首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A rapid, simple, and inexpensive method has been developed for preparing UDP-N-acetylgalactosamine in amounts sufficient for several thousand assays of enzymes that employ this nucleotide sugar as substrate. The UDP-N-acetylglucosamine-4-epimerase in extracts of porcine submaxillary glands was used to convert UDP-N-acetylglucosamine to an equilibrium mixture of UDP-N-acetylglucosamine and UDP-N-acetylgalactosamine (molar ratio, 77:23). The two nucleotide sugars were separated from components in the extract by ion-exchange chromatography and then separated from one another by affinity chromatography on a column of Griffonia simplicifolia lectin I bound to agarose. The UDP-N-acetylgalactosamine was obtained in pure form by ion-exchange chromatography in an overall yield of 91% from the equilibrium mixture. The separation of the two nucleotide sugars by affinity chromatography also provides a rapid assay for the UDPGlcNAc-4-epimerase, which is more accurate and less time consuming than earlier published assays.  相似文献   

2.
The binding studies in this paper indicate that the catalytic unit(s) of microsomal UDP glucuronosyltransferase(s) is not accessible to N-ethylmaleimide or UDP-N-acetylglucosamine, when the enzyme is in its membrane environment. Thus a separate regulatory factor may exist within the endoplasmic reticulum membrane that mediates the stimulation of UDPglucuronosyltransferase(s) by UDP-N-acetylglucosamine. The possible role and the mode of interaction of the putative regulatory factor with the multiple forms of UDPglucuronosyltransferase are discussed.  相似文献   

3.
The “non-hydrolyzing” bacterial UDP-N-acetylglucosamine 2-epimerase catalyzes the reversible interconversion of UDP-N-acetylglucosamine (UDP-GlcNAc) and UDP-N-acetylmannosamine (UDP-ManNAc). This homodimeric enzyme is allosterically activated by its substrate, UDP-GlcNAc, and it is thought that one subunit plays a regulatory role, while that of the other plays a catalytic role. In this work, five active site mutants were prepared (D95N, E117Q, E131Q, K15A, and H213N) and analyzed in terms of their effects on binding, catalysis, and allosteric regulation. His213 appears to play a role in UDP binding and may also assist in catalysis and/or regulation, but is not a key catalytic residue. Lys15 appears to be quite important for binding. All three of the carboxylate mutants showed dramatic decreases in the value of kcat but relatively unaffected values of KM. Thus, these residues are playing key roles in catalysis and/or regulation. In the case of E117Q, the reaction intermediates are released into solution at a rate comparable to that of the overall catalysis. This may indicate that Glu117 plays the role as an acid/base catalyst in the second step of the UDP-GlcNAc epimerization reaction. All three carboxylate mutants were found to exhibit impaired allosteric control.  相似文献   

4.
Kinetic studies of hog spleen N-acetylglucosamine kinase indicate that N-acetylglucosamine-6-phosphate (GlcNAc-6-p), the product of the reaction and UDP-N-acetylglycosamine (UDP-GlcNAc), the end product of the pathway of N-acetylglucosamine (GlcNAc) metabolism, are noncompetitive inhibitors. Maximum inhibitory effect of these metabolites occurs around pH 7.5, whereas the kinase reaction is optimal within a pH range of 8.6–9.4. Binding of these inhibitors with the enzyme shows cooperative homotropic interactions. Hill plot of GlcNAc saturation kinetics of the enzyme which yielded an interaction coefficient of n = 1.66 suggests the presence of at least two binding sites for the substrate on the enzyme molecule.  相似文献   

5.
A soluble fraction of rat liver converts glucosamine and N-acetylglucosamine in the presence of ATP and UTP to N-acetylneuraminic acid. This system, when supplemented with CTP, forms CMP-N-acetylneuraminic acid in high yield. Nicotinamide was found to enhance the synthesis of UDP-N-acetylglucosamine and N-acetylneuraminic acid. Kinetic analysis reveals N-acetylglucosamine 6-phosphate, UDP-N-acetylglucosamine, N-acetylmannosamine, N-acetylmannosamine 6-phosphate and N-acetylneuraminic acid 9-phosphate as intermediates. Under certain experimental conditions, however, an epimerisation of N-acetylglucosamine to N-acetylmannosamine was seen.  相似文献   

6.
The monomer composition of the exopolysaccharides (EPS) produced by Streptococcus thermophilus LY03 and S. thermophilus Sfi20 were evaluated by high-pressure liquid chromatography with amperometric detection and nuclear magnetic resonance spectroscopy. Both strains produced the same EPS composed of galactose, glucose, and N-acetylgalactosamine. Further, it was demonstrated that the activity of the precursor-producing enzyme UDP-N-acetylglucosamine 4-epimerase, converting UDP-N-acetylglucosamine into UDP-N-acetylgalactosamine, is responsible for the presence of N-acetylgalactosamine in the EPS repeating units of both strains. The activity of UDP-N-acetylglucosamine 4-epimerase was higher in both S. thermophilus strains than in a non-EPS-producing control strain. However, the level of this activity was not correlated with EPS yields, a result independent of the carbohydrate source applied in the fermentation process. On the other hand, both the amounts of EPS and the carbohydrate consumption rates were influenced by the type of carbohydrate source used during S. thermophilus Sfi20 fermentations. A correlation between activities of the enzymes α-phosphoglucomutase, UDP-glucose pyrophosphorylase, and UDP-galactose 4-epimerase and EPS yields was seen. These experiments confirm earlier observed results for S. thermophilus LY03, although S. thermophilus Sfi20 preferentially consumed glucose for EPS production instead of lactose in contrast to the former strain.  相似文献   

7.
Neoplastic mast cells of mice (including long-established and newly derived lines) were grown in large-volume suspension cultures to provide enough cells for preparation of microsomal fractions. Microsomal preparations from P815Y and P815S cells synthesized 14C-labelled glycosaminoglycan when incubated with UDP-[14C]glucuronic acid and UDP-N-acetylgalactosamine. No significant amount of 14C-labelled glycosaminoglycan was formed when UDP-N-acetylglucosamine was substituted for the UDP-N-acetylgalactosamine. Microsomal preparations from X163 cells synthesized 14C-labelled glycosaminoglycan when incubated with UDP-[14C]glucuronic acid and either UDP-N-acetylgalactosamine or UDP-N-acetylglucosamine. The 14C-labelled glycosaminoglycan formed in the presence of UDP-N-acetylgalactosamine was degradable by testicular hyaluronidase, indicating that it was chondroitin-like. The 14C-labelled glycosaminoglycan formed in the presence of UDP-N-acetylglucosamine was not degradable by testicular hyaluronidase. Microsomal preparations from P815S cells were tested for sulphating activity by incubation with adenosine 3′-phosphate 5′-sulphatophosphate, as well as UDP-[14C]glucuronic acid, and UDP-N-acetylgalactosamine. The resulting newly synthesized polysaccharide was shown by chondroitinase ABC digestion to be 70% chondroitin 4-sulphate and 30% chondroitin. The molecular size of this newly synthesized glycosaminoglycan was determined by gel filtration to be larger than 40000 mol.wt. In general, the glycosaminoglycan-synthesizing ability of the microsomal preparations appeared to reflect glycosaminoglycan synthesis by the intact cells.  相似文献   

8.
A complete procedure for the synthesis of 1-14C-glucosamine-labeled UDP-N-acetylglucosamine is described. Glucosamine is first phosphorylated with ATP and hexokinase to form glucosamine 6-phosphate. This is N-acetylated with acetic anhydride, and the product is converted to UDP-N-acetylglucosamine by incubation with a crude yeast extract. The sugar nucleotide is isolated from the incubation mixture by paper electrophoresis, and purified by paper chromatography.  相似文献   

9.
Here we describe the efficient synthesis of two oligosaccharide moieties of human glycosphingolipids, globotetraose (GalNAcβ1→3Galα1→4Galβ1→4Glc) and isoglobotetraose (GalNAcβ1→3Galα1→3Galβ1→4Glc), with in situ enzymatic regeneration of UDP-N-acetylgalactosamine (UDP-GalNAc). We demonstrate that the recombinant β-1,3-N-acetylgalactosaminyltransferase from Haemophilus influenzae strain Rd can transfer N-acetylgalactosamine to a wide range of acceptor substrates with a terminal galactose residue. The donor substrate UDP-GalNAc can be regenerated by a six-enzyme reaction cycle consisting of phosphoglucosamine mutase, UDP-N-acetylglucosamine pyrophosphorylase, phosphate acetyltransferase, pyruvate kinase, and inorganic pyrophosphatase from Escherichia coli, as well as UDP-N-acetylglucosamine C4 epimerase from Plesiomonas shigelloides. All these enzymes were overexpressed in E. coli with six-histidine tags and were purified by one-step nickel-nitrilotriacetic acid affinity chromatography. Multiple-enzyme synthesis of globotetraose or isoglobotetraose with the purified enzymes was achieved with relatively high yields.  相似文献   

10.
Thermus thermophilus and Thermus aquaticus are thermophilic bacteria that are frequently found to attach to solid surfaces in hot springs to form biofilms. Uridine diphosphate (UDP)-galactose-4′-epimerase (GalE) is an enzyme that catalyzes the conversion of UDP-galactose to UDP-glucose, an important biochemical step in exopolysaccharide synthesis. We expressed GalE obtained from T. thermophilus HB8 in Escherichia coli and found that the enzyme is stable at 80 °C and can epimerize UDP-galactose to UDP-glucose and UDP-N-acetylgalactosamine (UDP-GalNAc) to UDP-N-acetylglucosamine (UDP-GlcNAc). Enzyme overexpression in T. thermophilus HB27 led to an increased capacity of biofilm production. Therefore, the galE gene is important to biofilm formation because of its involvement in epimerizing UDP-galactose and UDP-N-acetylgalactosamine for exopolysaccharide biosynthesis.  相似文献   

11.
The results reported in this paper show two distinct ways for the incorporation ofN-acetylglucosamine into mitochondrial outer membranes. The first one is the glycosylation of dolichol acceptors, which is indicated by the inhibition of the synthesis of these products by the inhibitors of the dolichol intermediates (tunicamycin and GDP). The second one is the incorporation ofN-acetylglucosamine into protein acceptors directly from UDP-N-acetylglucosamine. This second way of glycosylation is only localized in mitochondria outer membranes.The existence of a direct route forN-glycoprotein biosynthesis has been based on the following evidence. First, the synthesis of theN-acetylglucosaminylated protein acceptors was not inhibited by tunicamycin or GDP. Second, the addition of exogenous dolichol-phosphate did not change the rate of biosynthesis of glycosylated protein material. Third, the sequential incorporation ofN-acetylglucosamine and mannose from their nucleotide derivatives in the presence of GDP and tunicamycin led to the synthesis of glycosylated protein material which entirely bound to Concanavalin A-Sepharose. The oligosaccharide moiety of the glycosylated protein material resulting from the direct transfer of sugars from their nucleotide derivatives to the protein acceptor is of theN-glycan type. On sodium dodecylsulphate polyacrylamide gel electrophoresis, this glycosylated material migrated as a marker protein with a molecular weight between 45 000 and 63 000. HPLC chromatofocusing analysis revealed that the fraction studied was anionic. The oligosaccharide moiety of the glycoprotein material can only be elongated by the incorporation ofN-acetylglucosamine and galactose from their nucleotide derivatives.  相似文献   

12.
A functional glucokinase (YqgR), N-acetylglucosamine-phosphate mutase (Agm1) and N-acetylglucosamine-1-phosphate uridyltransferase (GlmU) were synthesized simultaneously in an Escherichia coli cell-free system. These three enzymes were coupled to reconstruct a biosynthetic pathway which could produce UDP-N-acetylglucosamine with N-acetylglucosamine as the substrate.  相似文献   

13.
The metabolism of d-galactosamine and N-acetyl-d-galactosamine in rat liver   总被引:3,自引:3,他引:0  
d-[1-14C]Galactosamine appears to be utilized mainly by the pathway of galactose metabolism in rat liver, as evidenced by the products isolated from the acid-soluble fraction of perfused rat liver. These products were eluted in the following order from a Dowex 1 (formate form) column and were characterized as galactosamine 1-phosphate, sialic acid, UDP-glucosamine, UDP-galactosamine, N-acetylgalactosamine 1-phosphate, N-acetylglucosamine 6-phosphate, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine and an unidentified galactosamine-containing compound. In addition, [1-14C]glucosamine was found in the glycogen, an incorporation previously shown to result from the substitution of UDP-glucosamine for UDP-glucose in the glycogen synthetase reaction. Analysis of the [1-14C]glucosamine-containing disaccharides released from glycogen by β-amylase provided additional evidence that they consist of a mixture of glucose and glucosamine in a 1:1 ratio, but with glucose predominating on the reducing end. UDP-N-acetylgalactosamine was shown to result from the reaction of UTP with N-acetylgalactosamine 1-phosphate in the presence of a rat liver extract.  相似文献   

14.
Calf brain membranes have previously been shown to enzymatically transfer N-acetyl[14C]glucosamine from UDP-N-acetyl[14C]glucosamine into N-acetyl[14C]glucosami-nylpyrophosphoryldolichol, N,N′-diacetyl[14C]chitobiosylpyrophosphoryldolichol and a minor labeled product with the chemical and chromatographic properties of a [14C]trisaccharide lipid (Waechter, C. J., and Harford, J. B. (1977) Arch. Biochem. Biophys.181, 185–198). This paper demonstrates that incubating calf brain membranes containing endogenous, prelabeled N-acetyl[14C]glucosaminyl lipids with unlabeled GDP-mannose enhances the formation of the [14C]trisaccharide lipid. The intact [14C]trisaccharide lipid behaves like a dolichol-bound trisaccharide, in which the glycosyl group is linked via a pyrophosphate bridge, when chromatographed on SG-81 paper or DEAE-cellulose. Mild acid treatment releases a water-soluble product that comigrates with authentic β-Man-(1→4)-β-GlcNAc(1→4)-GlcNAc. The free [14C]trisaccharide is converted to N,N′-diacetyl[14C]chitobiose by incubation with a highly purified β-mannosidase. These findings indicate that the trisaccharide lipid formed by calf brain membranes is β-mannosyl-N,N′-diacetylchito-biosylpyrophosphoryldolichol. The two glycosyltransferases responsible for the enzymatic conversion of the N-acetylglucosaminyl lipid to the trisaccharide lipid have been studied using exogenous, purified [14C]glycolipid substrates. Calf brain membranes enzymatically transfer N-acetylglucosamine from UDP-N-acetylglucosamine to exogenous N-acetyl[14C] glucosaminylpyrophosphoryldolichol to form [14C]disaccharide lipid. The biosynthesis of [14C]disaccharide lipid is stimulated by unlabeled UDP-N-acetylglucosamine under conditions that inhibit N-acetylglucosaminylpyrophosphoryldolichol synthesis. Unlike the formation of N-acetylglucosaminylpyrophosphoryldolichol the enzymatic addition of the second N-acetylglucosamine residue is not inhibited by tunicamycin. Exogenous purified [14C] disaccharide lipid is enzymatically mannosylated by calf brain membranes to form the [14C] trisaccharide lipid. The formation of the [14C]trisaccharide lipid from exogenous [14C] disaccharide lipid is stimulated by unlabeled GDP-mannose and Mg2+, and inhibited by EDTA. Exogenous dolichyl monophosphate is also inhibitory. These results strongly suggest that the calf brain mannosyltransferase involved in the synthesis of the trisaccharide lipid requires a divalent cation and utilizes GDP-mannose, not mannosylphosphoryldolichol, as the direct mannosyl donor.  相似文献   

15.
Cells of Micrococcus sp. 2102 incorporate inorganic [32P]phosphate from the medium into the sugar-phosphate polymer of the wall. Controlled acid hydrolysis of sodium dodecyl sulphate-extracted cells gives N-acetylglucosamine 6-[32P]phosphate which can be purified by ion-exchange chromatography and incubated with UTP in the presence of crude preparations of phosphoacetylglucosamine mutase from Neurospora crassa and UTP: N-acetylglucosamine 1-phosphate phosphotransferase from Bacillus licheniformis which act in concert to synthesise β-[32P]UDP-N-acetylglucosamine.  相似文献   

16.
A glucosidase preparation with activity toward certain glucose-containing oligosaccharides was partially purified from calf liver membranes by Triton X-100 solubilization and DEAE-cellulose and hydroxylapatite chromatography. The enzyme preparation hydrolyzed the glucose residues from (glucose)1,(mannose)9(N-acetylglucosamine)1, and (glucose)2(mannose) 9(N-acetylglucosamine)1 but was totally inactive toward (glucose)3(mannose)9(N-acetylglucosamine) 1. In contrast, crude membrane preparations of the calf liver were active toward all three substrates. The partially purified enzyme had a pH optimum of 6.7 and was very unstable in the absence of added 20% glycerol. The rate of glucose release from the one-and two-glucose-containing oligosaccharides was significantly decreased when four or five of the mannose residues were first removed from the substrate. The release of glucose from (glucose)1(mannose)9(N-acetylglucosamine)1 was inhibited by p-nitrophenyl-α-d-glucoside much more effectively than by p-nitrophenyl-β-d-glucoside, suggesting that this glucose residue may be linked α to the mannose residue. We conclude that during oligosaccharide processing at least two different glucosidases are involved in glucose removal.  相似文献   

17.
1. The tissue contents of hexose monophosphate, N-acetylglucosamine 6-phosphate, UDP-glucose, UDP-galactose, UDP-N-acetylglucosamine, UDP-N-acetylgalactosamine and UDP-glucuronic acid were determined in the skin of young rats less than 1 day post partum. Tissue-space determinations were used to calculate their average cellular concentrations. 2. The incorporation of [U-14C]-glucose into the intermediates was recorded with time and their rates of turnover were calculated. The results demonstrated product–precursor relationships along the pathway of hexosamine synthesis and that of hexuronic acid synthesis. The rates of synthesis of UDP-N-acetylhexosamine and UDP-glucuronic acid were 1·5±0·3 and 0·24±0·03mμmoles/min./g. of tissue respectively. These results indicated the average turnover time of the total tissue glycosaminoglycans to be about 5 days.  相似文献   

18.
A new scheme of synthesis of 11-phenoxyundecyl phosphate from 11-bromoundecanoic acid was suggested; its ability to serve as an acceptor of 2-acetamido-2-deoxy-α-D-glucopyranosyl phosphate in a reaction catalyzed by UDP-N-acetylglucosamine: polyprenyl phosphate N-acetylglucosamine phosphotransferase from Salmonella arizona O:59 was demonstrated.  相似文献   

19.
N-glycosylation is an important feature of therapeutic and other industrially relevant proteins, and engineering of the N-glycosylation pathway provides opportunities for developing alternative, non-mammalian glycoprotein expression systems. Among yeasts, Saccharomyces cerevisiae is the most established host organism used in therapeutic protein production and therefore an interesting host for glycoengineering. In this work, we present further improvements in the humanization of the N-glycans in a recently developed S. cerevisiae strain. In this strain, a tailored trimannosyl lipid-linked oligosaccharide is formed and transferred to the protein, followed by complex-type glycan formation by Golgi apparatus-targeted human N-acetylglucosamine transferases. We improved the glycan pattern of the glycoengineered strain both in terms of glycoform homogeneity and the efficiency of complex-type glycosylation. Most of the interfering structures present in the glycoengineered strain were eliminated by deletion of the MNN1 gene. The relative abundance of the complex-type target glycan was increased by the expression of a UDP-N-acetylglucosamine transporter from Kluyveromyces lactis, indicating that the import of UDP-N-acetylglucosamine into the Golgi apparatus is a limiting factor for efficient complex-type N-glycosylation in S. cerevisiae. By a combination of the MNN1 deletion and the expression of a UDP-N-acetylglucosamine transporter, a strain forming complex-type glycans with a significantly improved homogeneity was obtained. Our results represent a further step towards obtaining humanized glycoproteins with a high homogeneity in S. cerevisiae.  相似文献   

20.
The effect of tunicamycin, an inhibitor of protein N-glycosylation, was studied in non-growing mycelium of Trichoderma harzianum induced to secrete N-acetyl-β-d-glucosaminidase by the addition of N-acetylglucosamine. Tunicamycin (30 μg ml−1) had no significant effect on growth of the fungus, or on the total protein secreted or specific activity of N-acetyl-β-d-glucosaminidase. However, in the presence of the inhibitor an underglycosylated form of the enzyme was produced. The apparent molecular masses for this and the native enzyme were 110 and 124 kDa, respectively. Both forms of the enzyme showed the same optimum pH and temperature, but the underglycosylated form was more sensitive to inactivation by both high temperature (60°C) and the proteolytic enzyme trypsin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号