首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Daidzin, a major active principle of an ancient herbal treatment for ‘alcohol addiction’, was first shown to suppress ethanol intake in Syrian golden hamsters. Since then this activity has been confirmed in Wistar rats, Fawn hooded rats, genetically bred alcohol preferring P rats and African green moneys under various experimental conditions, including two-level operant, two-bottle free-choice, limited access, and alcohol-deprivation paradigms. In vitro, daidzin is a potent and selective inhibitor of mitochondrial aldehyde dehydrogenase (ALDH-2). However, in vivo, it does not affect overall acetaldehyde metabolism in golden hamsters. Using isolated hamster liver mitochondria and 5-hydroxytryptamine (5-HT) and dopamine (DA) as the substrates, we demonstrated that daidzin inhibits the second but not the first step of the MAO/ALDH-2 pathway, the major pathway that catalyzes monoamine metabolism in mitochondria. Correlation studies using structural analogs of daidzin led to the hypothesis that the mitochondrial MAO/ALDH-2 pathway may be the site of action of daidzin and that one or more biogenic aldehydes such as 5-hydroxyindole-3-acetaldehyde (5-HIAL) and/or DOPAL derived from the action of monoamine oxidase (MAO) may be mediators of its antidipsotropic action.  相似文献   

2.
Synthesis of daidzin analogues as potential agents for alcohol abuse   总被引:3,自引:0,他引:3  
Daidzin, the active principle of an herbal remedy for 'alcohol addiction', has been shown to reduce alcohol consumption in all laboratory animals tested to date. Correlation studies using structural analogues of daidzin suggests that it acts by raising the monoamine oxidase (MAO)/mitochondrial aldehyde dehydrogenase (ALDH-2) activity ratio (J. Med. Chem. 2000, 43, 4169). Structure-activity relationship (SAR) studies on the 7-O-substituted analogues of daidzin have revealed structural features important for ALDH-2 and MAO inhibition (J. Med. Chem. 2001, 44, 3320). We here evaluated effects of substitutions at 2, 5, 6, 8, 3' and 4' positions of daidzin on its potencies for ALDH-2 and MAO inhibition. Results show that analogues with 4'-substituents that are small, polar and with hydrogen bonding capacities are most potent ALDH-2 inhibitors, whereas those that are non-polar and with electron withdrawing capacities are potent MAO inhibitors. Analogues with a 5-OH group are less potent ALDH-2 inhibitors but are more potent MAO inhibitors. All the 2-, 6-, 8- and 3'-substituted analogues tested so far do not inhibit ALDH-2 and/or have decreased potencies for MAO inhibition. This, together with the results obtained from previous studies, suggests that a potent antidipsotropic analogue would be a 4',7-disubstituted isoflavone. The 4'-substituent should be small, polar, and with hydrogen bonding capacities such as, -OH and -NH(2); whereas the 7-substituent should be a straight-chain alkyl with a terminal polar function such as -(CH(2))(n)-OH with 2< or =n < or =6, -(CH(2))(n)-COOH with 5< or =n < or =10, or -(CH(2))(n)-NH(2) with n > or =4.  相似文献   

3.
Methods were established for the determination of serotonin (5-HT)(1) metabolites 5-hydroxyindole-3-acetic acid (5-HIAA) and 5-hydroxytryptophol (5-HTOL) in the urine of Syrian golden hamsters (Mesocricetus auratus) and used to study the effect of volitional ethanol consumption on overall 5-HT metabolism in this ethanol-preferring rodent. The basal levels of 5-HIAA and 5-HTOL in 24-h urine of ethanol-naive hamsters were 300 +/- 101 and 4.96 +/- 1. 06 nmol (n = 8), respectively. Given free choice between water and a 15% ethanol solution, these hamsters chose to consume increasing amounts of ethanol. The increase was accompanied by a concomitant decrease in urine 5-HIAA and increase in urine 5-HTOL, indicating that volitional ethanol intake diverted part of the 5-HT metabolic flux from an oxidative into a reductive pathway. In a separate experiment, the amounts of ethanol consumed by and blood ethanol concentrations attained in ethanol-drinking golden hamsters were determined at 5 different time intervals between 6 PM and 7 AM when most feeding activities occurred. Except in the first hour after lights were turned off, ethanol was consumed at a relatively even pace throughout the night (2-3 g/kg/3 h) and blood ethanol levels were maintained at the low mM range which rarely exceeded 2 mM. These results suggest that the biochemical pathway that catalyzes 5-HT metabolism is extremely sensitive to ethanol and can play an important role in mediating the reported clinically beneficial action of a low concentration of ethanol during alcohol detoxification.  相似文献   

4.
The effect of ammonia and calcium on the activity of monoamine oxidase (MAO) was studied. The enzyme activity in nonsynaptic brain mitochondria isolated from the rats treated with ammonium acetate was estimated from the release of H2O2using spectrophotometry. The effect of calcium on MAO was assayed directly after adding Ca2+to the nonsynaptic mitochondria isolated from the forebrain of control rats. Both ammonium acetate injectionin vivoand Ca2+additionin vitrostimulated the activity of MAO A but not that of MAO B in mitochondria. This is the first evidence for ammonia and Ca2+regulation of MAO A in the forebrain nonsynaptic mitochondria and for their contribution to oxidative stress in the neurons via MAO A activation.  相似文献   

5.
Dimebone was shown to inhibit monoamine oxidase (MAO) deaminating dopamine and serotonin, decrease dopamine metabolism in the basal ganglia of the rat brain, increase noradrenaline level and depress dopamine deamination in the hypothalamus. Dimebone first increased and then diminished the release of dopamine in the cortex, with the concomitant MAO activation and the increase in dopamine and noradrenaline levels. The in vitro experiments have demonstrated that dimebone (10(-4)) preferentially inhibited MAO activity, type B and dopamine deamination in homogenates of different rat brain structures. The role of MAO inhibition in the mechanism of dimebone action on the catecholamine metabolism in the brain structures and its stimulating effect on CNS are discussed.  相似文献   

6.
N-Methyl-1,2,3,4-tetrahydroisoquinoline (NMTIQ) was found to be oxidized by monoamine oxidase (MAO) into N-methylisoquinolinium ion, which was proved to inhibit enzymes related to the metabolism of catecholamines, such as tyrosine hydroxylase, aromatic-L-amino acid decarboxylase, and MAO. NMTIQ was oxidized by both types A and B MAO in human brain synaptosomal mitochondria. Oxidation was dependent on the amount of MAO sample and the reaction time. Enzyme activity with respect to NMTIQ reached optimum at a pH of approximately 7.25, as was the case with other substrates. Type A MAO had higher activity for this substrate than type B. The Km and Vmax values of the oxidation by types A and B MAO were 571 +/- 25 microM and 0.29 +/- 0.06 pmol/min/mg protein, and 463 +/- 43 microM and 0.16 +/- 0.03 pmol/min/mg protein, respectively. The Vmax values of types A and B MAO for NMTIQ were much smaller than those for other substrates such as kynuramine. NMTIQ was the first tetrahydroisoquinoline shown to be oxidized into the isoquinolinium ion by MAO in the brain.  相似文献   

7.
Zhang GG  Shi RZ  Jiang DJ  Chen YR  Jia-Chen  Tang ZY  Bai YP  Xiao HB  Li YJ 《Life sciences》2008,82(13-14):699-707
Previous studies have shown that nitroglycerin (GTN) tolerance is closely related to an oxidative stress-induced decrease in activity of mitochondrial isoforms of aldehyde dehydrogenase (ALDH-2), and prolonged GTN treatment causes endothelial dysfunction. Asymmetric dimethylarginine (ADMA), a major endogenous NO synthase (NOS) inhibitor, could inhibit NO production and induce oxidative stress in endothelial cells. ADMA and its major hydrolase dimethylarginine dimethylaminohydrolase (DDAH) have recently been thought of as a novel regulatory system of endothelium function. The aim of the present study was to determine whether the DDAH/ADMA pathway is involved in the development of GTN tolerance in endothelial cells. Tolerance, reflected by the decrease in cyclic GMP (cGMP) production, was induced by exposure of human umbilical vein endothelial cells (HUVECs) to GTN (10 microM) for 16 h. While the treatment increased reactive oxygen species (ROS) production/malondialdehyde (MDA) concentration and decreased ALDH-2 activity as well as cGMP production, it markedly increased the level of ADMA in culture medium and decreased DDAH activity in endothelial cells. Exogenous ADMA significantly enhanced ROS production/MDA concentration and inhibited ALDH-2 activity, and overexpression of DDAH2 could significantly suppress GTN-induced oxidative stress and inhibition of ALDH-2 activity, which is also attenuated by L-arginine. Therefore, our results suggest for the first time that the endothelial DDAH/ADMA pathway plays an important role in the development/maintenance of GTN tolerance.  相似文献   

8.
Abstract: Effects of acute and chronic administration of 1 -methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) were investigated for dopamine (DA) and its metabolites, 3,4-dihydroxyphenylacetic acid and 4-hydroxy-3-methoxyphenylacetic acid, in nucleus caudatus putamen (NCP), limbic system, and substantia nigra (SN) of golden hamster and BALB/c and C57/BL mice to obtain a clue for the variance of MPTP toxicity between the strains and species. Regional differences in the levels of monoamine oxidase (MAO) and the in vitro effects of MAO inhibitors were also determined and correlated with MPTP neurotoxicity. Concentrations of MPTP in the brains of mice and golden hamster at 10 min were comparable. Golden hamster was found to be resistant to the administration of MPTP as indicated by a lack of any alteration from the normal content of DA in NCP, limbic system, and SN. Both strains of mice exhibited >50% and >75% depletion of DA (C57/BL and BALB/c, respectively). The metabolites-to-DA ratios were decreased and increased in golden hamster and mouse strains, respectively, after acute or chronic treatment. Whereas the content of total MAO in golden hamster was one-third to one-sixth of any nuclei or mitochondria of both strains of mice, the ratio of MAO A to B was significantly higher in the former species. A possible involvement of discrete regional MAO activity in determining the extent of susceptibility of a species to MPTP toxicity is indicated from the study because (1) susceptibility as evidenced by DA depletion of a species coincided with high levels of MAO activity in SN and NCP, and (2) a highly positive correlation existed with total MAO and MAO B activity, there was a lack of correlation with MAO A activity, and a negative correlation existed with MAO A-to-B ratio and DA depletion. Hence, we propose that the resistance of a species to MPTP toxicity may depend on the content as well as the ratios of the two forms of MAO in NCP and SN. In other words, a higher MAO activity and a relative dominance of MAO B in these nuclei are critical in determining the susceptibility of a species to MPTP neurotoxicity.  相似文献   

9.
The effects of chronic administration of clorgyline and pargyline on rat brain monoamine metabolism have been examined. The inhibitory selectivity of these drugs towards serotonin deamina-tion (MAO type A) and phenylethylamine deamination (MAO type B) can be maintained over a 21-day period by proper selection of low doses of these drugs (0.5-1.0 mg/kg/24h). The results are consistent with MAO type A catalyzing the deamination of serotonin and norepinephrine and with MAO type B having little effect on these monoamines. Dopamine appears to be dcaminated in vivo principally by MAO type A. Clorgyline administration during a 3-week period was accompanied by persistent elevations in brain norepinephrine concentrations; serotonin levels were also increased during the first 2 weeks, but returned towards control levels by the third week of treatment. Low doses of pargyline did not increase brain monoamine concentrations, but treatment with higher doses for 3 weeks led to elevations in brain norepinephrine and 5-hydroxytryptamine; at this time significant MAO-A inhibition had developed. The changes in monoamine metabolism seen at the end of the chronic clorgyline regimen are not due to alterations in tryptophan hydroxylase activity. At this time tyrosine hydroxylase activity was also unaffected.  相似文献   

10.
Abstract: The kinetic constants were determined for dopamine (DA) and norepinephrine (NE) metabolism by phenolsulfotransferase (PST), type A and B monoamine oxidase (MAO), and membrane-bound and soluble catechol- O - methyltransferase (COMT) in frontal lobe preparations of human brain. PST and membrane-bound COMT were found to have the lowest K m, values for both catecholamines. By means of the appropriate rate equations and the calculated kinetic constants for each enzyme, the activity of each enzymatic pathway was determined at varying concentrations of DA and NE. Results indicate that deamination by MAO is the principal pathway for the enzymatic inactivation of DA whereas NE is largely metabolized by MAO type A and membrane-bound COMT under the in vitro assay conditions used. At concentrations less than 100 μ M , soluble COMT'contributes less than 5% to the total catabolism of either catecholamine. PST can contribute up to 15% of the total DA metabolism and 7% of NE metabolism.  相似文献   

11.
W e H ave recently reported that chronic electroconvulsive seizures (ECS) lead to a long-lasting increase (up to 6 weeks) in the activity of monoamine oxidase (MAO) in the brain of rats (P ryor and O tis , 1970). Other investigators have shown increased levels of norepinephrine (NE) and 5-HT, more rapid clearance of intracisternally-injected [3H]HNE (K ety , J avoy , T hierry , J ulou and G lowinski , 1967), and increased tyrosine hydroxylase activity (M usacchio , J ulou , K ety and G lowinski , 1969) at 24 h after a series of two ECS daily for 7 days. Together, these data suggest a sustained activation of the 5-HT and/or NE systems following chronic ECS. We now report the results of a series of experiments in which some of the potential variables that may be involved in the MAO response were investigated and that indicate some biochemical specificity of the response. In these experiments, succinate dehydrogenase (SDH) activity was also assayed to assess possible nonspecific effects of repeated seizures on mitochondrial metabolism and catechol O -methyltransferase (COMT) activity was determined to see if this extracellular degradative enzyme for NE was affected in the same way as MAO located intracellularly in the mitochondria.  相似文献   

12.
Mitochondrial defects encompassing complexes I-IV of the electron transport chain characterize a relatively large number of neurodegenerative diseases. The relationships between mitochondrial lesions and recently described genetic alterations have not yet been defined. We describe a general mechanism whereby the enzymatic metabolism of neurotransmitters by monoamine oxidase (MAO) damages mitochondria, altering their protein thiol status and suppressing respiration. In these experiments, incubation of rat brain mitochondria with tyramine (a mixed MAO-A/MAO-B substrate) for 15 min at 27 degrees C suppressed state 3 respiration by 32.8% and state 5 respiration by 40.1%. These changes were accompanied by a 10-fold rise in protein-glutathione mixed disulfides. Direct comparison of effects on respiration and MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] dye reduction during electron flow gave similar results. It is suggested that certain mitochondrial lesions may derive from the natural turnover of monoamine neurotransmitters in susceptible individuals.  相似文献   

13.
The influence of repeated injections of progesterone to pregnant rats upon monoamine storage and regulation of enzymes phenylethanolamine-N-methyltransferase (PNMT), monoamine oxidase (MAO) and catechol-O-methyltransferase (COMT) was studied. All the pregnant females received progesterone (4 mg/100 g body weight) on 19, 20 and 21 days post-coitum but one group was killed at 21 days of pregnancy and the other one at 0 h parturition. Adrenal epinephrine demonstrated highly significant increase in progesterone treated rats. At the same time norepinephrine content declined significantly from the control value. The activity of enzyme PNMT also showed marked increase in the adrenals of progesterone treated females. Activity of enzyme MAO showed a slight decline after progesterone treatment to pregnant rats. Enzyme COMT in progesterone treateed animals showed decline at 0 h parturition but at 21 days post-coitum it was significantly higher from non-injected females. All the increases and decreases in monoamines and the three enzymes were significant when the results were expressed per adrenal gland or per gram of adrenal. The results suggest that exogenous progesterone administration during late pregnancy increases epinephrine stores by declining monoamine metabolism by MAO and COMT and increasing their synthesis by PNMT which is responsible for N-methylation of norepinephrine to epinephrine.  相似文献   

14.
15.
The monoamine oxidase (MAO) activities and the concentrations of 5-HT and 5-hydroxyindoleacetic acid were investigated in four brain regions in rats during the acquisition of latent inhibition in one-trial passive avoidance task. 5-HT metabolism was not altered in the hippocampus. Changes of 5-HT metabolism were found in the frontal cortex during testing of latent inhibition and were accompanied by lowering of MAO activity. No change of 5-HT metabolism was observed in this structure at the stage of pre-exposition to conditioned stimulus. 5-HT metabolism was activated at the stage of pre-exposition to conditioned stimulus in the amygdala and striatum and was maintained on high level, in these structures during testing of latent inhibition. The data presented here indicate that serotoninergic system in various brains regions is specifically involved in the formation of different stages of latent inhibition.  相似文献   

16.
The distribution of basal and of H2O2-stimulated cyclooxygenase activity in the primary fractions of rat brain homogenates and in the subfractions of crude mitochondrial fraction was studied. For comparison, the localization of H2O2-generating monoamine oxidase (MAO) as well as that of the mitochondrial marker succinate dehydrogenase (SDH) was also examined. H2O2 was generated by MAO using 5 x 10(-4) M noradrenaline (NA) or 2 x 10(-4) M 2-phenylethylamine (PEA) as substrates, or by 25 micrograms glucose oxidase (GOD) per ml in the presence of 1 mM glucose. For nonstimulated (basal) cyclooxygenase, the relative specific activity (RSA) was high in microsomes (1.79) and in the free mitochondria-containing subfraction of the crude mitochondrial fraction (1.94). Parallel distribution of MAO and H2O2-stimulated cyclooxygenase was observed in all fractions studied in the presence of NA. The highest RSA was found in the purified mitochondria for both enzymes (1.85 for MAO and 1.97 for H2O2-stimulated cyclooxygenase). The enrichment of SDH (RSA = 2.21) indicated a high concentration of mitochondria in this fraction. The same distribution of H2O2-stimulated cyclooxygenase was obtained when, instead of the MAO-NA system, hydrogen peroxide was generated by GOD in the presence of glucose. H2O2 generated by deamination of NA or PEA by MAO, or during the enzymatic oxidation of glucose by GOD, caused a threefold increase in mitochondrial endoperoxide formation. Indomethacin (2 x 10(-4) M), catalase (50 micrograms/ml), and pargyline (2 x 10(-4) M) eliminated the MAO-dependent mitochondrial synthesis of PG endoperoxides. The GOD-dependent cyclooxygenase activity in this fraction was abolished by indomethacin or catalase, but not by pargyline. The results show the existence of a mitochondrial cyclooxygenase in brain tissue. The enzyme is sensitive to H2O2 and produces prostaglandin endoperoxides from an endogenous source of arachidonic acid. The identical localization of H2O2-producing MAO and H2O2-sensitive cyclooxygenase suggests a possible coupling between monoamine and arachidonic acid metabolism.  相似文献   

17.
A comparative study of substrate specificity of monoamine oxidase (MAO) in mitochondria of liver of the Pacific squid Todarodes pacificus and of Wistar rats is carried out. It is revealed that the squid liver MAO, unlike the rat liver MAO, is capable of deaminating not only tyramine, serotonin, and benzylamine, but also histamine. The squid liver MAO activity in relation to all studied substrates is approximately 10 times lower, while the sorption ability, several tens times lower, than the rat liver MAO. Semicarbazide, a classic inhibitor of diamine oxidase, at a concentration 1 × 10–2 M did not inhibit the catalytic activity of both studied enzymes. The specificity of action of an irreversible inhibitor, proflavine, is established, which was seen at deamination of various substrates by the squid liver MAO to the greater degree, than by the rat liver MAO. The values of the bimolecular rate constant of the irreversible inhibition (k II) by proflavine were 2.5–20-fold higher (depending on substrate) in the case of the squid liver MAO, than of the rat liver MAO. A suggestion is put forward about the probable presence of several centers of substrate binding in the enzyme of the studied marine invertebrate, like in the mammalian enzyme.  相似文献   

18.
Abstract: We studied the monoamine metabolizing mitochondrial enzyme, monoamine oxidase (MAO), in cerebral microvessels obtained from postnatally developing rats by measuring the specific binding of [3H]pargyline, an irreversible inhibitor of MAO, and the rate of oxidation of three known MAO substrates: benzylamine, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine, and tryptamine. MAO activity increased postnatally, with the greatest increase occurring in the second week and reaching a peak at 3 weeks of age. A concomitant increase in MAO of the cerebral cortex also occurred, but was several-fold less than that of cerebral microvessels. Using clorgyline and deprenyl, relatively specific inhibitors of MAO-A and MAO-B, we showed that cerebral microvessels contain both forms of MAO at all ages, but there was a major preponderance in the postnatal development of MAO-B. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analyses of rat microvessels after [3H]pargyline binding also showed two distinct bands of radioactivity at all ages. These two bands corresponded to molecular weights of ∼6.5,000 for MAO-A and -60,000 for MAO-B. SDS-PAGE resuits of brain microvessels obtained from 1-, 14-, and 42-day-old rats confirm the differential postnatal development of MAO-B in rat brain microvessels.  相似文献   

19.
The serotonin (5-HT) and 5-hydroxyindoleacttic acid (5-HIAA) levels and 5-HT turnover were studies in the brain stem of warm- (+30 degrees C) and cold- (+6 degrees C) acclimated golden hamsters, exposed for 3 hours to temperatures of +6 degrees C, +30 degrees C and +37 degrees C, respectively. In war-acclimated hamsters kept under conditions the 5-HT level in the brain did not change significantly during the year. The 5-HIAA level was slightly higher in the winter. The 5-HT turnover varied within limits of 0.071 to 0.180 mug/g/hour-1. Three hours' exposure of warm-acclimated golden hamsters to cold (6 degrees C) increased the concentrations of 5-HT and 5-HIAA and the 5-HT turnover in the brain. After long-term adaptation to cold (6 degrees C) the 5-HT level, and the 5-HT turnover returned to the original level. Three hours' exposure of golden hamsters to higher environmental temperatures (warm-acclimated individuals to 37 degrees C and cold-acclimated individuals to 30 degrees C) also increased the 5-HT turnover. The concentrations of 5-HT and 5-HIAA increased in cold-acclimated golden hamsters exposed to 30 degrees C and was not changed in warm-acclimated ones, exposed to 37 degrees C. Although the elevated temperatures induce greater changes in serotonin metabolism than lowered temperatures, the serotonin pathways in the brain do not seem to be affected by short-term temperature changes specifically. The findings are rather indicative that changes in 5-HT turnover may be the primary reaction to stressful conditions.  相似文献   

20.
Hauptmann N  Shih JC 《Life sciences》2001,68(11):1231-1241
Cigarette smokers exhibit a lower monoamine oxidase (MAO; EC 1.4.3.4) activity than nonsmokers. MAO is located in the outer membrane of mitochondria and exists as two isoenzymes, MAO A and B. MAO A prefers 5-hydroxytryptamine (serotonin), and MAO B prefers phenylethylamine (PEA) as substrate. Dopamine is a substrate for both forms. 2-Naphthylamine is a carcinogen found in high concentrations in cigarette smoke. The results of this study show that 2-naphthylamine has the ability to inhibit mouse brain MAO A and B in vitro by mixed type inhibition (competitive and non-competitive). The Ki for MAO A was determined to be 52.0 microM and for MAO B 40.2 microM. The inhibitory effect of 2-naphthylamine on both MAO A and B catalytic activity, supports the hypothesis that smoking decreases MAO activity in vivo, instead that smokers with lower MAO activity are more prone to become a smoker.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号