首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Wu GJ  Peng Q  Fu P  Wang SW  Chiang CF  Dillehay DL  Wu MW 《Gene》2004,327(2):201-213
MUC18, a cell adhesion molecule (CAM), has been reported to be a diagnostic marker for the early detection of the metastatic potential of prostate cancers as well as implicated to be an important determinant for mediating the tumorigenesis and metastasis of prostate cancer. To test the hypothesis, we further investigated the possible role of MUC18 in the malignant progression of human prostate cancer. The human MUC18-minus, non-metastatic human prostate cancer LNCaP cells were transfected with the human cytomegalovirus immediate-early gene (HCMV-IE) promoter-driven human MUC18 (huMUC18) cDNA. The G418-resistant (G418R)-LNCaP clones that expressed a high level of huMUC18 were selected and used for testing the effect of huMUC18 expression on the in vitro growth, motility, and invasiveness as well as on the in vivo metastasis (via orthotopical injection) in a xenograft nude mouse model. HuMUC18 expression increased by four- to fivefold of in vitro motility and invasiveness of LNCaP cells. Anti-huMUC18 antibody significantly inhibited the in vitro motility and invasiveness of huMUC18-expressing LNCaP clones, but not the control clones. We suggest that huMUC18 expression is responsible for increasing these behaviors of LNCaP cells. HuMUC18 expression also directly increased the in vivo metastatic abilities of the LNCaP cells from the prostate gland to multiple distant organs. Western blot and immunohistochemistry analyses showed that the prostatic tumors as well as metastatic lesions expressed high levels of MUC18, indicating that they originated from the injected huMUC18-expressing LNCaP cells. We therefore conclude that HuMUC18 is an important determinant in increasing metastasis of human prostate cancer LNCaP cells to distant organs in a nude mouse model.  相似文献   

2.
Yang H  Wang S  Liu Z  Wu MH  McAlpine B  Ansel J  Armstrong C  Wu G 《Gene》2001,265(1-2):133-145
The cell surface adhesion molecule human MUC18 (huMUC18 or Mel-CAM) has been postulated to play a key pathogenic role in metastatic melanoma progression. To establish an immunocompetent syngeneic mouse model that would greatly facilitate our understanding of the role of MUC18 in the metastatic behavior of melanoma, we cloned and characterized the mouse MUC18 (muMUC18) cDNA gene. The gene was amplified by RT-PCR and RACE of the poly(A)+RNA isolated from the mouse melanoma cell line B16F10/Queens. The cloned muMUC18 cDNA gene contained 28 nucleotides of 5'-UTR, 908 nucleotides of 3'-UTR, and an open reading frame (ORF) of 1947 nucleotides encoding a protein of 648 amino acids, which is two amino acids longer than huMUC18. The size of the muMUC18 mRNA is about 3 kb with a shorter 3'-UTR than the huMUC18 mRNA (about 3.3 kb). Besides, the sequence in the 3' UTR of the two mRNAs is diverse with only 31% identity. The 5'-UTR and coding sequences of the muMUC18 cDNA are 72.4 and 80.6% identical to those of huMUC18, respectively. The deduced amino acid sequence of the muMUC18 cDNA is 76.2% identical to that of huMUC18. The amino acid sequences deduced from MUC18 cDNA sequences from six other mouse melanoma cell lines are identical except one to three residues, suggesting that the muMUC18 cDNA sequence determined in this report is correct. The muMUC18 protein is predicted to be slightly more acidic than the human protein. The levels of muMUC18 mRNA and protein in nine mouse melanoma cell lines were directly proportional to their ability to establish metastatic colonies in lungs of syngeneic mice. Most biological functions of the muMUC18 may be similar to the huMUC18.  相似文献   

3.
4.
Zeng G  Cai S  Liu Y  Wu GJ 《Gene》2012,492(1):229-238
Previous research has identified METCAM/MUC18, an integral membrane cell adhesion molecule (CAM) in the Ig-like gene super-family, as a promoter or a suppressor in the development of human breast cancer by MCF7, MDA-MB-231, and MDA-MB-468. To resolve these conflicting results we have investigated the role of this CAM in the progression of the three aforementioned cell lines plus one additional human breast cancer cell line, SK-BR-3. We transfected the SK-BR-3 cells with human METCAM/MUC18 cDNA to obtain G418-resistant clones, which expressed different levels of the protein and which were used to test the effect of human METCAM/MUC18 expression on in vitro motility, invasiveness, anchorage-independent colony formation in soft agar, disorganized growth in a 3D basement membrane culture assay, and in vivo tumorigenesis in athymic nude mice. Enforced METCAM/MUC18 expression increased in vitro motility, invasiveness, and anchorage-independent colony formation of SK-BR-3 cells and favored disorganized growth of the cells in 3D basement membrane culture. Enforced expression also increased tumorigenicity and final tumor weights of SK-BR-3 clones/cells after subcutaneous injection of the cells under the left third nipple of female athymic nude mice. To understand the mechanisms, we also determined the expression of several downstream key effectors in the tumors. Tumor cells from METCAM/MUC18 expressing clones exhibited elevated expression of an anti-apoptotic and survival index (Bcl2), an aerobic glycolysis index (LDH-A), and pro-angiogenesis indexes (VEGF and VAGFR2). We concluded that human METCAM/MUC18 promotes the development of breast cancer cells by increasing an anti-apoptosis and survival pathway and augmenting aerobic glycolysis and angiogenesis.  相似文献   

5.
The epithelial cells of prostate gland secrete various secretory products that play an important role in the growth and differentiation of prostate gland. These secretory products have also been implicated in neuroendocrine differentiation of benign prostatic hyperplasia and prostate malignancy. We have cloned a prostate-derived cDNA encoding a novel protein with a predicted molecular weight of 78 kDa (P(78)), and precisely mapped the cDNA sequence to chromosome 19. The P(78) gene has a complex genomic structure with 18 exons and 17 introns. The P(78) contains two conserved structural domains with limited similarity to domain D of synapsin I. The P(78) mRNA was expressed in various human cell lines. Western blot analysis using antibody specific for the P(78) revealed the presence of the P(78) protein in the prostate cancer cell lines with much lower level in metastatic prostate cancer cell lines compared to that in a primary prostate cancer cell line.  相似文献   

6.
Human MUC4 mucin cDNA and its variants in pancreatic carcinoma   总被引:2,自引:0,他引:2  
The human MUC4 gene is not expressed in normal pancreas; however, its dysregulation results in high levels of expression in pancreatic tumors. To investigate the tumor-associated expression, MUC4 cDNA was cloned from a human pancreatic tumor cell line cDNA expression library using a polyclonal antibody raised against human deglycosylated mucin and RT-PCR. Pancreatic MUC4 cDNA shows differences in 12 amino acid residues in the non-tandem repeat coding region with no structural rearrangement as compared with tracheal MUC4. The full-length MUC4 cDNA includes a leader sequence, a serine and threonine rich non-tandem repeat region, a central large tandem repeat domain containing 48 bp repetitive units, regions rich in potential N-glycosylation sites, two cysteine-rich domains, EGF-like domains, and a transmembrane domain. We also report the presence of a new EGF-like domain in MUC4 cDNA, located in the cysteine-rich region upstream from the first EGF-like domain. Four distinct splice events were identified in the region downstream of the central tandem repeat domain that generate three new MUC4 cDNA sequences (sv4, sv9, and sv10). The deduced amino acid sequences of two of these variants lack the transmembrane domain. Furthermore, two unique forms of MUC4 (MUC4/Y and MUC4/X) generated as a result of alternative splicing lack the salient feature of mucins, the tandem repeat domain. A high degree of polymorphism in the central tandem repeat region of MUC4 was observed in various pancreatic adenocarcinoma cell lines, with allele sizes ranging from 23.5 to 10.0 kb. MUC4 mRNA expression was higher in differentiated cell lines, with no detectable expression in poorly differentiated pancreatic tumor cell lines.  相似文献   

7.
8.
9.
BACKGROUND: We sought to identify genes with altered expression during human breast cancer progression by applying mRNA comparisons of normal and tumor mammary cell lines with increasingly malignant phenotypes. The gene encoding a new sialyltransferase (STM) was found to be down-regulated in tumor cells. Abnormal expression and enzymatic activities of sialyltransferases in tumor cells result in the formation of tumor-associated carbohydrate antigens that can be used for the better understanding of the disease process and are applied for tumor diagnosis and immunotherapy. Altered glycosylation patterns of the MUC1 mucin, in particular, is a target antigen for immunotherapy of breast and other cancers. MATERIALS AND METHODS: Total RNAs from multiple normal mammary epithelial cell strains and tumor cell lines were compared by differential display and the differential expression of selected cDNAs was confirmed by Northern analyses. Recombinant STM was expressed in COS-7 cells. The substrate and linkage specificity of STM was examined using various oligosaccharides and O-glycosylated proteins as acceptor substrates. The chromosomal localization of the SIATL1 gene was assigned by somatic cell hybrid analysis. RESULTS: A human sialyltransferase gene was identified by differential display as being down-regulated in breast tumor cell lines as compared to normal mammary epithelial cell strains, and the corresponding full-length cDNA (stm) was cloned. The encoded protein of 374 amino acid residues contained the L- and S-sialylmotifs, two catalytic regions conserved in all functional sialyltransferases. Recombinant STM is an active GalNAc alpha2,6-sialyltransferase with Gal beta 1,3 GalNAc-O-Ser/Thr and (+/- Neu5Ac alpha 2,3) Gal beta 1,3GalNAc-O-Ser/Thr acceptor specificity. The SIATL1 gene, encoding STM, was mapped to the long arm of human chromosome 17 at q23-qter, a region that is nonrandomly deleted in human breast cancers. However, Southern analyses indicated that SIATL1 is usually not grossly rearranged in breast tumors. Northern analyses showed that the gene was widely expressed in normal human tissues, as well as in normal breast and prostate epithelial cell lines, but significantly down-regulated or absent in corresponding tumor cell lines. CONCLUSIONS: Our findings suggest that aberrant expression of STM sialyltransferase in tumors could be a feature of the malignant phenotype. In breast cancers, the MUC1 mucin is overexpressed and contains shorter O-glycans as compared to the normal mucin. Because STM catalyzes the synthesis of O-glycans, cloning and characterization of its substrate specificity will contribute to the understanding of the molecular mechanisms underlying the aberrant glycosylation patterns of O-glycans and the formation of mucin-related antigens in human breast cancers.  相似文献   

10.
MUC16 (CA125) belongs to a family of high-molecular weight O-glycosylated proteins known as mucins. While MUC16 is well known as a biomarker in ovarian cancer, its expression pattern in pancreatic cancer (PC), the fourth leading cause of cancer related deaths in the United States, remains unknown. The aim of our study was to analyze the expression of MUC16 during the initiation, progression and metastasis of PC for possible implication in PC diagnosis, prognosis and therapy. In this study, a microarray containing tissues from healthy and PC patients was used to investigate the differential protein expression of MUC16 in PC. MUC16 mRNA levels were also measured by RT-PCR in the normal human pancreatic, pancreatitis, and PC tissues. To investigate its expression pattern during PC metastasis, tissue samples from the primary pancreatic tumor and metastases (from the same patient) in the lymph nodes, liver, lung and omentum from Stage IV PC patients were analyzed. To determine its association in the initiation of PC, tissues from PC patients containing pre-neoplastic lesions of varying grades were stained for MUC16. Finally, MUC16 expression was analyzed in 18 human PC cell lines. MUC16 is not expressed in the normal pancreatic ducts and is strongly upregulated in PC and detected in pancreatitis tissue. It is first detected in the high-grade pre-neoplastic lesions preceding invasive adenocarcinoma, suggesting that its upregulation is a late event during the initiation of this disease. MUC16 expression appears to be stronger in metastatic lesions when compared to the primary tumor, suggesting a role in PC metastasis. We have also identified PC cell lines that express MUC16, which can be used in future studies to elucidate its functional role in PC. Altogether, our results reveal that MUC16 expression is significantly increased in PC and could play a potential role in the progression of this disease.  相似文献   

11.
Transmembrane mucins, MUC4 and MUC16 are associated with tumor progression and metastatic potential in human pancreatic adenocarcinoma. We discovered that miR-200c interacts with specific sequences within the coding sequence of MUC4 and MUC16 mRNAs, and evaluated the regulatory nature of this association. Pancreatic cancer cell lines S2.028 and T3M-4 transfected with miR-200c showed a 4.18 and 8.50 fold down regulation of MUC4 mRNA, and 4.68 and 4.82 fold down regulation of MUC16 mRNA compared to mock-transfected cells, respectively. A significant reduction of glycoprotein expression was also observed. These results indicate that miR-200c overexpression regulates MUC4 and MUC16 mucins in pancreatic cancer cells by directly targeting the mRNA coding sequence of each, resulting in reduced levels of MUC4 and MUC16 mRNA and protein. These data suggest that, in addition to regulating proteins that modulate EMT, miR-200c influences expression of cell surface mucins in pancreatic cancer.  相似文献   

12.
Recent evaluation of human prostate tissues has shown predominantly high expression of the macrophage colony-stimulating factor receptor in prostatic intra-epithelial neoplasia or prostate cancer. However, the expression of its ligand, the macrophage colony-stimulating factor (M-CSF), and the biological role of this signaling in prostate cancer has not been analyzed. In this research we determined the relationship of serum M-CSF level to clinical parameters of prostate cancer progression. We measured the serum level of M-CSF in 170 patients with histologically confirmed prostatic adenocarcinoma and in 54 patients in whom prostate cancer was not detected. We also investigated the M-CSF expression in prostate cancer tissues by immunohistochemistry. The serum levels of M-CSF in bone metastatic prostate cancer patients was significantly higher than those in non-metastatic patients, while M-CSF did not differ with regards to histological grade, Gleason score or local tumor progression. M-CSF expression was detected in prostate cancer cells themselves by immunohistochemistry. These results suggest that M-CSF may have a functional role in prostate cancer progression.  相似文献   

13.
In the normal human prostate, undifferentiated proliferative cells reside in the basal layer and give rise to luminal secretory cells. There are, however, few epithelial cell lines that have a basal cell phenotype and are able to differentiate. We set out to develop a cell line with these characteristics that would be suitable for the study of the early stages of prostate epithelial cell differentiation. We produced a matched pair of conditionally immortalized prostate epithelial and stromal cell lines derived from the same patient. The growth of these cells is temperature dependent and differentiation can be induced following a rise in culture temperature. Three-dimensional co-cultures of these cell lines elicited gland-like structures reminiscent of prostatic acini. cDNA microarray analysis of the epithelial line demonstrated changes in gene expression consistent with epithelial differentiation. These genes may prove useful as markers for different prostate cell types. The cell lines provide a model system with which to study the process of prostatic epithelial differentiation and stromal-epithelial interactions. This may prove to be useful in the development of differentiation-targeted prostate cancer therapies.  相似文献   

14.
MUC13 is a newly identified transmembrane mucin. Although MUC13 is known to be overexpressed in ovarian and gastric cancers, limited information is available regarding the expression of MUC13 in metastatic colon cancer. Herein, we investigated the expression profile of MUC13 in colon cancer using a novel anti-MUC13 monoclonal antibody (MAb, clone ppz0020) by immunohistochemical (IHC) analysis. A cohort of colon cancer samples and tissue microarrays containing adjacent normal, non-metastatic colon cancer, metastatic colon cancer, and liver metastasis tissues was used in this study to investigate the expression pattern of MUC13. IHC analysis revealed significantly higher (p<0.001) MUC13 expression in non-metastatic colon cancer samples compared with faint or very low expression in adjacent normal tissues. Interestingly, metastatic colon cancer and liver metastasis tissue samples demonstrated significantly (p<0.05) higher cytoplasmic and nuclear MUC13 expression compared with non-metastatic colon cancer and adjacent normal colon samples. Moreover, cytoplasmic and nuclear MUC13 expression correlated with larger and poorly differentiated tumors. Four of six tested colon cancer cell lines also expressed MUC13 at RNA and protein levels. These studies demonstrate a significant increase in MUC13 expression in metastatic colon cancer and suggest a correlation between aberrant MUC13 localization (cytoplasmic and nuclear expression) and metastatic colon cancer.  相似文献   

15.
16.
Patients with metastatic cancer commonly have increased serum galectin-3 concentrations, but it is not known whether this has any functional implications for cancer progression. We report that MUC1, a large transmembrane mucin protein that is overexpressed and aberrantly glycosylated in epithelial cancer, is a natural ligand for galectin-3. Recombinant galectin-3 at concentrations (0.2-1.0 microg/ml) similar to those found in the sera of patients with metastatic cancer increased adhesion of MUC1-expressing human breast (ZR-75-1) and colon (HT29-5F7) cancer cells to human umbilical vein endothelial cells (HUVEC) by 111% (111 +/- 21%, mean +/- S.D.) and 93% (93 +/- 17%), respectively. Recombinant galectin-3 also increased adhesion to HUVEC of MUC1 transfected HCA1.7+ human breast epithelial cells that express MUC1 bearing the oncofetal Thomsen-Friedenreich antigen (Galbeta1,3 GalNAc-alpha (TF)) but did not affect adhesion of MUC1-negative HCA1.7-cells. MUC1-transfected, Ras-transformed, canine kidney epithelial-like (MDE9.2+) cells, bearing MUC1 that predominantly carries sialyl-TF, only demonstrated an adhesive response to galectin-3 after sialidase pretreatment. Furthermore, galectin-3-mediated adhesion of HCA1.7+ to HUVEC was reduced by O-glycanase pretreatment of the cells to remove TF. Recombinant galectin-3 caused focal disappearance of cell surface MUC1 in HCA1.7+ cells, suggesting clustering of MUC1. Co-incubation with antibodies against E-Selectin or CD44H, but not integrin-beta1, ICAM-1 or VCAM-1, largely abolished the epithelial cell adhesion to HUVEC induced by galectin-3. Thus, galectin-3, by interacting with cancer-associated MUC1 via TF, promotes cancer cell adhesion to endothelium by revealing epithelial adhesion molecules that are otherwise concealed by MUC1. This suggests a critical role for circulating galectin-3 in cancer metastasis and highlights the functional importance of altered cell surface glycosylation in cancer progression.  相似文献   

17.
microRNAs (miRNAs) are a growing class of small non-coding RNAs that exhibit widespread dysregulation in prostate cancer. We profiled miRNA expression in syngeneic human prostate cancer cell lines that differed in their metastatic potential in order to determine their role in aggressive prostate cancer. miR-888 was the most differentially expressed miRNA observed in human metastatic PC3-ML cells relative to non-invasive PC3-N cells, and its levels were higher in primary prostate tumors from cancer patients, particularly those with seminal vesicle invasion. We also examined a novel miRNA-based biomarker source called expressed prostatic secretions in urine (EPS urine) for miR-888 expression and found that its levels were preferentially elevated in prostate cancer patients with high-grade disease. These expression studies indicated a correlation for miR-888 in disease progression. We next tested how miR-888 regulated cancer-related pathways in vitro using human prostate cancer cell lines. Overexpression of miR-888 increased proliferation and migration, and conversely inhibition of miR-888 activity blocked these processes. miR-888 also increased colony formation in PC3-N and LNCaP cells, supporting an oncogenic role for this miRNA in the prostate. Our data indicates that miR-888 functions to promote prostate cancer progression and can suppress protein levels of the tumor suppressor genes RBL1 and SMAD4. This miRNA holds promise as a diagnostic tool using an innovative prostatic fluid source as well as a therapeutic target for aggressive prostate cancer.  相似文献   

18.
Abstract Stromal–epithelial interactions mediated by paracrine signaling mechanisms dictate prostate development and progression of prostate cancer. The regulatory role of androgens in both the prostate stromal and epithelial compartments set the prostate apart from many other organs and tissues with regard to gene targeting. The identification of androgen-dependent prostate epithelial promoters has allowed successful gene targeting to the prostate epithelial compartment. Currently, there are no transgenic mouse models available to specifically alter gene expression within the prostate stromal compartment. As a primary metastatic site for prostate cancer is bone, the functional dissection of the bone stromal compartment is important for understanding stromal–epithelial interactions associated with metastatic tumor growth. Use of currently available methodologies for the expression or deletion of gene expression in recent research studies has advanced our understanding of the stroma. However, the complexity of stromal heterogeneity within the prostate remains a challenge to obtaining compartment or cell-lineage-specific in vivo models necessary for furthering our understanding of prostatic developmental, benign, tumorigenic, and metastatic growth.  相似文献   

19.
During prostate cancer progression, invasive glandular epithelial cells move out of the ductal-acinar architecture and through the surrounding basement membrane. Extracellular matrix proteins and associated soluble factors in the basal lamina and underlying stroma are known to be important regulators of prostate cell behaviors in both normal and malignant tissues. In this study, we assessed cell interactions with extracellular matrix and stromal factors during disease progression by characterizing integrin usage and expression in a series of parental and lineage-derived LNCaP human prostate cancer cell lines. Although few shifts in integrin expression were found to accompany disease progression, integrin heterodimer usage did change significantly. The more metastatic sublines were distinct in their use of alphavbeta3 and, when compared with parental LNCaP cells, showed a shift in alpha6 heterodimerization, a subunit critical not only for interaction with prostate basal lamina but also for interaction with the bone matrix, a favored site of prostate cancer metastases.  相似文献   

20.
Prostate cancers show a slow progression from a local lesion (primary tumor) to a metastatic and hormone-resistant phenotype. After an initial step of hyperplasia, in a high percentage of cases a neoplastic transformation event occurs that, less frequently, is followed by epithelial to mesenchymal transition and invasion of healthy tissues (usually bones). MicroRNA-203 (miR-203) is a tumor suppressor microRNA often silenced in different malignancies. Here, we show that miR-203 is downregulated in clinical primary prostatic tumors compared to normal prostate tissue, and in metastatic prostate cancer cell lines compared to normal epithelial prostatic cells. Overexpression of miR-203 in brain or bone metastatic prostate cell lines (DU145 and PC3) is sufficient to induce a mesenchymal to epithelial transition with inhibition of cell proliferation, migration and invasiveness. We have identified CKAP2, LASP1, BIRC5, WASF1, ASAP1 and RUNX2 as new miR-203 direct target mRNAs involved in these events. Therefore, miR-203 could be a potentially new prognostic marker and therapeutic target in metastatic prostate cancer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号