (mean +/- S.D., n = 3). The omega-6 linoleic lipoxygenase had a pH optimum of 6.5 and was 50% maximally active at a Ca2+ concentration of 0.1 mM in the presence of 5 mM EGTA. When the arachidonyl 5-lipoxygenase and the omega-6 lipoxygenase were separated by DEAE-Sephadex ion exchange chromatography, the omega-6 lipoxygenase exhibited a Km of 77.2 microM and a Vmax of 9.5 nmol/min X mg protein (mean, n = 2) for conversion of linoleic acid to 13-OOH/13-OH linoleic acid and a Km of 63.1 microM and a Vmax of 5.3 nmol/min X mg protein (mean, n = 2) for formation of 15-HPETE/15-HETE from arachidonic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号