首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Recent studies with carbamazepine on human serum albumin (HSA) columns have noted an appreciable degree of non-specific binding on supports prepared by the Schiff base immobilization method. This work examines an alternative immobilization method for HSA based on N-hydroxysuccinimide (NHS)-activated silica. This support was prepared by reacting HPLC-grade silica directly with disuccinimidyl carbonate. The resulting material was compared to an HSA support prepared by the Schiff base method in terms of its activity for carbamazepine and non-specific interactions with this drug. When examined by frontal analysis, both supports gave comparable association equilibrium constants for carbamazepine interactions with HSA ((0.53-0.55) x 10(4)M(-1) at 37 degrees C). However, columns prepared by the Schiff base method gave greater non-specific binding. These columns, as well as control columns prepared using the carbonyldiimidazole (CDI) immobilization method, were also evaluated for their non-specific binding to a variety of other solutes known to interact with HSA. From these results it was concluded that the NHS method was an attractive alternative to the Schiff base technique in the preparation of immobilized HSA for HPLC-based binding studies for carbamazepine. However, it was also noted that non-specific binding varies from one drug to the next in these immobilization methods, indicating that such properties should be evaluated on a case-by-case basis in the use and development of HSA columns for binding studies.  相似文献   

2.
Ethanol yields were 2.1 (P = 0.06) to 2.3 (P = 0.01) times higher in simultaneous saccharification and fermentation (SSF) reactions of microcrystalline cellulose when cellulase was physisorbed on silica nanoparticles compared to enzyme in solution. In SSF reactions, cellulose is hydrolyzed to glucose by cellulase while yeast simultaneously ferments glucose to ethanol. The 35°C temperature and the presence of ethanol in SSF reactions are not optimal conditions for cellulase. Immobilization onto solid supports can stabilize the enzyme and promote activity at non-optimum reaction conditions. Mock SSF reactions that did not contain yeast were used to measure saccharification products and identify the mechanism for the improved ethanol yield using immobilized cellulase. Cellulase adsorbed to 40 nm silica nanoparticles produced 1.6 times (P = 0.01) more glucose than cellulase in solution in 96 h at pH 4.8 and 35°C. There was no significant accumulation (<250 μg) of soluble cellooligomers in either the solution or immobilized enzyme reactions. This suggests that the mechanism for the immobilized enzyme's improved glucose yield compared to solution enzyme is the increased conversion of insoluble cellulose hydrolysis products to soluble cellooligomers at 35°C and in the presence of ethanol. The results show that silica-immobilized cellulase can be used to produce increased ethanol yields in the conversion of lignocellulosic materials by SSF.  相似文献   

3.
Biosensors for organophosphates in solution may be constructed by monitoring the activity of acetylcholinesterase (AChE) or organophosphate hydrolase (OPH) immobilized to a variety of microsensor platforms. The area available for enzyme immobilization is small (< 1 mm2) for microsensors. In order to construct microsensors with increased surface area for enzyme immobilization, we used a sol-gel process to create highly porous and stable silica matrices. Surface porosity of sol-gel coated surfaces was characterized using scanning electron microscopy; pore structure was found to be very similar to that of commercially available porous silica supports. Based upon this analysis, porous and non-porous silica beads were used as model substrates of sol-gel coated and uncoated sensor surfaces. Two different covalent chemistries were used to immobilize AChE and OPH to these porous and non-porous silica beads. The first chemistry used amine-silanization of silica followed by enzyme attachment using the homobifunctional linker glutaraldehyde. The second chemistry used sulfhydryl-silanization followed by enzyme attachment using the heterobifunctional linker N-gamma-maleimidobutyryloxy succinimide ester (GMBS). Surfaces were characterized in terms of total enzyme immobilized, total and specific enzyme activity, and long term stability of enzyme activity. Amine derivitization followed by glutaraldehyde linking yielded supports with greater amounts of immobilized enzyme and activity. Use of porous supports not only yielded greater amounts of immobilized enzyme and activity, but also significantly improved long term stability of enzyme activity. Enzyme was also immobilized to sol-gel coated glass slides. The mass of immobilized enzyme increased linearly with thickness of coating. However, immobilized enzyme activity saturated at a porous silica thickness of approximately 800 nm.  相似文献   

4.
A rapid and sensitive chemiluminescence immunoassay (CLIA) based on magnetic nanoparticles (MNPs) was developed to detect aflatoxin B1 (AFB1), which is a potent carcinogen in nature. We prepared monodisperse MNPs (300 nm in diameter) according to the solvothermal synthesis reaction and the MNPs were coated with silica by the Stöber method. Triethox was used as a one‐step carboxylation reagent, and 3‐aminopropyltriethoxysilane (APTES) an amination reagent, to modify the MNPs. We prepared two types of solid phase antigens using the above synthesized functionalized MNPs coupled with the later prepared AFB1‐oxime active ester and the purchased BSA–AFB1 respectively. 2′,6′‐dimethylcarbonylphenyl‐10‐sulfopropylacridinium‐9‐carboxylate 4′‐N‐hydroxysuccinimide (4′‐NHS) ester (NSP–DMAE–NHS), as a novel luminescent reagent, was used to label anti‐AFB1 antibodies. The two CLIA calibration curves based on the two types of solid phase antigens were obtained and compared. The acquired limit of detection (LOD) was about 0.001 ng/mL for the two functionalized MNPs‐based immunoassays, and the half maximal inhibitory concentration (IC50) was 0.51 ng/mL for the MNPs–AFB1‐based method and 0.72 ng/mL for the MNPs–BSA–AFB1‐based method.  相似文献   

5.
Humin extracted from Sphagnum peat moss was immobilized in a silica matrix and column experiments were performed in order to evaluate the removal and recovery of metal ions from aqueous solution under flow conditions. These experiments also allowed testing the recycling capacity of the column. Single-element solutions of Cu(II) and Pb(II), and a multi-metal solution containing Cd(II), Cu(II), Pb(II), Ni(II), and Cr(III) were passed through the columns at a flow rate of 2 ml/min. A 0.5 M sodium citrate solution was used as the stripping agent in the metal-ion recovery process. Humin immobilized in the silica matrix exhibited a similar, and in some cases, even a higher capacity than other biosorbents for the removal of metal ions from aqueous solutions under flow conditions. The sodium citrate was effective in removing Cu(II), Pb(II), Cd(II), and Ni(II) from the metal saturated column. The selectivity of the immobilized biomass was as follows: Cr(III)>Pb(II)>Cu(II)>Cd(II)>Ni(II). This investigation provides a new, environmentally friendly and cost-effective possibility to clean up heavy-metal contaminated wastewaters by using the new silica-immobilized humin material.  相似文献   

6.
A rapid and economical method is reported for the preparation of an immobilized enzyme reactor (IMER) using silica-encapsulated equine butyrylcholinesterase (BuChE) as a model system. Peptide-mediated silica formation was used to encapsulate BuChE, directly immobilizing the enzyme within a commercial pre-packed column. The silica/enzyme nanocomposites form and attach simultaneously to the metal affinity column via a histidine-tag on the silica-precipitating peptide. BuChE-IMER columns were integrated to a liquid chromatography system and used as a rapid and reproducible screening method for determining the potency of cholinesterase inhibitors. The IMER preparation method reported herein produces an inert silica-encapsulation matrix with advantages over alternative systems, including ease of preparation, high immobilization efficiency (70-100%) and complete retention of activity during continuous use.  相似文献   

7.
β-Xylosidase from a commercial Aspergillus niger preparation was purified by differential ammonium sulfate precipitation and either gel permeation or cation exchange chromatography, giving 16-fold purification in 32% yield for the first technique or 27-fold purification in 19% yield for the second. The second method in addition almost completely removed interfering β-glucosidase activity. Enzymes prepared by this method was immobilized to 10 different carriers, but only when it was bound to alumina with TiCl4 and to alkylamine porous silica with glutaraldehyde were substantial efficiencies and stabilities achieved. With alumina, the variation of activation procedure, amount of β-xylosidase offered, and activation solution composition yielded maximum activities of over 40 U/g with approximately 70% immobilization efficiency. Variation of binding pH and incubation time led to a maximum immobilized activity of 1.3 U/g with 78% immobilization efficiency on silica.  相似文献   

8.
Nonporous, microparticulate, monodisperse silicas with particle diameters between 0.7 and 2.1 microns are introduced as stationary phases in high-performance affinity chromatography. The immobilization of m-aminophenylboronic acid, p-aminobenzamidine, tri-L-alanine, and concanavalin A onto these silicas was successfully achieved using 3-isothiocyanatopropyl-triethoxysilane as an activation reagent. Immobilized phenylboronic acid was applied to the isolation of nucleosides, nucleotides, and glycoprotein hormones such as bovine follicotropin and human chorionic gonadotropin, while immobilized benzamidine was employed for the isolation of the serine proteases thrombin and trypsin, immobilized tri-L-alanine for the separation of pig pancreatic elastase and human leukocyte elastase, and immobilized concanavalin A for the isolation of horseradish peroxidase. In all affinity chromatographic systems studied, the nonporous monodisperse silicas showed improved chromatographic performance compared to results obtained with porous silica supports using identical activation and immobilization procedures. Furthermore, frontal analysis was used as a method to evaluate the influence of experimental parameters on biological activity and accessible ligand densities. Only minor changes in bioactivity were found with the nonporous affinity supports, where accessibilities were typically higher than ca. 60%. The immobilization of affinity ligands onto porous supports as used in this and associated papers thus represents a successful general procedure for the preparation of stable matrices with fast kinetics for use in high-performance affinity chromatography.  相似文献   

9.
Palmityl-substituted sepharose 4B has been used for adsorptive immobilization of heat-denatured carbonic anhydrase. The native form of this enzyme does not show any affinity for binding to this hydrophobic support. However, through the process of denaturation-renaturation performed by heating and subsequent cooling of an enzyme solution in the presence of the matrix, it was possible to obtain a catalytically active immobilized preparation, which was used successfully in continuous catalytic transformations. It is suggested that this simple procedure may provide a convenient method of immobilization for proteins, which are not normally adsorbed on hydrophobic supports.  相似文献   

10.
The preparation of biocatalysts based on immobilized trypsin is of great importance for both proteomic research and industrial applications. Here, we have developed a facile method to immobilize trypsin on hydrophobic cellulose-coated silica nanoparticles by surface adsorption. The immobilization conditions for the trypsin enzyme were optimized. The as-prepared biocatalyst was characterized by Fourier transform infrared spectroscopy, transmission electron microscopy, and elemental analysis. In comparison with free enzyme, the immobilized trypsin exhibited greater resistances against thermal inactivation and denaturants. In addition, the immobilized trypsin showed good durability for multiple recycling. The general applicability of the immobilized trypsin for proteomic studies was confirmed by enzymatic digestion of two widely used protein substrates: bovine serum albumin (BSA) and cytochrome c. The surface adsorption protocols for trypsin immobilization may provide a promising strategy for enzyme immobilization in general, with great potential for a range of applications in proteomic studies.  相似文献   

11.
Cellobiase was coupled to a dialdehyde dextran by reductive alkylation in the presence of sodium cyanoborohydride. The resulting conjugate, obtained without loss of enzymic activity, presents properties of thermoresistance largely superior to those of native enzyme: the rate of inactivation is reduced compared to that of native enzyme and its optimal temperature of activity is 70-75 degrees C instead of 65 degrees C. Finally the conjugate presents increased longevity when subjected to experiments of operational stability; its hydrolytic activity is maintained at 60 degrees C in a 10% (w/v) cellobiose solution for more than 100 h whereas the native enzyme is inactivated after 45 h. The cellobiase-dextran conjugate was immobilized by covalent coupling on aminated silica by reductive alkylation in the presence of NaBH(3)CN. The characteristics of thermoresistance of this stabilized and immobilized conjugate were studied and compared to those of a preparation of native cellobiase immobilized on a silica support activated with glutaraldehyde. Analysis of the thermoresistance of these two cellobiase preparations clearly shows that immobilization has maintained and even enhanced their properties. In particular, the operational stability, measured at 68 degrees C on 10% (w/v) cellobiose shows an increased longevity of the stabilized and immobilized enzyme for 120 h compared to 60 h for the native immobilized enzyme. Two successive incubations of these cellobiase derivatives show that it is possible to obtain 2.5 times more glucose with the stabilized-immobilized enzyme than with the immobilized preparation. The procedure described above enables us to prepare a thermostabilized immobilized cellobiase.  相似文献   

12.
The biotechnology to immobilize biomolecules on material surfaces has been developed vigorously due to its high potentials in medical applications. In this study, a simple and effective method was designed to immobilize biomolecules via amine-N-hydroxysuccinimide (NHS) ester conjugation reaction using functionalized poly-p-xylylene coating on material surfaces. The NHS ester functionalized coating is synthesized via chemical vapor deposition, a facile and solvent-less method, creating a surface which is ready to perform a one-step conjugation reaction. Bone morphogenetic protein 2 (BMP-2) is immobilized onto material surfaces by this coating method, forming an osteogenic environment. The immobilization process is controlled at a low temperature which does not damage proteins. This modified surface induces differentiation of preosteoblast into osteoblast, manifested by alkaline phosphatase (ALP) activity assay, Alizarin Red S (ARS) staining and the expression of osteogenic gene markers, Alpl and Bglap3. With this coating technology, immobilization of growth factors onto material surface can be achieved more simply and more effectively.  相似文献   

13.
Covalent immobilization of lipase in organic solvents   总被引:3,自引:0,他引:3  
Lipase from Rhizopus sp. has been immobilized covalently on tresyl activated silica. Three different coupling media were evaluated: aqueous buffer, n-hexane, and a microemulsion based on n-hexane, aqueous buffer, and the nonionic surfactant triethylene glycol monododecyl ether. In addition, coupling via a very long, hydrophilic spacer arm, polyethylene glycol 1500 (PEG 1500), was compared with attachment to the silica via a short silane bridge only. The enzyme preparations were tested in hydrolysis and transesterification reactions. In the hydrolysis no marked differences in activity were found between the coupling media used. In the transesterification, on the other hand, the choice of immobilization medium had a very large effect on lipase activity, the preparation from microemulsion being the most active one. The use of the hydrophilic spacer had a large effect on activity in the hydrolysis reaction. Whereas direct coupling gave an activity of immobilized lipase of 26-34% of that of free enzyme, depending on the reaction medium, lipase bound via the spacer exhibited 56-67% activity. The latter values are considerably higher than previously reported in the literature for covalently immobilized lipase. The hydrophilic spacer had no effect on enzyme activity in the transesterification, however, a fact which is attributed to the hydrophobic medium of this reaction. The spacer is incompatible with the reaction medium and will, therefore, adsorb on the particles rather than stretch out into the bulk phase. The stability of the bound lipase was extremely good, no loss in activity being observed after a period of three weeks in aqueous solution of 37 degrees C.  相似文献   

14.
Techniques for the immobilization of bovine carbonic anhydrase (BCA) on porous silica beads and graphite are presented. Surface coverage on porous silica beads was found to be 1.5 x 10(-5) mmol BCA/m(2), and on graphite it was 1.7 x 10(-3) mmol BCA/m(2) nominal surface area. Greater than 97% (silica support) and 85% (graphite support) enzyme activity was maintained upon storage of the immobilized enzyme for 50 days in pH 8 buffer at 4 degrees C. After 500 days storage, the porous silica bead immobilized enzyme exhibited over 70% activity. Operational stability of the enzyme on silica at 23 degrees C and pH 8 was found to be 50% after 30 days. Catalytic activity expressed as an apparent second-order rate constant K'(Enz) for the hydrolysis of p-nitrophenyl acetate (p-NPA) catalyzed by BCA immobilized on silica beads and graphite at pH 8 and 25 degrees C is 2.6 x 10(2) and 5.6 x 10(2) M(-1)s(-1) respectively. The corresponding K(ENZ) value for the free enzyme is 9.1 x 10(2) M(-1)s(-1). Activity of the immobilized enzyme was found to vary with pH in such a manner that the active site pK, on the porous silica bead support is 6.75, and on graphite it is 7.41. Possible reasons for a microenvironmental influence on carbonic anhydrase pK(a), are discussed. Comparison with literature data shows that the enzyme surface coverage on silica beads reported here is superior to previously reported data on silica beads and polyacrylamide gels and is comparable to an organic matrix support. Shifts in BCA-active site pK(a) values with support material, a lack of pH dependent activity studies in the literature, and differing criteria for reporting enzyme activity complicate literature comparisons of activity; however, immobilized BCA reported here generally exhibits comparable or greater activity than previous reports for immobilized BCA.  相似文献   

15.
The specific immune-reaction between the anti-citrinin antibody immobilized on the surface of magnetic/silica core–shell (MSCS) and the citrinin–Rho123–BSA conjugate brings the Rho123 fluorophore as an acceptor and the QDs as a donor in close spatial proximity and causes FRET for occurring upon photo-excitation of the QDs. The novelties of this study include: (1) immobilization of the MSCS; (2) large amount of the immobilized QDs, and (3) immobilization of a large amount of Rho123 on the BSA macromolecule. Cd/Te QDs were synthesized by the simultaneous reduction of cadmium chloride and tellurium in the presence of sodium borohydride. Magnetic nanoparticles were synthesized using FeSO4 and FeCl3. The prepared magnetic nanoparticles shelled by silica using tetraethoxysilane in the presence of ammonia. Transmission electron microscopy (TEM) analysis was used for investigating shape and monodispersity of the nanoparticles. EDC/NHS was used as a cross linking agent for immobilization of the QDs, conjugation of citrinin to amino groups of BSA, labeling of BSA with Rho123 and also for immobilization of the amino-functionalized MSCS on the immobilized QDs. Immobilization of the anti-citrinin antibody on the surface of the amino-functionalized MSCS was performed by Schiff-base mechanism. By using these three effective strategies, sensitivity of the designed nanobiosensor was incredibly enhanced as a very low limit of detection (up to 0.1 pM). The feasibility of this technique was tested by the detection of citrinin in the spiked human serum. Results showed that there was a linear correlation between the decreased fluorescence intensity of the Rho123 and increased fluorescence intensity of the QDs with increasing concentration of citrinin in the spiked samples in the range of 1–6 pM. According to obtained results, we conclude that this highly sensitive detection scheme is a easy, quick and impressive method that can be used in optical-based nanosensors.  相似文献   

16.
Invertase from S. cerevisiae has been immobilized on porous silica matrix, formed using sol-gel chemistry, with surface area of approximately 650 m(2)/g. The co-condensation of silica sol with 3-aminopropyl(triethoxy)silane produced an amino-chemically surface modified silica gel (N-CSMG) with a very high ligand loading of 3.6 mmol/g SiO(2); significantly higher than commercially available matrices. Surface amine groups were activated with glutaraldehyde to produce GA-N-CSMG, and invertase covalently attached by the aldehyde. Invertase was used as a model enzyme to measure the immobilizing character of the GA-N-CSMG material. Using an optimized immobilization protocol, a very high loading of 723 mg invertase per gram GA-N-CSMG is obtained; 3-200-fold higher than values published in literature. The reproducible, immobilized activity of 246,000 U/g GA-N-CSMG is also greater than any other in literature. Immobilized invertase showed almost 99% retention of free enzyme activity and no loss in catalytic efficiency. The apparent kinetic parameters K(M) and V(M) were determined using the Michealis-Menten kinetic model. K(M) of the free invertase was 1.5 times greater than that of the immobilized invertase--indicating a higher substrate affinity of the immobilized invertase. These findings show considerable promise for this material as an immobilization matrix in industrial processes.  相似文献   

17.
A procedure for covalent binding of DNA to a functionalized mica substrate is described. The approach is based on photochemical cross-linking of DNA to immobilized psoralen derivatives. A tetrafluorphenyl (TFP) ester of trimethyl psoralen (trioxalen) was synthesized, and the procedure to immobilize it onto a functionalized aminopropyl mica surface (AP-mica) was developed. DNA molecules were cross-linked to trioxalen moieties by UV irradiation of complexes. The steps of the sample preparation procedure were analyzed with x-ray photoelectron spectroscopy (XPS). Results from XPS show that an AP-mica surface can be formed by vapor phase deposition of silane and that this surface can be derivatized with trioxalen. The derivatized surface is capable of binding of DNA molecules such that, after UV cross-linking, they withstand a thorough rinsing with SDS. Observations with atomic force microscopy showed that derivatized surfaces remain smooth, so DNA molecules are easily visualized. Linear and circular DNA molecules were photochemically immobilized on the surface. The molecules are distributed over the surface uniformly, indicating rather even modification of AP-mica with trioxalen. Generally, the shapes of supercoiled molecules electrostatically immobilized on AP-mica and those photocross-linked on trioxalen-functionalized surfaces remain quite similar. This suggests that UV cross-linking does not induce formation of a noticeable number of single-stranded breaks in DNA molecules.  相似文献   

18.
用大孔树脂NKA固定高选择性的脂肪酶,催化有机相中转酯化反应,从而拆分八异构体消旋薄荷醇来制备L-薄荷醇。研究pH、载体与酶比例对固定化酶制备的影响及固定化酶的反应稳定性;考察温度、转酯化过程醇酯比例、及底物醇异构组成变化对拆分效果的影响。结果表明:固定化酶的最适pH为8,载体与酶的比例为5∶1时,所得固定化酶的反应稳定性比游离酶的反应稳定性提高了约50%;转酯化反应的最优温度为40℃,醇酯比例为1.5∶1时最佳,改进八异构体消旋薄荷醇组分比例后,非对映体选择率dep达到了95.1%。  相似文献   

19.
An efficient method is developed for P. vitale catalase immobilization through the oxidized carbohydrate enzyme component, using silochrome. The method provides the enzyme binding without losing its catalytic capacity in the immobilized preparation. When the enzyme is immobilized by high-dispersed silica containing isocyanate, aldehyde groups or active atoms of chlorine, 8, 15, and 20 mg of the enzyme is bounded per 1 g of the carrier, respectively, its catalytic capacity being completely retained. A dependence is established for the degree of catalase bonding and catalytic capacity of the immobilized enzyme of the enzyme carrier ratio in immobilization. The catalytic activity of the immobilized catalase preparations reaches 2 000 Becker units/l g. The preparations are stable in storage. Some of their properties are studied.  相似文献   

20.
The possibility of producing L-lysine from chemically synthesized DL-lysine has been investigated. Optical resolution of racemic DK-lysine may be achieved by using the stereospecific esterasic activity of trypsin on DL-lysine methyl ester, which gives L-lysine and unchanged D-lysine methyl ester. SL-lysine methyl ester spontaneous hydrolysis may be neglected when operating at pH 5.5 and 30 degrees C. Effect of pH and substrate concentration on hydrolysis rate has been investigated when using as a catalyst either soluble or immobilized trypsin. For this purpose, trypsin was coupled onto an amine porous silica, Spherosil, activated with glutaraldehyde. The optimal pH is 5.8 for soluble trypsin and 6.0 for immobilized trypsin. It was yet possible to lower the parent optimal pH of immobilized trypsin, and thus increase its activity at 5.5, by co-grafting onto Spherosil an aminosilane, for enzyme coupling via glutaraldehyde activation and a positively charged diethyl amino ethyl (DEAE) silane, for decreasing the pH of trypsin microenvironment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号