首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Choline acetyltransferase and acetylcholinesterase activities were measured in samples taken at 7-micron increments through the inner plexiform layer of rat retina. These enzyme activities were not uniformly distributed through the depth of the inner plexiform layer. Peaks of choline acetyltransferase activity occurred at about one-third and peaks of acetylcholinesterase activity at about one-fifth of the depth into the inner plexiform layer from either side. The positions of the two peaks of choline acetyltransferase activity most likely correspond to the locations of processes from cholinergic amacrine somata in the inner nuclear layer, which spread in sublamina a, and processes from cholinergic amacrine somata "displaced" in the ganglion cell layer which spread in sublamina b of the inner plexiform layer. The peaks of acetylcholinesterase activity may in addition correspond to the processes of cholinoceptive amacrine and ganglion cells. The magnitudes of choline acetyltransferase and acetylcholinesterase activities are as high as found anywhere in rat brain, emphasizing the important role of cholinergic mechanisms in visual processing through the rat inner plexiform layer.  相似文献   

2.
—The isoelectric point, surface charge and Km for choline of choline acetyltransferase from different species were determined. Choline acetyltransferase from mouse and monkey brain was resolved into three molecular forms with isoelectric points at 7·1, 7·5, 8·4 and 7·0, 7·35, 8·35 respectively, whereas choline acetyltransferase from the electric organ of Torpedo and from rabbit brain showed a molecular form with isoelectric point 6·6 and 6·9, respectively. With the exception of rabbit brain enzyme, there was a good correlation between the isoelectric points and surface charges of the different choline acetyltransferases. The Km's for choline were 0·66, 0·88, 0·92 and 3·5 mM for monkey, mouse, rabbit and Torpedo choline acetyltransferase respectively. The separated molecular forms of mouse and monkey enzymes did not show any significant difference in their affinity for choline.  相似文献   

3.
No multiple forms of choline acetyltransferase were found in extracts of human, mouse, rabbit, guinea pig, cat, and rat brain. A single form of this enzyme only was also demonstrated in bovine nervous tissue, including brain, dorsal and ventral roots, spinal cord, and femoral nerve. The difference from other published findings is believed to be due to ammonium sulfate fractionation, which was not used in the present study. In addition, multiple forms of the enzyme were obtained by others using isoelectric focusing, whereas this study employed gel filtration. Choline acetyltransferase was highly purified from mouse brain using a procedure similar to that used for the enzyme from bovine brain. The steps involved: (1) making an acetone-chloroform powder from whole mouse brains, (2) extracting the powder and chromatographing the soluble fraction with organomercurial Sepharose, (3) passing the enzyme solution through a column of DEAE-cellulose, (4) eluting from hydroxyapatite, and (5) removing contaminants by subunit exchange chromatography. The final preparation was essentially homogeneous as revealed by polyacrylamide gel electrophoresis.  相似文献   

4.
Choline acetyltransferase from rat brain is present in three different molecular forms with isoelectric points at pH 7·4-7.6, 7·7-7·9 and 8·3. The three forms were identified in a highly purified enzyme preparation, in a preparation of synaptosomes and in a cyto-plasmic preparation from disrupted axons and perikarya (fraction S3). The three molecular forms differed in their affinities for synaptosome membranes and for a cation exchange resin (CM-Sephadex C-50). The positive surface charges of the different molecular forms and their affinities for membranes correlated well with their isoelectric points. The molecular form with jsoelectric point 8·3 had the largest positive surface charge and the highest membrane affinity. On isoelectric focusing of an extract from rat brain synaptosomes, the molecular form with isoelectric point 8·3 formed a complex with a negatively charged compound, presumably a protein. A method was developed to remove this compound by treatment with DEAE-Sephadex or by precipitation with vinblastine. These procedures are similar to methods known to remove the neurotubular protein. The complex formation did not occur in fraction S3.  相似文献   

5.
SURFACE CHARGE OF CHOLINE ACETYLTRANSFERASE FROM DIFFERENT SPECIES   总被引:5,自引:2,他引:3  
—The adsorption of partially purified choline acetyltransferase (ChAc) from cat, rat, guinea-pig and pigeon brains by the cation exchange resins, CM-Sephadex (C-50) and Amberlite CG-50 II, was studied at various pH values and ionic strengths. ChAc from cat and rat were more strongly adsorbed by cation exchangers and therefore have a stronger net positive surface charge than those from guinea pig and pigeon. Experiments showed that the difference in adsorption between these two groups of enzymes could not be explained by overloading of the resin, by competitive effect of other proteins present in the enzyme preparations or by the presence of any component suppressing the adsorption of ChAc in any of the enzyme preparations. The adsorption of ChAc by a cation exchanger is very similar to its binding to synaptosome membranes. The significance of the positive surface charge of ChAc in studies on the compartmentation of ChAc in synaptosomes is discussed.  相似文献   

6.
The `compartmentation'' of choline acetyltransferase within the synaptosome   总被引:20,自引:9,他引:11  
1. Choline acetyltransferase may be isolated in either a bound or soluble form after hypo-osmotic treatment of a crude synaptosome fraction, depending on the conditions. 2. In the bound form, the enzyme appears to be associated with the larger membrane fragments rather than with synaptic vesicles. 3. The bound form is predominant at slightly acid pH values and low ionic strength, the soluble form under more physiological conditions of pH and ionic strength. 4. Sodium chloride, potassium chloride, magnesium chloride and calcium chloride at similar ionic strengths solubilize the enzyme. 5. Choline acetyltransferase was found to be soluble under these conditions after release from synaptosomes from rat and pigeon cerebra, guinea-pig cortex and rabbit cortex, caudate nuclei, diencephalon and midbrain. 6. Certain isoenzymes of lactate dehydrogenase behaved similarly.  相似文献   

7.
Abstract: The activity of choline acetyltransferase was used as an index of cholinergic structures in regions of rat brain. The activities of ATP citrate lyase and choline kinase correlated poorly with cholinergic activity in whole tissue fractions, contrasting with the good correlation between acetylcholinesterase and choline acetyltransferase. Choline acetyltransferase was preferentially localised in synaptosomes prepared from regions of high (striatum) or intermediate (cortex, medulla oblongata/pons) cholinergic activity. In general, this was not true for either choline kinase or ATP citrate lyase.  相似文献   

8.
Single cell bodies of spinal motor neurons were isolated from freeze-dried sections of fresh spinal cords from six species of vertebrates. Single human neurons were also isolated from the spinal cords of three autopsy cases without neurological diseases. Choline acetyltransferase activity of these single neurons was determined by measuring acetyl-CoA formation from CoASH and acetylcholine by use of the enzymatic amplification reactions, CoA and NADP cyclings. The enzyme activity was unevenly distributed in the cytosol of spinal motor neurons of all species, but not measurable in rabbit dorsal root ganglion cells. The specific activity on a dry weight basis varied widely among the individual neurons from the species studied. The average activity was highest with rat neurons and lowest with yellowtail neurons. The neurons from cold-blooded animals (bullfrog and yellowtail) had about one-tenth the activity compared with the warm-blooded animals (cat, rabbit, rat, and hen). Human neurons, obtained under different morbid and post-mortem conditions with three autopsy cases, had very low activities corresponding to those of cold-blooded animals. Since the choline acetyltransferase activity lost from mouse brain after 11 h at 38 degrees C was 50%, the activity in human neurons was believed to actually be low in vivo.  相似文献   

9.
1. The choline acetyltransferase and acetylcholinesterase activities in the cerebral cortex and hippocampus and muscarinic binding in the cerebral cortex did not differ significantly between male and female Wistar rats. 2. Choline acetyltransferase activities in the cerebral cortex and hippocampus of rats were not altered during ageing. 3. Acetylcholinesterase activities in these same brain areas were markedly decreased during ageing, possibly reflecting a loss of postsynaptic enzyme activity. 4. When measured using 3H-pirenzepine, binding to the postsynaptic muscarinic receptors was slightly higher in 26-month-old rats than in 12-month-old rats; total muscarinic binding measured using 3H-quinuclidinyl benzilate did not alter during ageing. 5. The present study does not support the hypothesis that in the rat brain the number of postsynaptic muscarinic binding sites decreases during ageing.  相似文献   

10.
—The influence of 1-norepinephrine on the accumulation of [14C]choline by nuclei-free homogenates and synaptosomes of guinea-pig brain was studied. Kinetic analysis of choline accumulation by guinea-pig brain resulted in both high and low affinity Michaelis constants. Norepinephrine stimulated the high affinity choline transport process but not the low and the magnitude of its stimulation in 3 different brain regions was correlated with the choline acetyltransferase activity of those regions. Depletion of norepinephrine from the brainstem by pretreatment with the catecholamine depleter alpha-methyl-para-tyrosine significantly decreased the maximal velocity of choline transport. Both the alpha adrenergic receptor blocker phentolamine and the beta adrenergic receptor blocker propranalol inhibited norepinephrine induced stimulation of choline transport. Cocaine stimulated choline transport at low concentrations and pretreatment of animals with reserpine significantly antagonized cocaine's stimulation of choline transport. The results suggest that endogenous norepinephrine may modify the high affinity choline transport process in guinea-pig brain.  相似文献   

11.
1. An enzyme similar to mammalian acetylcholinesterase is found in high activity in the nervous tissue of Palaemonetes varians, i.e. eyes plus stalks, brain, suboesophageal ganglion and ventral cord. Acetylcholinesterase is also found associated with the abdominal muscles. Multiple enzyme forms are found in extracts of nervous tissues and muscles by electrophoresis and isoelectric focusing. 2. Cholinesterase is present in high activity in the stomatogastric system of P. varians. Three electrophoretically separable forms are found, having isoelectric points at pH4.2, 4.5 and 5.4. 3. Approx. 50% of the total acetylcholinesterase activity, approx. 80% of the choline acetyltransferase activity and 100% of the acetylcholine equivalents are found associated with the nervous tissue. Among the tissues examined, eyes plus stalks were the richest source of both choline acetyltransferase and acetylcholine equivalents. Suboesophageal ganglion and brain also contained large amounts of these components. 4. The distribution of these components could support the function of acetylcholine as a central and/or sensory transmitter in P. varians.  相似文献   

12.
Abstract— Choline acetyltransferase (acetyl-CoA: choline O -acetyl transferase; EC 2.3.1.6; ChAc) purified from human brain (basal ganglia) and sciatic nerve were separated into apparent multiple enzyme forms by the method of isoelectric focusing (pH gradient 3-10) on acrylamide gel. A preparative separation of enzyme forms of human brain was accomplished by the column method, by using a sucrose gradient. When each separated form was re-electrofocused, only a portion of the ChAc activity was observed in its original pH region while more than one-half of the recovered activity for each fraction appeared at pH 7.8-8. Gel filtration and kinetic studies of separated forms indicated that the more acidic forms might be aggregates, while more basic forms might be configurational isomers. Human ChAc of sciatic nerve did not exhibit acidic forms on electrofocusing, but otherwise yielded an electrofocusing profile similar to that of human brain. ChAc of rabbit brain and sciatic nerve each exhibited only a single form at pH 7.1 ± 0.2. Although ChAc differs among species, the enzyme of brain and sciatic nerve of the same species cannot be clearly distinguished by electrofocusing.  相似文献   

13.
An isoelectric focusing technique was used to isolate multiple forms of cyclic nucleotide phosphodiesterase from a 105 000 times g soluble supernatant fraction of sonicated rat cerebrum. These separated peaks of activity had iso-electric points of 5.1, 5.6, 6.0, 6.6, 8.0, and 9.0. The activities were not stimulated by an endogenous activator of the enzyme but were inhibited by EGTA treatment. However, activator-sensitive forms of the enzyme could be separated from brain if the preparation of rat cerebrum was dialyzed against an EGTA containing buffer prior to electrofocusing. The procedure was also used to isolate a column fraction that stimulated maximum velocities of cyclic AMP and cyclic GMP hydrolysis. This fraction was itself devoid of phosphodiesterase activity and had an isoelectric point of 4.7.  相似文献   

14.
Abstract— Choline acetyltransferase catalyzes the formation of acetylcholine from choline and acetyl-CoA in cholin-ergic neurons. The present study examined conditions for modulation of kinase-mediated phosphorylation of this enzyme. By using a monospecific polyclonal rabbit anti-human choline acetyltransferase antibody to immunoprecipi-tate cytosolic and membrane-associated subcellular pools of enzyme from rat hippocampal synaptosomes, we determined that only the cytosolic fraction of the enzyme (67,000 ± 730 daltons) was phosphorylated under basal, unstimulated conditions. The quantity of this endogenous phosphoprotein was dependent, in part, upon the level of intracellular calcium, with 32Pi incorporation into the enzyme in nerve terminals incubated in nominally calcium-free medium only 43 ± 7% of control. The corresponding enzymatic activity of cytosolic choline acetyltransferase did not appear to be altered by lowered cytosolic calcium, whereas membrane-associated choline acetyltransferase activity was decreased to 58 ± 11 % of control. Depolarization of synaptosomes with 50 μ M veratridine neither altered the extent of phosphorylation or specific activity of cytosolic choline acetyltransferase, nor induced detectable phosphorylation of membrane-associated choline acetyltransferase, although the specific activity of the membrane-associated enzyme was increased to 132 ± 5% of control. In summary, phosphorylation of choline acetyltransferase does not appear to regulate cholinergic neurotransmission by a direct action on catalytic activity of the enzyme.  相似文献   

15.
Choline acetyltransferase synthesizes acetylcholine in cholinergic neurons. In the brain, these neurons are especially vulnerable to effects of beta-amyloid (A beta) peptides. Choline acetyltransferase is a substrate for several protein kinases. In the present study, we demonstrate that short term exposure of IMR32 neuroblastoma cells expressing human choline acetyltransferase to A beta-(1-42) changes phosphorylation of the enzyme, resulting in increased activity and alterations in its interaction with other cellular proteins. Using mass spectrometry, we identified threonine 456 as a new phosphorylation site in choline acetyltransferase from A beta-(1-42)-treated cells and in purified recombinant ChAT phosphorylated in vitro by calcium/calmodulin-dependent protein kinase II (CaM kinase II). Whereas phosphorylation of choline acetyltransferase by protein kinase C alone caused a 2-fold increase in enzyme activity, phosphorylation by CaM kinase II alone did not alter enzyme activity. A 3-fold increase in choline acetyltransferase activity was found with coordinate phosphorylation of threonine 456 by CaM kinase II and phosphorylation of serine 440 by protein kinase C. This phosphorylation combination was observed in choline acetyltransferase from A beta-(1-42)-treated cells. Treatment of cells with A beta-(1-42) resulted in two phases of activation of choline acetyltransferase, the first within 30 min and associated with phosphorylation by protein kinase C and the second by 10 h and associated with phosphorylation by both CaM kinase II and protein kinase C. We also show that choline acetyltransferase from A beta-(1-42)-treated cells co-immunoprecipitates with valosin-containing protein, and mutation of threonine 456 to alanine abolished the A beta-(1-42)-induced effects. These studies demonstrate that A beta-(1-42) can acutely regulate the function of choline acetyltransferase, thus potentially altering cholinergic neurotransmission.  相似文献   

16.
Separation of multiple forms of cyclic nucleotide phosphodiesterase from the soluble supernatant fraction of rat neostriatum by isoelectric focusing yielded five separate peaks of cyclic nucleotide hydrolysing activity. Each separated enzyme form displayed a complex kinetic pattern for the hydrolysis of both cyclic AMP and cyclic GMP, and there were two apparent Km's for each nucleotide. At 1 microM substrate concentration, four enzyme forms exhibited higher activity with cyclic AMP than with cyclic GMP, while one form yielded higher activity with cyclic GMP than with cyclic AMP. Cyclic AMP and cyclic GMP were both capable of almost complete inhibition of the hydrolysis of the other nucleotide in all the peaks separated by isoelectric focusing; the IC50's for this interaction correlated well with the relative rates of hydrolysis of each nucleotide in each peak. The ratio of activity at 1 microM substrate concentration for the five enzyme forms separated by isoelectric focusing was 10:10:5:15:1 for cyclic AMP hydrolysis; and 6:6:4:8:2 for cyclic GMP hydrolysis; and the isoelectric points of the five peaks were 4.3, 4.45, 4.7, 4.85, and 5.5, respectively. Known phosphodiesterase inhibitors did not preferentially inhibit any of the separated forms of activity for either cyclic AMP or cyclic GMP hydrolysis, at either high (100 microM) or low (1 microM) substrate concentrations. Preliminary examination of the subcellular distribution of the different forms of enzyme activity indicated a different degree of attachment of the various forms to particulate tissue components. Isoelectric focusing of the soluble supernatant of rat cerebellum gave rise to a slightly different pattern of isoelectric forms from the neostriatum, indicating a different cellular distribution of the isoelectric forms of PDE in rat brain. Polyacrylamide disc gel electrophoresis of the soluble supernatant of rat neostriatum also generated a characteristic pattern of five separate peaks of cyclic nucleotide phosphodiesterase activity, each of which hydrolysed both cyclic AMP and cyclic GMP. Polyacrylamide gel electrophoresis of single enzyme forms previously separated by isoelectric focusing gave single peaks, with a marked correspondence between the enzyme forms produced by isoelectric focusing and those produced by gel electrophoresis, suggesting that both protein separation procedures were isolating the same enzyme forms. The results indicate the existence of multiple isoelectric forms of cyclic nucleotide phosphodiesterase in the soluble supernatant fraction of rat neostriatum, all of which exhibit similar properties. In this tissue a single kinetic form of this enzyme appears to exist displaying complex kinetic behaviour indicative of negative cooperativity and hydrolysing both cyclic AMP and cyclic GMP, with varying affinities.  相似文献   

17.
The multiple molecular forms of choline acetyltransferase (ChAT) were analysed during the postnatal development of rat brain. Changes in the sodium-dependent, high affinity uptake of [3H]choline (HAUC) and in the efficiency of conversion of labelled choline into ACh in vitro were also examined. Both mature and 7-day old brain contained three molecular forms of ChAT, with isoelectric points of pH 7.3, 7.9 and 8.3, but the immature brain appeared to contain smaller concentrations of the most basic form of the enzyme (pI = 8.3). Of the total choline uptake measured in slices of frontal cortex, adult samples exhibited a greater proportion of HAUC than 7-day samples and appeared to acetylate more efficiently the [3H]choline accumulated by high affinity uptake. This evidence suggests a basic molecular form of ChAT, appearing in rat brain during postnatal development, might be responsible for the efficient coupling of the high affinity uptake and subsequent acetylation of choline in cholinergic nerve terminals.  相似文献   

18.
Choline acetyltransferase (ChAT) from porcine brain was purified by immunoaffinity chromatography, and the highly purified enzyme was subsequently used for immunization of mice and rabbits. After fusion of mouse spleen cells, 32 cultures producing monoclonal antibodies directed against ChAT were detected by an enzyme-linked immunosorbent assay (ELISA) with immunoaffinity-purified ChAT. Of these original 32, the most active 11 cultures were cloned and used for ascites production. The 11 clones generated monoclonal antibodies of the immunoglobulin (Ig) M class (three), the IgG1 subclass (seven), and the IgG2b subclass (one). The isoelectric points of the antibodies of the IgG class were different in each case. The monoclonal antibodies exhibited different binding characteristics in the above ELISA and on western blots. Two monoclonal antibodies demonstrated excellent immunohistological results with neurons of rat brain and spinal cord. One of them reacted well immunohistochemically with neurons of human brain and also recognized partially purified human placenta ChAT in the ELISA.  相似文献   

19.
Choline kinase, the first enzyme in the CDP-choline pathway for phosphatidylcholine biosynthesis, was purified 26,000-fold from rat liver to a specific activity of 143,000 nmol.min-1.mg-1 protein. The subunit molecular mass was 47 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, while the apparent native molecular mass was 160 kDa by size exclusion chromatography, suggesting a tetrameric structure. Two peaks of choline kinase activity were obtained by chromatofocusing. These isoforms eluted at pH 4.7 (CKI) and 4.5 (CKII). CKII appeared to be homogeneous by sodium dodecyl sulfate gel electrophoresis. Peptide mapping of two isoforms indicated a high degree of similarity, although there were peptides not common to both. Ethanolamine kinase activity copurified with both isoforms. The ratio of choline to ethanolamine kinase activity was 3.7 +/- 0.7 throughout the purification procedure. Choline and ethanolamine were mutually competitive inhibitors. The respective Km values, 0.013 and 1.2 mM, were similar to the Ki values of 0.014 and 2.2 mM. An antibody raised against CKII immunoprecipitated both choline and ethanolamine kinase activities from liver cytosol at the same titer. These data suggest that both activities reside on the same protein and occur at the same active site. Similarly, both activities were immunoprecipitated from brain, lung, and kidney cytosols. Western blot analysis showed both purified liver isoforms, as well as brain, lung and kidney enzymes, to have a molecular mass of 47 kDa.  相似文献   

20.
Detection of choline acetyltransferase (ChAc) in a number of non-neuronal tissues has been extremely overestimated. There are two major types of errors encountered. Type 1 error occurs when endogenous substrates (e.g. L-carnitine) are acetylated by acetyltransferase enzymes (e.g. carnitine acetyltransferase ( CarAc ) ) yielding an acetylated product mistaken for acetylcholine (AcCh). In the past, human sperm and human seminal plasma putative ChAc activity has been extremely overestimated due to Type 1 error. This study demonstrates (1) an endogenous acetyltransferase and substrate activity in human sperm and human seminal plasma forming an acetylated product that is not AcCh but probably acetylcarnitine ( AcCar ); (2) that the addition of 5 mM choline substrate does not significantly increase acetyltransferase activity; (3) that boiled seminal plasma contains an endogenous acetyltransferase substrate which is not choline, but probably L-carnitine. Type 2 error occurs when endogenous carnitine acetyltransferase synthesizes true AcCh, resulting in mistaken evidence for ChAc. This is demonstrated by the fact that the choline substrate Km-value for the neuronal or true ChAc from mouse brain is 0.73 +/- 0.06 mM while the Km-value of choline substrate for purified CarAc from pigeon breast muscle is 108 +/- 4 mM. Type 2 error has occurred for the estimation of putative ChAc in rat heart. The rat heart ChAc was measured in previous studies utilizing a concentration of 30 mM choline substrate. While saturation of neuronal ChAc is observed at 2-5 mM choline, saturation of the rat heart CarAc enzyme is not reached until over 800 mM. Purified CarAc significantly synthesizes AcCh at 30 mM choline. Thus, putative ChAc has been greatly overestimated in the scientific literature for mammalian sperm, human seminal plasma and rat heart.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号