首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the investigation of label-free protein detection directly from lysed cells using microcantilever sensors. The integration of an internally referenced microcantilever sensor combined with peptide aptamer technology enables scalable and label-free detection of proteins from a complex biological environment (e.g. cell lysate). The internally referenced microcantilever sensor was found to be effective in minimizing both the effects of thermal drift and non-specific binding interactions with the backside of the cantilever, thereby allowing protein detection in a complex biological background. Highly specific peptide aptamers are used to modify the cantilever surface to specifically detect less than 80nM CDK2 protein from yeast cell lysate. This binding of CDK2 on the microcantilever generates a tensile surface stress of average magnitude equal to 70+/-22mN/m. Similar experiments conducted with quartz crystal microbalance (QCM) technology are consistent with the response observed using microcantilever sensors.  相似文献   

2.
A quartz crystal microbalance (QCM) biosensor system for lectin-carbohydrate interactions has been developed. Yeast mannan was immobilised on polystyrene-coated quartz crystals, and interactions tested with the lectin concanavalin A (Con A). The biosensor could be easily operated, where mannan immobilisation and all binding analyses were performed in real-time using a flow-through system. The apparent binding constant for yeast mannan to Con A was estimated to be 0.4 microM, well in accordance to reported literature values. In addition, the effective concentration values (EC50-values) for a series of mannose/mannoside ligands, acting as competitors to the mannan/Con A interaction, were determined to range from 0.18 to 5.3 mM, in good correlation with a related enzyme-labelled lectin assay (ELLA) protocol.  相似文献   

3.
This work reports on a complementary use of surface plasmon resonance (SPR) and quartz crystal microbalance with dissipation monitoring (QCM-D) technologies to study interactions between a peptide antigen and polyclonal antibodies, in an experimental format suitable for diagnostic assays of autoimmune diseases. In the chosen model, a synthetic peptide from the juxtamembrane region of IA-2 (a type 1 diabetes associated antigen) was immobilized by an optimized chemical protocol applicable to both BIACORE and QCM-D sensors. A thorough study of the peptide immobilization was performed to optimize the signal-to-noise ratio using mixed self-assembled monolayers (SAM) on a gold surface. Introduction of polyethylene glycol (EG6) chains into mixed SAM layers and addition of an anionic surfactant to the human serum reduced non-specific binding without modifying the viscoelasticity properties of the layer. Under our conditions, the antibody SPR detection limit was determined to be 0.2 nM in diluted human serum. This value is in agreement with the reported rank distribution of IA-2 antibodies in diabetic patient sera. Label-free and real-time technologies such as SPR and/or QCM-D could be precious tools in future diagnostic assays.  相似文献   

4.
Discovery of high-affinity peptide ligands for vancomycin   总被引:1,自引:0,他引:1  
Yao N  Wu CY  Xiao W  Lam KS 《Biopolymers》2008,90(3):421-432
Vancomycin, an important antibiotic against medically relevant gram-positive bacteria such as methicillin-resistant Staphylococcus aureus, exerts its antibacterial effects by binding with moderate affinity to the C-terminal Lys-D-Ala-D-Ala motif (Kaa) of the bacterial cell wall peptide precursor. Essential for Kaa binding to vancomcyin is the free-carboxyl group on the terminal D-Ala in Kaa. In efforts to identify other Kaa-based peptides which bind vancomycin with higher affinity, we utilized our one-bead-one-compound (OBOC) combinatorial library approach, a method which has been widely used to discover highly specific ligands against various receptors. In standard OBOC peptide libraries, the C-terminal end of the synthesized peptide is tethered to a solid-support/resin, however, this study reports development of a synthetic strategy for generating OBOC peptide libraries with a free D-Ala-D-Ala carboxyl end. We screened these "OBOC inverted" peptide libraries against vancomycin, and discovered a series of peptide ligands with strong consensus, which bind vancomycin. To further optimize these ligands, two highly focused Kaa-containing OBOC combinatorial peptidomimetic libraries were designed, synthesized, and screened against vancomycin under more stringent conditions. Peptidomimetic ligands which bind vancomycin with higher affinity than Kaa were identified. The dissociation constant of one of these ligands, Lys(Ac)-HOCit-Glu-Cha-Lys(3,5-dihydroxybenzoyl)-D-Ala-D-Ala (9), as determined by surface plasmon resonance, was 1.03 microM, roughly a 50-fold improvement in affinity compared to Kaa (K(D) = 50 microM).  相似文献   

5.
A biosensor for estrogenic substances using the quartz crystal microbalance   总被引:1,自引:0,他引:1  
This article describes a biosensor that detects estrogenic substances using a quartz crystal microbalance with a genetically engineered construct of the hormone-binding domain of the alpha-estrogen receptor. The receptor was immobilized to a piezoelectric quartz crystal via a single exposed cysteine, forming a uniform orientation on the crystal surface. Our results illustrate that this sensor responds to a variety of ligands that are known to bind to the estrogen receptor. No response was observed for nonbinding substances such as testosterone and progesterone. The sensitive response of this biosensor to estrogenic substances results from changes in the structural rigidity of the immobilized receptor that occurs with ligand binding. Agonist and antagonist show different responses.  相似文献   

6.
Past work has shown that Treponema pallidum, the causative agent of syphilis, binds host fibronectin (FN). FN and other host proteins are believed to bind to rare outer membrane proteins (OMPs) of T. pallidum, and it is postulated that this interaction may facilitate cell attachment and mask antigenic targets on the surface. This research seeks to prepare a surface capable of mimicking the FN binding ability of T. pallidum in order to investigate the impact of FN binding with adsorbed Tp0483 on the host response to the surface. By understanding this interaction, it may be possible to develop more effective treatments for infection and possibly mimic the stealth properties of the bacteria. Functionalized self-assembled monolayers (SAMs) on gold were used to investigate rTp0483 and FN adsorption. Using a quartz crystal microbalance (QCM), rTp0483 adsorption and subsequent FN adsorption onto rTp0483 were determined to be higher on negatively charged carboxylate-terminated self-assembled monolayers (-COO(-) SAMs) compared to the other surfaces analyzed. Kinetic analysis of rTp0483 adsorption using surface plasmon resonance (SPR) supported this finding. Kinetic analysis of FN adsorption using SPR revealed a multistep event, where the concentration of immobilized rTp0483 plays a role in FN binding. An examination of relative QCM dissipation energy compared to the shift in frequency showed a correlation between the physical properties of adsorbed rTp0483 and SAM surface chemistry. In addition, AFM images of rTp0483 on selected SAMs illustrated a preference of rTp0483 to bind as aggregates. Adsorption on -COO(-) SAMs was more uniform across the surface, which may help further explain why FN bound more strongly. rTp0483 antibody studies suggested the involvement of amino acids 274-289 and 316-333 in binding between rTp0483 to FN, while a peptide blocking study only showed inhibition of binding with amino acids 316-333. Finally, surface adsorbed rTp0483 with FN bound significantly less anti-RGD and gelatin compared to FN adsorbed directly to -COO(-) SAMs, indicating that one or both binding regions may play a role in binding between rTp0483 and FN.  相似文献   

7.
Proinsulin C-peptide was electroimmobilized to a quartz crystal microbalance sensor chip, localizing this low-pI peptide for covalent attachment to activated surface carboxyl groups. The resulting chip was used in a continuous flow biosensor to capture anti-C-peptide antibodies, which could subsequently be eluted in 5% formic acid between air bubbles for efficient recovery and mass spectrometric identification. The method is reproducible through repeated cycles, providing affinity purification of proteins under real-time monitoring of the binding and elution processes.  相似文献   

8.
Glycopolymers are useful macromolecules with a non-carbohydrate backbone for presenting saccharides in multivalent form. Here, glycopolymers containing mannose and alkanethiol linker were synthesized through substituting preactivated poly [N-(acryloyloxy) succinimide] (pNAS) with amine-containing monomer. With the obtained glycopolymers, a glycosurface was generated on the gold surface of quartz crystal microbalance (QCM) through self-assembled strategy by the use of alkanethiol functional group. Furthermore, the resulting glycosurface was used to detect the binding of mannose specific lectin concanavalin A (Con A).  相似文献   

9.
The effect of acetylcholinesterase (AChE) immobilization over the surface of a quartz crystal microbalance (QCM), by chemisorption of the AChE thiolated with a heterobifunctional cross-linker, sulfo-succinimidyl-6-[3-(2-pyridyldithio)propionamido]hexanoate, and carboxyl-amine coupling of AChE to 3-mercaptopropionic acid self-assembled monolayer, on the responses of a batch-type QCM-precipitation sensor was compared, resulting in a better sensitivity and binding efficiency in the former method. When an inhibition study with the developed sensor was undertaken at the optimized AChE immobilization with varying concentrations of a model organophosphorus pesticide EPN and carbamate one carbofuran, a sensitive detection for them was possible with the limit of detection corresponding to 1.55 x 10(-8) and 1.30 x 10(-9)M, respectively.  相似文献   

10.
This study proved a possibility of a peptide probe for evaluating affinity properties of proteins. We have designed and synthesized three different peptide probes, H-Ala3-(Gly-Pro5)3-Gly-OH (peptide A), H-Ala3-(Gly-Pro5)-Gly-OH (peptide B) and H-Ala3-Gly-OH (peptide C) for testing their affinities to profilin. Each peptide probe was immobilized on a quartz crystal microbalance (QCM) sensor. The QCM sensor with the peptide A showed a 93 Hz decrease of resonant frequency which indicated profilin bound to the QCM sensor in a single layer. In a successive reaction with actin, the QCM analysis resulted in a 123 Hz decrease of resonant frequency which showed actin bound to the QCM sensor. A fluorescence microscope image of the sensor surface exhibited clear fluorescence after binding a rhodamine labeled actin on the sensor surface. These results supported stepwise reactions of profilin binding to the peptide A and actin binding to profilin. In the three peptide probes, the peptide A showed the highest affinity to profilin, i.e., sequence dependent affinity was confirmed.  相似文献   

11.
In this study we evaluated the quartz crystal microbalance (QCM) as a biosensor for a real-time investigation of liposomal binding, under dynamic flow conditions, onto target proteins immobilized at the sensor. The mass-sensitive frequency changes of quartz sensors allow for a quantification of the liposomal binding process. Furthermore, simultaneous damping analysis gives an insight into liposomal behavior, such as the degree of liposomal deformation or spreading at the target surface. In this study a series of liposomes was evaluated, differing in the kind and concentration of ligands interacting with appropriate target proteins. It became evident that an increase in homing device concentration accelerated deformation and flattening of liposomes, triggering a fusion process. Furthermore, liposomal deformation corresponded with the binding affinity of target molecules, comparing biotin/avidin with E-selectin/ligand interactions. Deformation could be emphasized using dioleoylphosphatidylethanolamine (DOPE) as a fusiogenic membrane component, while sterical stabilization by polyethylenglycol (PEG-PE) appeared in a low degree of deformation. Consequently, the online detection of liposomal target binding by QCM is an excellent facility to control and predict the liposomal behavior at the target site for increasing therapeutic potency.  相似文献   

12.
In this study we evaluated the quartz crystal microbalance (QCM) as a biosensor for a real-time investigation of liposomal binding, under dynamic flow conditions, onto target proteins immobilized at the sensor. The mass-sensitive frequency changes of quartz sensors allow for a quantification of the liposomal binding process. Furthermore, simultaneous damping analysis gives an insight into liposomal behavior, such as the degree of liposomal deformation or spreading at the target surface. In this study a series of liposomes was evaluated, differing in the kind and concentration of ligands interacting with appropriate target proteins. It became evident that an increase in homing device concentration accelerated deformation and flattening of liposomes, triggering a fusion process. Furthermore, liposomal deformation corresponded with the binding affinity of target molecules, comparing biotin/avidin with E-selectin/ligand interactions. Deformation could be emphasized using dioleoylphosphatidylethanolamine (DOPE) as a fusiogenic membrane component, while sterical stabilization by polyethylenglycol (PEG-PE) appeared in a low degree of deformation. Consequently, the online detection of liposomal target binding by QCM is an excellent facility to control and predict the liposomal behavior at the target site for increasing therapeutic potency.  相似文献   

13.
Zhao H  Li J  Xi F  Jiang L 《FEBS letters》2004,563(1-3):241-245
The binding of polyamidoamine (PAMAM) dendrimer or Tat peptide to trans-acting responsive element (TAR) RNA has been studied using microgravimetric quartz crystal microbalance (QCM). Experimental results showed that PAMAM dendrimer could form complexes with TAR RNA. Especially, PAMAM dendrimer could disrupt the interaction of Tat peptide with TAR RNA, which is essential for HIV-1 virus replication, suggesting that QCM is a powerful tool for studying the binding processes of Tat peptide-TAR RNA and drug-TAR RNA and has great significance for the design of new drugs. An equation to measure the binding ability between TAR RNA and other species has been proposed.  相似文献   

14.
Immunoreactive, multicomponent nanoclusters were assembled through the controlled presentation of a known, synthetic peptide epitope. The epitope comes from the hemagglutanin protein of influenza and is known to bind to a monoclonal anti-HA antibody. Antibody affinity for the immunoreactive MPC was compared to the affinity for traditionally used peptide arrays using the quartz crystal microbalance. The two systems had comparable affinities (Ka), ranging from 0.41 x 10(7) M(-1) to 1.8 x 10(7) M(-1), though the nanocluster used a much lower density of peptide relative to that of the peptide array. These results suggest that functionalized nanoclusters have potential in nanostructure assembly and medical applications. Water-soluble nanoparticles that present known neutralizing peptide epitopes of protein antigens might be used in antiviral influenza vaccines.  相似文献   

15.
Biosensors based on landscape phages immobilized by physical adsorption on the surface of a quartz crystal microbalance was used for detection of beta-galactosidase from Escherichia coli. The sensor had a detection limit of a few nanomoles and a response time of a approximately 100 s over the range of 0.003-210 nM. The binding dose-response curve had a typical sigmoid shape and the signal was saturated at the beta-galactosidase concentration of about 200 nM. A marked selectivity for beta-galactosidase over BSA was observed in mixed solutions even when the concentration of BSA exceeded the concentration of beta-galactosidase by a factor of approximately 2000. The apparent value of the dissociation constant (K(d)) of the interaction of free phage with beta-galactosidase (9.1+/-0.9 pM) was smaller compared with the one calculated for the bound phage (1.7+/-0.5 nM). The binding was specific with three binding sites needed to bind a single molecule of beta-galactosidase. The K(d) obtained from the enzyme-linked immunosorbent assay (ELISA) for the phage and the monoclonal anti-beta-galactosidase antibodies were 21+/-2 and 26+/-2 nM, respectively. Although the method of physical adsorption is simpler and more economical in comparison with Langmuir-Blodgett and molecular assembling methods the performances of the sensors made by these technologies compare well. This work provides evidence that phage can be used as a recognition element in biosensors using physical adsorption method for immobilization of phage on the sensor surface.  相似文献   

16.
Rev is an essential HIV-1 regulatory protein that binds the Rev responsive element (RRE) within the env gene of the HIV-1 RNA genome and is involved in transport of unspliced or partially spliced viral mRNA from the cell nucleus to the cytoplasm. Previous studies have shown that a short alpha-helical peptide derived from Rev (Rev 34-50), and a truncated form of the RRE sequence provide a useful in vitro system to study this interaction while still preserving the essential aspects of the native complex. We have selectively incorporated the fluorescent probe 2-aminopurine 2'-O-methylriboside (2-AP) into the RRE sequence in nonperturbing positions (A68 and U72) such that the binding of both Rev peptide and aminoglycoside ligands could be characterized directly by fluorescence methods. Rev peptide binding to the RRE-72AP variant resulted in a 2-fold fluorescence increase that provided a useful signal to monitor this binding interaction (K(D) = 20 +/- 7 nM). Using stopped-flow kinetic measurements, we have shown that specific Rev peptide binding occurs by a two-step process involving diffusion-controlled encounter, followed by isomerization of the RNA. Using the RRE-68AP and -72AP constructs, three classes of binding sites for the aminoglycoside neomycin were unambiguously detected. The first site is noninhibitory to Rev binding (K(D) = 0.24 +/- 0.040 microM), the second site inhibited Rev binding in a competitive fashion (K(D) = 1. 8 +/- 0.8 microM), and the third much weaker site (or sites) is attributed to nonspecific binding (K(D) >/= 40 microM). Complementary NMR measurements have shown that neomycin forms both a specific binary complex with RRE and a specific ternary complex with RRE and Rev. NMR data further suggest that neomycin occupies a similar high-affinity binding site in both the binary and ternary complexes, and that this site is located in the lower stem region of RRE.  相似文献   

17.
Molecularly imprinted polymers (MIPs) are gaining great interest as tailor-made recognition materials for the development of biomimetic sensors. Various approaches have been adopted to interface MIPs with different transducers, including the use of pre-made imprinted particles and the in situ preparation of thin polymer layers directly on transducer surfaces. In this work we functionalized quartz crystal microbalance (QCM) sensor crystals by coating the sensing surfaces with pre-made molecularly imprinted nanoparticles. The nanoparticles were immobilized on the QCM transducers by physical entrapment in a thin poly(ethylene terephthalate) (PET) layer that was spin-coated on the transducer surface. By controlling the deposition conditions, it was possible to gain a high nanoparticle loading in a stable PET layer, allowing the recognition sites in nanoparticles to be easily accessed by the test analytes. In this work, different sensor surfaces were studied by micro-profilometry and atomic force microscopy and the functionality was evaluated using quartz crystal microbalance with dissipation (QCM-D). The molecular recognition capability of the sensors were also confirmed using radioligand binding analysis by testing their response to the presence of the test compounds, (R)- and (S)-propranolol in aqueous buffer.  相似文献   

18.
This paper describes a procedure, based on direct binding, for identifying tight-binding ligands for a receptor immobilized on a sensor chip from an array of equimolar tripeptides using surface plasmon resonance. Vancomycin and a library of 96 tripeptides, with molecular weight ranging from 316 to 560 Da, were used as a model system to illustrate the procedure. A consensus structure of the strongest interacting peptides consisted of D-Ala at the C terminus and aromatic amino acid in the penultimate position. Ligands having this structure bound more tightly to vancomycin than the known D-Ala-D-Ala peptide. The throughput of our continuous assay is 96 compounds in 3.3 h, and the sample consumption is less than 2 microg per peptide and 1 ng for vancomycin. This procedure should be applicable to peptide libraries of greater complexity than that used here and to mixtures of small organic compounds.  相似文献   

19.
A piezoelectric quartz crystal microbalance has been shown to be useful to monitor real time bacterial growth. Monitoring bacterial growth can give an insight into the ecosystem, as it is highly affected by the presence of toxic elements or nutrients. The frequency of an uncoated piezoelectric quartz crystal was monitored while in contact with bacteria, isolated from water sampled from a Portuguese lagoon, growing in two different media: a saline nutrient broth (NM) and the natural water. The sensor was used to evaluate the effect of copper on bacterial growth. Copper concentrations up to 18.8 microg l(-1) showed an increase in bacterial growth in NM, and a decrease beyond 25.0 microg l(-1). Copper added to the natural water had negative effects on bacterial growth beyond 18.8 microg l(-1). Copper concentrations in the natural water from the lagoon were determined using a similar quartz crystal to detect the mass deposited by anodic stripping voltammetry, and was found to be 3.38 +/- 0.09 microg l(-1).  相似文献   

20.
Peptides terminating in -Lys-D-Ala-D-Ala, -Lys-D-Ala-L-Ala and -Lys-D-Ala-D-Lactate were covalently coupled via an N-terminal aminohexanoic acid linker to a self-assembled monolayer of HS(CH2)15CO2H on a thin gold film. Binding of the glycopeptide antibiotics vancomycin and chloroeremomycin to these surfaces was then measured using a surface plasmon resonance biosensor. Both antibiotics bound with micromolar affinity to the D-Ala-terminating surface and with millimolar affinity to the D-Lactate-terminating surface. Increasing density of these covalently attached peptides on the surface had no effect on the resultant affinities of either antibiotic for the surface. In contrast, when the lipid-anchored peptide N-alpha-docosanoyl-epsilon-acetyl-Lys-D-Ala-D-Ala was inserted into a supported lipid monolayer, the affinity of the strongly dimerizing antibiotic chloroeremomycin for the surface showed a dependence on ligand density. This was not the case with the weakly dimerizing antibiotic vancomycin. The lipid monolayer surface, which is a more realistic model of the surface of a bacterium, was thus better suited for the study of the cooperative binding interactions that occur between dimeric glycopeptide antibiotics and surface-bound ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号