首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used atomic force microscopy (AFM) to study the lateral organization of transmembrane TmAW(2)(LA)(n)W(2)Etn peptides (WALP peptides) incorporated in phospholipid bilayers. These well-studied model peptides consist of a hydrophobic alanine-leucine stretch of variable length, flanked on each side by two tryptophans. They were incorporated in saturated phosphatidylcholine (PC) vesicles, which were deposited on a solid substrate via the vesicle fusion method, yielding hydrated gel-state supported bilayers. At low concentrations (1 mol %) WALP peptides induced primarily line-type depressions in the bilayer. In addition, striated lateral domains were observed, which increased in amount and size (from 25 nm up to 10 microm) upon increasing peptide concentration. At high peptide concentration (10 mol %), the bilayer consisted mainly of striated domains. The striated domains consist of line-type depressions and elevations with a repeat distance of 8 nm, which form an extremely ordered, predominantly hexagonal pattern. Overall, this pattern was independent of the length of the peptides (19-27 amino acids) and the length of the lipid acyl chains (16-18 carbon atoms). The striated domains could be pushed down reversibly by the AFM tip and are thermodynamically stable. This is the first direct visualization of alpha-helical transmembrane peptide-lipid domains in a bilayer. We propose that these striated domains consist of arrays of WALP peptides and fluidlike PC molecules, which appear as low lines. The presence of the peptides perturbs the bilayer organization, resulting in a decrease in the tilt of the lipids between the peptide arrays. These lipids therefore appear as high lines.  相似文献   

2.
Elucidation of the molecular mechanism leading to biomembrane fusion is a challenging issue in current biomedical research in view of its involvement in controlling cellular functions and in mediating various important diseases. According to the generally admitted stalk mechanism described for membrane fusion, negatively curved lipids may play a central role during the early steps of the process. In this study, we used atomic force microscopy (AFM) to address the crucial question of whether negatively curved lipids influence the interaction of the simian immunodeficiency virus (SIV) fusion peptide with model membranes. To this end, dioleoylphosphatidylcholine/dipalmitoylphosphatidylcholine (DOPC/DPPC) bilayers containing 0.5 mol % dioleoylphosphatidic acid (DOPA) were incubated with the SIV peptide and imaged in real time using AFM. After a short incubation time, we observed a 1.9 nm reduction in the thickness of the DPPC domains, reflecting either interdigitation or fluidization of lipids. After longer incubation times, these depressed DPPC domains evolved into elevated domains, composed of nanorod structures protruding several nanometers above the bilayer surface and attributed to cylindrical reverse micelles. Such DOPC/DPPC/DOPA bilayer modifications were never observed with nontilted peptides. Accordingly, this is the first time that AFM reveals the formation of cylindrical reverse micelles in lipid bilayers promoted by fusogenic peptides.  相似文献   

3.
Membrane curvature remodeling induced by amphipathic helices (AHs) is essential in many biological processes. Here we studied a model amphipathic peptide, M2AH, derived from influenza A M2. We are interested in how M2AH may promote membrane curvature by altering membrane physical properties. We used atomic force microscopy (AFM) to examine changes in membrane topographic and mechanical properties. We used electron paramagnetic resonance (EPR) spectroscopy to explore changes in lipid chain mobility and chain orientational order. We found that M2AH perturbed lipid bilayers by generating nanoscale pits. The structural data are consistent with lateral expansion of lipid chain packing, resulting in a mechanically weaker bilayer. Our EPR spectroscopy showed that M2AH reduced lipid chain mobility and had a minimal effect on lipid chain orientational order. The EPR data are consistent with the surface-bound state of M2AH that acts as a chain mobility inhibitor. By comparing results from different lipid bilayers, we found that cholesterol enhanced the activity of M2AH in inducing bilayer pits and altering lipid chain mobility. The results were explained by considering specific M2AH-cholesterol recognition and/or cholesterol-induced expansion of interlipid distance. Both AFM and EPR experiments revealed a modest effect of anionic lipids. This highlights that membrane interaction of M2AH is mainly driven by hydrophobic forces. Lastly, we found that phosphatidylethanolamine (PE) lipids inhibited the activity of M2AH. We explained our data by considering interlipid hydrogen-bonding that can stabilize bilayer organization. Our results of lipid-dependent membrane modulations are likely relevant to M2AH-induced membrane restructuring.  相似文献   

4.
The thermotropic phase behavior and lateral structure of dipalmitoylphosphatidylcholine (DPPC) lipid bilayers containing an acylated peptide has been characterized by differential scanning calorimetry (DSC) on vesicles and atomic force microscopy (AFM) on mica-supported bilayers. The acylated peptide, which is a synthetic decapeptide N-terminally linked to a C14 acyl chain (C14-peptide), is incorporated into DPPC bilayers in amounts ranging from 0-20 mol %. The calorimetric scans of the two-component system demonstrate a distinct influence of the C14-peptide on the lipid bilayer thermodynamics. This is manifested as a concentration-dependent downshift of both the main phase transition and the pretransition. In addition, the main phase transition peak is significantly broadened, indicating phase coexistence. In the AFM imaging scans we found that the C14-peptide, when added to supported gel phase DPPC bilayers, inserts preferentially into preexisting defect regions and has a noticeable influence on the organization of the surrounding lipids. The presence of the C14-peptide gives rise to a laterally heterogeneous bilayer structure with coexisting lipid domains characterized by a 10 A height difference. The AFM images also show that the appearance of the ripple phase of the DPPC lipid bilayers is unaffected by the C14-peptide. The experimental results are supported by molecular dynamics simulations, which show that the C14-peptide has a disordering effect on the lipid acyl chains and causes a lateral expansion of the lipid bilayer. These effects are most pronounced for gel-like bilayer structures and support the observed downshift in the phase-transition temperature. Moreover, the molecular dynamics data indicate a tendency of a tryptophan residue in the peptide sequence to position itself in the bilayer headgroup region.  相似文献   

5.
Lipopolysaccharide (LPS), the major lipid on the surface of Gram-negative bacteria, plays a key role in bacterial resistance to hydrophobic antibiotics and antimicrobial peptides. Using atomic force microscopy (AFM) we characterized supported bilayers composed of LPSs from two bacterial chemotypes with different sensitivities to such antibiotics and peptides. Rd LPS, from more sensitive "deep rough" mutants, contains only an inner saccharide core, whereas Ra LPS, from "rough" mutants, contains a longer polysaccharide region. A vesicle fusion technique was used to deposit LPS onto either freshly cleaved mica or polyethylenimine-coated mica substrates. The thickness of the supported bilayers measured with contact-mode AFM was 7 nm for Rd LPS and 9 nm for Ra LPS, consistent with previous x-ray diffraction measurements. In water the Ra LPS bilayer surface was more disordered than Rd LPS bilayers, likely due to the greater volume occupied by the longer Ra LPS polysaccharide region. Since deep rough mutants contain bacterial phospholipid (BPL) as well as LPS on their surfaces, we also investigated the organization of Rd LPS/BPL bilayers. Differential scanning calorimetry and x-ray diffraction indicated that incorporation of BPL reduced the phase transition temperature, enthalpy, and average bilayer thickness of Rd LPS. For Rd LPS/BPL mixtures, AFM showed irregularly shaped regions thinner than Rd LPS bilayers by 2 nm (the difference in thickness between Rd LPS and BPL bilayers), whose area increased with increasing BPL concentration. We argue that the increased permeability of deep rough mutants is due to structural modifications caused by BPL to the LPS membrane, in LPS hydrocarbon chain packing and in the formation of BPL-enriched microdomains.  相似文献   

6.
The designed antimicrobial peptide KIGAKIKIGAKIKIGAKI possesses enhanced membrane selectivity for bacterial lipids, such as phosphatidylethanolamine and phosphatidylglycerol. The perturbation of the bilayer by the peptide was first monitored using oriented bilayer samples on glass plates. The alignment of POPE/POPG model membranes with respect to the bilayer normal was severely altered at 4 mol% KIGAKI while the alignment of POPC bilayers was retained. The interaction mechanism between the peptide and POPE/POPG bilayers was investigated by carefully comparing three bilayer MLV samples (POPE bilayers, POPG bilayers, and POPE/POPG 4/1 bilayers). KIGAKI induces the formation of an isotropic phase for POPE/POPG bilayers, but only a slight change in the (31)P NMR CSA line shape for both POPE and POPG bilayers, indicating the synergistic roles of POPE and POPG lipids in the disruption of the membrane structure by KIGAKI. (2)H NMR powder spectra show no reduction of the lipid chain order for both POPG and POPE/POPG bilayers upon peptide incorporation, supporting the evidence that the peptide acts as a surface peptide. (31)P longitudinal relaxation studies confirmed that different dynamic changes occurred upon interaction of the peptide with the three different lipid bilayers, indicating that the strong electrostatic interaction between the cationic peptide KIGAKI and anionic POPG lipids is not the only factor in determining the antimicrobial activity. Furthermore, (31)P and (2)H NMR powder spectra demonstrated a change in membrane characteristics upon mixing of POPE and POPG lipids. The interaction between different lipids, such as POPE and POPG, in the mixed bilayers may provide the molecular basis for the KIGAKI carpet mechanism in the permeation of the membrane.  相似文献   

7.
Antimicrobial peptides (AMPs) act as host defenses against microbial pathogens. Here we investigate the interactions of SVS-1 (KVKVKVKVdPlPTKVKVKVK), an engineered AMP and anti-cancer β-hairpin peptide, with lipid bilayers using spectroscopic studies and atomistic molecular dynamics simulations. In agreement with literature reports, simulation and experiment show preferential binding of SVS-1 peptides to anionic over neutral bilayers. Fluorescence and circular dichroism studies of a Trp-substituted SVS-1 analogue indicate, however, that it will bind to a zwitterionic DPPC bilayer under high-curvature conditions and folds into a hairpin. In bilayers formed from a 1:1 mixture of DPPC and anionic DPPG lipids, curvature and lipid fluidity are also observed to promote deeper insertion of the fluorescent peptide. Simulations using the CHARMM C36m force field offer complementary insight into timescales and mechanisms of folding and insertion. SVS-1 simulated at an anionic mixed POPC/POPG bilayer folded into a hairpin over a microsecond, the final stage in folding coinciding with the establishment of contact between the peptide's valine sidechains and the lipid tails through a “flip and dip” mechanism. Partial, transient folding and superficial bilayer contact are seen in simulation of the peptide at a zwitterionic POPC bilayer. Only when external surface tension is applied does the peptide establish lasting contact with the POPC bilayer. Our findings reveal the influence of disruption to lipid headgroup packing (via curvature or surface tension) on the pathway of binding and insertion, highlighting the collaborative effort of electrostatic and hydrophobic interactions on interaction of SVS-1 with lipid bilayers.  相似文献   

8.
A theoretical model is proposed for the association of trans-bilayer peptides in lipid bilayers. The model is based on a lattice model for the pure lipid bilayer, which accounts accurately for the most important conformational states of the lipids and their mutual interactions and statistics. Within the lattice formulation the bilayer is formed by two independent monolayers, each represented by a triangular lattice, on which sites the lipid chains are arrayed. The peptides are represented by regular objects, with no internal flexibility, and with a projected area on the bilayer plane corresponding to a hexagon with seven lattice sites. In addition, it is assumed that each peptide surface at the interface with the lipid chains is partially hydrophilic, and therefore interacts with the surrounding lipid matrix via selective anisotropic forces. The peptides would therefore assemble in order to shield their hydrophilic residues from the hydrophobic surroundings. The model describes the self-association of peptides in lipid bilayers via lateral and rotational diffusion, anisotropic lipid-peptide interactions, and peptide-peptide interactions involving the peptide hydrophilic regions. The intent of this model study is to analyse the conditions under which the association of trans-bilayer and partially hydrophilic peptides (or their dispersion in the lipid matrix) is lipid-mediated, and to what extent it is induced by direct interactions between the hydrophilic regions of the peptides. The model properties are calculated by a Monte Carlo computer simulation technique within the canonical ensemble. The results from the model study indicate that direct interactions between the hydrophilic regions of the peptides are necessary to induce peptide association in the lipid bilayer in the fluid phase. Furthermore, peptides within each aggregate are oriented in such a way as to shield their hydrophilic regions from the hydrophobic environment. The average number of peptides present in the aggregates formed depends on the degree of mismatch between the peptide hydrophobic length and the lipid bilayer hydrophobic thickness: The lower the degree of mismatch is the higher this number is. Received: 30 December 1996 / Accepted: 9 May 1997  相似文献   

9.
With the aim of gaining more insight into the forces and molecular mechanisms associated with bilayer adhesion and fusion, the surface forces apparatus (SFA) was used for measuring the forces and deformations of interacting supported lipid bilayers. Concerning adhesion, we find that the adhesion between two bilayers can be progressively increased by up to two orders of magnitude if they are stressed to expose more hydrophobic groups. Concerning fusion, we find that the most important force leading to direct fusion is the hydrophobic attraction acting between the (exposed) hydrophobic interiors of bilayers; however, the occurrence of fusion is not simply related to the strength of the attractive interbilayer forces but also to the internal bilayer stresses (intrabilayer forces). For all the bilayer systems studied, a single basic fusion mechanism was found in which the bilayers do not "overcome" their short-range repulsive steric-hydration forces. Instead, local bilayer deformations allow these repulsive forces to be "bypassed" via a mechanism that is like a first-order phase transition, with a sudden instability occurring at some critical surface separation. Some very slow relaxation processes were observed for fluid bilayers in adhesive contact, suggestive of constrained lipid diffusion within the contact zone.  相似文献   

10.
In spite of numerous investigations, the molecular mechanism of general anesthetics action is still not well understood. It has been shown that the anesthetic potency is related to the ability of an anesthetic to partition into the membrane. We have investigated changes in structure, dynamics and forces of interaction in supported dipalmitoylphosphatidylcholine (DPPC) bilayers in the presence of the general anesthetic halothane. In the present study, we measured the forces of interaction between the probe and the bilayer using an atomic force microscope. The changes in force curves as a function of anesthetic incorporation were analyzed. Force measurements were in good agreement with AFM imaging data, and provided valuable information on bilayer thickness, structural transitions, and halothane-induced changes in electrostatic and adhesive properties.  相似文献   

11.
In spite of numerous investigations, the molecular mechanism of general anesthetics action is still not well understood. It has been shown that the anesthetic potency is related to the ability of an anesthetic to partition into the membrane. We have investigated changes in structure, dynamics and forces of interaction in supported dipalmitoylphosphatidylcholine (DPPC) bilayers in the presence of the general anesthetic halothane. In the present study, we measured the forces of interaction between the probe and the bilayer using an atomic force microscope. The changes in force curves as a function of anesthetic incorporation were analyzed. Force measurements were in good agreement with AFM imaging data, and provided valuable information on bilayer thickness, structural transitions, and halothane-induced changes in electrostatic and adhesive properties.  相似文献   

12.
During the past 15 years, atomic force microscopy (AFM) has opened new opportunities for imaging supported lipid bilayers (SLBs) on the nanoscale. AFM offers a means to visualize the nanoscale structure of SLBs in physiological conditions. A unique feature of AFM is its ability to monitor dynamic events, like bilayer alteration, remodelling or digestion, upon incubation with various external agents such as drugs, detergents, proteins, peptides, nanoparticles, and solvents. Here, we survey recent progress made in the area.  相似文献   

13.
Specific proteins and lipids sequester to regions of cell membranes called rafts. Due to their high content of sphingomyelin (SM) and cholesterol, raft bilayers are thicker than nonraft bilayers and, at least at 4 degrees C, are resistant to Triton X-100 extraction. It has been postulated that rafts concentrate proteins with long transbilayer domains because of "hydrophobic matching" between the transbilayer domain and the thick bilayer hydrocarbon region. However, because the area compressibility and bending moduli of SM:cholesterol bilayers are larger than that of nonraft bilayers, there should be an energy cost to partition proteins or peptides into rafts. To determine the effects on peptide sorting of raft thickness and mechanical properties, we incorporated two transbilayer peptides (P-23, P-29) into bilayers composed of SM, dioleoylphosphatidylcholine, and cholesterol, separated detergent-soluble membranes (DSMs) from detergent-resistant membranes (DRMs), and measured their peptide and lipid compositions. P-23 and P-29 were designed to have transbilayer domains that matched the hydrocarbon thicknesses of DSMs and DRMs, respectively. At both 4 degrees C and 37 degrees C DSMs were enriched in dioleoylphosphatidylcholine and DRMs were enriched in SM and cholesterol. At both temperatures both P-23 and P-29 preferentially localized to DSMs, demonstrating the importance of bilayer mechanical properties relative to hydrophobic mismatch. However, at 37 degrees C significantly more P-29 than P-23 was located in DRMs, implying that hydrophobic matching played a role in peptide sorting at physiological temperature. These experiments demonstrate that the sorting of peptides as measured by detergent extraction is temperature-dependent and both bilayer mechanical properties and hydrophobic matching impact peptide distribution between DSMs and DRMs.  相似文献   

14.
Ren J  Lew S  Wang J  London E 《Biochemistry》1999,38(18):5905-5912
We examined the effect of the length of the hydrophobic core of Lys-flanked poly(Leu) peptides on their behavior when inserted into model membranes. Peptide structure and membrane location were assessed by the fluorescence emission lambdamax of a Trp residue in the center of the peptide sequence, the quenching of Trp fluorescence by nitroxide-labeled lipids (parallax analysis), and circular dichroism. Peptides in which the hydrophobic core varied in length from 11 to 23 residues were found to be largely alpha-helical when inserted into the bilayer. In dioleoylphosphatidylcholine (diC18:1PC) bilayers, a peptide with a 19-residue hydrophobic core exhibited highly blue-shifted fluorescence, an indication of Trp location in a nonpolar environment, and quenching localized the Trp to the bilayer center, an indication of transmembrane structure. A peptide with an 11-residue hydrophobic core exhibited emission that was red-shifted, suggesting a more polar Trp environment, and quenching showed the Trp was significantly displaced from the bilayer center, indicating that this peptide formed a nontransmembranous structure. A peptide with a 23-residue hydrophobic core gave somewhat red-shifted fluorescence, but quenching demonstrated the Trp was still close to the bilayer center, consistent with a transmembrane structure. Analogous behavior was observed when the behavior of individual peptides was examined in model membranes with various bilayer widths. Other experiments demonstrated that in diC18:1PC bilayers the dilution of the membrane concentration of the peptide with a 23-residue hydrophobic core resulted in a blue shift of fluorescence, suggesting the red-shifted fluorescence at higher peptide concentrations was due to helix oligomerization. The intermolecular self-quenching of rhodamine observed when the peptide was rhodamine-labeled, and the concentration dependence of self-quenching, supported this conclusion. These studies indicate that the mismatch between helix length and bilayer width can control membrane location, orientation, and helix-helix interactions, and thus may mismatch control both membrane protein folding and the interactions between membrane proteins.  相似文献   

15.
We have studied the bilayer thinning structure of unilamellar vesicles (ULV) of a phospholipid 1,2-dierucoyl-sn-glycero-3-phosphocholine (di22:1PC) upon binding of melittin, a water-soluble amphipathic peptide. Successive thinning of the ULV bilayers with increasing peptide concentration was monitored via small-angle X-ray scattering (SAXS). Results suggest that the two leaflets of the ULV of closed bilayers are perturbed and thinned asymmetrically upon free peptide binding, in contrast to the centro-symmetric bilayer thinning of the substrate-oriented multilamellar membranes (MLM) with premixed melittin. Moreover, thinning of the melittin-ULV bilayer associates closely with peptide concentration in solution and saturates at ~ 4%, compared to the ~ 8% maximum thinning observed for the correspondingly premixed peptide-MLM bilayers. Linearly scaling the thinning of peptide-ULV bilayers to that of the corresponding peptide-MLM of a calibrated peptide-to-lipid ratio, we have deduced the number of bound peptides on the ULV bilayers as a function of free peptide concentration in solution. The hence derived X-ray-based binding isotherm allows extraction of a low binding constant of melittin to the ULV bilayers, on the basis of surface partition equilibrium and the Gouy–Chapman theory. Moreover, we show that the ULV and MLM bilayers of di22:1PC share a same thinning constant upon binding of a hydrophobic peptide alamethicin; this result supports the linear scaling approach used in the melittin-ULV bilayer thinning for thermodynamic binding parameters of water-soluble peptides.  相似文献   

16.
In this study we address the stability of integration of proteins in membranes. Using dynamic atomic force spectroscopy, we measured the strength of incorporation of peptides in lipid bilayers. The peptides model the transmembrane parts of alpha-helical proteins and were studied in both ordered peptide-rich and unordered peptide-poor bilayers. Using gold-coated AFM tips and thiolated peptides, we were able to observe force events which are related to the removal of single peptide molecules out of the bilayer. The data demonstrate that the peptides are very stably integrated into the bilayer and that single barriers within the investigated region of loading rates resist their removal. The distance between the ground state and the barrier for peptide removal was found to be 0.75 +/- 0.15 nm in different systems. This distance falls within the thickness of the interfacial layer of the bilayer. We conclude that the bilayer interface region plays an important role in stably anchoring transmembrane proteins into membranes.  相似文献   

17.
Cell-signaling peptides have been extensively used to transport functional molecules across the plasma membrane into living cells. These peptides consist of a hydrophobic sequence and a cationic nuclear localization sequence (NLS). It has been assumed that the hydrophobic region penetrates the hydrophobic lipid bilayer and delivers the NLS inside the cell. To better understand the transport mechanism of these peptides, in this study, we investigated the structure, orientation, tilt of the peptide relative to the bilayer normal, and the membrane interaction of two cell-signaling peptides, SA and SKP. Results from CD and solid-state NMR experiments combined with molecular dynamics simulations suggest that the hydrophobic region is helical and has a transmembrane orientation with the helical axis tilted away from the bilayer normal. The influence of the hydrophobic mismatch, between the hydrophobic length of the peptide and the hydrophobic thickness of the bilayer, on the tilt angle of the peptides was investigated using thicker POPC and thinner DMPC bilayers. NMR experiments showed that the hydrophobic domain of each peptide has a tilt angle of 15 +/- 3 degrees in POPC, whereas in DMPC, 25 +/- 3 degree and 30 +/- 3 degree tilts were observed for SA and SKP peptides, respectively. These results are in good agreement with molecular dynamics simulations, which predict a tilt angle of 13.3 degrees (SA in POPC), 16.4 degrees (SKP in POPC), 22.3 degrees (SA in DMPC), and 31.7 degrees (SKP in DMPC). These results and simulations on the hydrophobic fragment of SA or SKP suggest that the tilt of helices increases with a decrease in bilayer thickness without changing the phase, order, and structure of the lipid bilayers.  相似文献   

18.
Herbig ME  Assi F  Textor M  Merkle HP 《Biochemistry》2006,45(11):3598-3609
The cell penetrating peptide (CPP) pVEC has been shown to translocate efficiently the plasma membrane of different mammalian cell lines by a receptor-independent mechanism without exhibiting cellular toxicity. This ability renders CPPs of broad interest in cell biology, biotechnology, and drug delivery. To gain insight into the interaction of CPPs with biomembranes, we studied the interaction of pVEC and W2-pVEC, an Ile --> Trp modification of the former, with phase-separated supported phospholipid bilayers (SPB) by atomic force microscopy (AFM). W2-pVEC induced a transformation of dipalmitoyl phosphatidylcholine (DPPC) domains from a gel phase state via an intermediate state with branched structures into essentially flat bilayers. With pVEC the transformation followed a similar pathway but was slower. Employing fluorescence polarization, we revealed the capability of the investigated peptides to increase the fluidity of DPPC domains as the underlying mechanism of transformation. Due to their tighter packing, sphingomyelin (SM) domains were not transformed. By combination, AFM observations, dynamic light scattering studies, and liposome leakage experiments indicated that bilayer integrity was not compromised by the peptides. Transformation of gel phase domains in SPB by CPPs represents a novel aspect in the discussion on uptake mechanisms of CPPs.  相似文献   

19.
The designed antimicrobial peptide KIGAKIKIGAKIKIGAKI possesses enhanced membrane selectivity for bacterial lipids, such as phosphatidylethanolamine and phosphatidylglycerol. The perturbation of the bilayer by the peptide was first monitored using oriented bilayer samples on glass plates. The alignment of POPE/POPG model membranes with respect to the bilayer normal was severely altered at 4 mol% KIGAKI while the alignment of POPC bilayers was retained. The interaction mechanism between the peptide and POPE/POPG bilayers was investigated by carefully comparing three bilayer MLV samples (POPE bilayers, POPG bilayers, and POPE/POPG 4/1 bilayers). KIGAKI induces the formation of an isotropic phase for POPE/POPG bilayers, but only a slight change in the 31P NMR CSA line shape for both POPE and POPG bilayers, indicating the synergistic roles of POPE and POPG lipids in the disruption of the membrane structure by KIGAKI. 2H NMR powder spectra show no reduction of the lipid chain order for both POPG and POPE/POPG bilayers upon peptide incorporation, supporting the evidence that the peptide acts as a surface peptide. 31P longitudinal relaxation studies confirmed that different dynamic changes occurred upon interaction of the peptide with the three different lipid bilayers, indicating that the strong electrostatic interaction between the cationic peptide KIGAKI and anionic POPG lipids is not the only factor in determining the antimicrobial activity. Furthermore, 31P and 2H NMR powder spectra demonstrated a change in membrane characteristics upon mixing of POPE and POPG lipids. The interaction between different lipids, such as POPE and POPG, in the mixed bilayers may provide the molecular basis for the KIGAKI carpet mechanism in the permeation of the membrane.  相似文献   

20.
Lu JX  Damodaran K  Blazyk J  Lorigan GA 《Biochemistry》2005,44(30):10208-10217
An 18-residue peptide, KWGAKIKIGAKIKIGAKI-NH(2) was designed to form amphiphilic beta-sheet structures when bound to lipid bilayers. The peptide possesses high antimicrobial activity when compared to naturally occurring linear antimicrobial peptides, most of which adopt an amphipathic alpha-helical conformation upon binding to the lipids. The perturbation of the bilayer by the peptide was studied by static (31)P and (2)H solid-state NMR spectroscopy using POPC and POPG/POPC (3/1) bilayer membranes with sn-1 chain perdeuterated POPC and POPG as the isotopic labels. (31)P NMR powder spectra exhibited two components for POPG/POPC bilayers upon addition of the peptide but only a slight change in the line shape for POPC bilayers, indicating that the peptide selectively disrupted the membrane structure consisting of POPG lipids. (2)H NMR powder spectra indicated a reduction in the lipid chain order for POPC bilayers and no significant change in the ordering for POPG/POPC bilayers upon association of the peptide with the bilayers, suggesting that the peptide acts as a surface peptide in POPG/POPC bilayers. Relaxation rates are more sensitive to the motions of the membranes over a large range of time scales. Longer (31)P longitudinal relaxation times for both POPG and POPC in the presence of the peptide indicated a direct interaction between the peptide and the POPG/POPC bilayer membranes. (31)P longitudinal relaxation studies also suggested that the peptide prefers to interact with the POPG phospholipids. However, inversion-recovery (2)H NMR spectroscopic experiments demonstrated a change in the relaxation rate of the lipid acyl chains for both the POPC membranes and the POPG/POPC membranes upon interaction with the peptide. Transverse relaxation studies indicated an increase in the spectral density of the collective membrane motion caused by the interaction between the peptide and the POPG/POPC membrane. The experimental results demonstrate significant dynamic changes in the membrane in the presence of the antimicrobial peptide and support a carpet mechanism for the disruption of the membranes by the antimicrobial peptide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号