首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chen J  Chatterjee N 《Biometrics》2006,62(1):28-35
Genetic epidemiologic studies often collect genotype data at multiple loci within a genomic region of interest from a sample of unrelated individuals. One popular method for analyzing such data is to assess whether haplotypes, i.e., the arrangements of alleles along individual chromosomes, are associated with the disease phenotype or not. For many study subjects, however, the exact haplotype configuration on the pair of homologous chromosomes cannot be derived with certainty from the available locus-specific genotype data (phase ambiguity). In this article, we consider estimating haplotype-specific association parameters in the Cox proportional hazards model, using genotype, environmental exposure, and the disease endpoint data collected from cohort or nested case-control studies. We study alternative Expectation-Maximization algorithms for estimating haplotype frequencies from cohort and nested case-control studies. Based on a hazard function of the disease derived from the observed genotype data, we then propose a semiparametric method for joint estimation of relative-risk parameters and the cumulative baseline hazard function. The method is greatly simplified under a rare disease assumption, for which an asymptotic variance estimator is also proposed. The performance of the proposed estimators is assessed via simulation studies. An application of the proposed method is presented, using data from the Alpha-Tocopherol, Beta-Carotene Cancer Prevention Study.  相似文献   

2.
OBJECTIVES: The association of a candidate gene with disease can be evaluated by a case-control study in which the genotype distribution is compared for diseased cases and unaffected controls. Usually, the data are analyzed with Armitage's test using the asymptotic null distribution of the test statistic. Since this test does not generally guarantee a type I error rate less than or equal to the significance level alpha, tests based on exact null distributions have been investigated. METHODS: An algorithm to generate the exact null distribution for both Armitage's test statistic and a recently proposed modification of the Baumgartner-Weiss-Schindler statistic is presented. I have compared the tests in a simulation study. RESULTS: The asymptotic Armitage test is slightly anticonservative whereas the exact tests control the type I error rate. The exact Armitage test is very conservative, but the exact test based on the modification of the Baumgartner-Weiss-Schindler statistic has a type I error rate close to alpha. The exact Armitage test is the least powerful test; the difference in power between the other two tests is often small and the comparison does not show a clear winner. CONCLUSION: Simulation results indicate that an exact test based on the modification of the Baumgartner-Weiss-Schindler statistic is preferable for the analysis of case-control studies of genetic markers.  相似文献   

3.
In biomedical cohort studies for assessing the association between an outcome variable and a set of covariates, usually, some covariates can only be measured on a subgroup of study subjects. An important design question is—which subjects to select into the subgroup to increase statistical efficiency. When the outcome is binary, one may adopt a case-control sampling design or a balanced case-control design where cases and controls are further matched on a small number of complete discrete covariates. While the latter achieves success in estimating odds ratio (OR) parameters for the matching covariates, similar two-phase design options have not been explored for the remaining covariates, especially the incompletely collected ones. This is of great importance in studies where the covariates of interest cannot be completely collected. To this end, assuming that an external model is available to relate the outcome and complete covariates, we propose a novel sampling scheme that oversamples cases and controls with worse goodness-of-fit based on the external model and further matches them on complete covariates similarly to the balanced design. We develop a pseudolikelihood method for estimating OR parameters. Through simulation studies and explorations in a real-cohort study, we find that our design generally leads to reduced asymptotic variances of the OR estimates and the reduction for the matching covariates is comparable to that of the balanced design.  相似文献   

4.
Case-control designs are widely used in rare disease studies. In a typical case-control study, data are collected from a sample of all available subjects who have experienced a disease (cases) and a sub-sample of subjects who have not experienced the disease (controls) in a study cohort. Cases are oversampled in case-control studies. Logistic regression is a common tool to estimate the relative risks of the disease with respect to a set of covariates. Very often in such a study, information of ages-at-onset of the disease for all cases and ages at survey of controls are known. Standard logistic regression analysis using age as a covariate is based on a dichotomous outcome and does not efficiently use such age-at-onset (time-to-event) information. We propose to analyze age-at-onset data using a modified case-cohort method by treating the control group as an approximation of a subcohort assuming rare events. We investigate the asymptotic bias of this approximation and show that the asymptotic bias of the proposed estimator is small when the disease rate is low. We evaluate the finite sample performance of the proposed method through a simulation study and illustrate the method using a breast cancer case-control data set.  相似文献   

5.
In this paper we derive explicit expressions for the elements of the exact Fisher information matrix of the Dirichlet-multinomial distribution. We show that exact calculation is based on the beta-binomial probability function rather than that of the Dirichlet-multinomial and this makes the exact calculation quite easy. The exact results are expected to be useful for the calculation of standard errors of the maximum likelihood estimates of the beta-binomial parameters and those of the Dirichlet-multinomial parameters for data that arise in practice in toxicology and other similar fields. Standard errors of the maximum likelihood estimates of the beta-binomial parameters and those of the Dirichlet-multinomial parameters, based on the exact and the asymptotic Fisher information matrix based on the Dirichlet distribution, are obtained for a set of data from Haseman and Soares (1976), a dataset from Mosimann (1962) and a more recent dataset from Chen, Kodell, Howe and Gaylor (1991). There is substantial difference between the standard errors of the estimates based on the exact Fisher information matrix and those based on the asymptotic Fisher information matrix.  相似文献   

6.
Tan Q  Christiansen L  Bathum L  Li S  Kruse TA  Christensen K 《Genetics》2006,172(3):1821-1828
Although the case-control or the cross-sectional design has been popular in genetic association studies of human longevity, such a design is prone to false positive results due to sampling bias and a potential secular trend in gene-environment interactions. To avoid these problems, the cohort or follow-up study design has been recommended. With the observed individual survival information, the Cox regression model has been used for single-locus data analysis. In this article, we present a novel survival analysis model that combines population survival with individual genotype and phenotype information in assessing the genetic association with human longevity in cohort studies. By monitoring the changes in the observed genotype frequencies over the follow-up period in a birth cohort, we are able to assess the effects of the genotypes and/or haplotypes on individual survival. With the estimated parameters, genotype- and/or haplotype-specific survival and hazard functions can be calculated without any parametric assumption on the survival distribution. In addition, our model estimates haplotype frequencies in a birth cohort over the follow-up time, which is not observable in the multilocus genotype data. A computer simulation study was conducted to specifically assess the performance and power of our haplotype-based approach for given risk and frequency parameters under different sample sizes. Application of our method to paraoxonase 1 genotype data detected a haplotype that significantly reduces carriers' hazard of death and thus reveals and stresses the important role of genetic variation in maintaining human survival at advanced ages.  相似文献   

7.
McNemar test is commonly used to test for the marginal homogeneity in 2 × 2 contingency tables. McNemar test is an asymptotic test based either on standard normal distribution or on the chi‐square distribution. When the total sample size is small, an exact version of McNemar test is available based on the binomial probabilities. The example in the paper came from a clinical study to investigate the effect of epidermal growth factor for children who had microvillus inclusion diseases. There were only six observations available. The test results differ between the exact test and the asymptotic test. It is a common belief that with this small sample size the exact test be used. However, we claim that McNemar test performs better than the exact test even when the sample size is small. In order to investigate the performances of McNemar test and the exact test, we identify the parameters that affect the test results and then perform sensitivity analysis. In addition, through Monte Carlo simulation studies we compare the empirical sizes and powers of these tests as well as other asymptotic tests such as Wald test and the likelihood ratio test.  相似文献   

8.
It is widely believed that risks of many complex diseases are determined by genetic susceptibilities, environmental exposures, and their interaction. Chatterjee and Carroll (2005, Biometrika 92, 399-418) developed an efficient retrospective maximum-likelihood method for analysis of case-control studies that exploits an assumption of gene-environment independence and leaves the distribution of the environmental covariates to be completely nonparametric. Spinka, Carroll, and Chatterjee (2005, Genetic Epidemiology 29, 108-127) extended this approach to studies where certain types of genetic information, such as haplotype phases, may be missing on some subjects. We further extend this approach to situations when some of the environmental exposures are measured with error. Using a polychotomous logistic regression model, we allow disease status to have K+ 1 levels. We propose use of a pseudolikelihood and a related EM algorithm for parameter estimation. We prove consistency and derive the resulting asymptotic covariance matrix of parameter estimates when the variance of the measurement error is known and when it is estimated using replications. Inferences with measurement error corrections are complicated by the fact that the Wald test often behaves poorly in the presence of large amounts of measurement error. The likelihood-ratio (LR) techniques are known to be a good alternative. However, the LR tests are not technically correct in this setting because the likelihood function is based on an incorrect model, i.e., a prospective model in a retrospective sampling scheme. We corrected standard asymptotic results to account for the fact that the LR test is based on a likelihood-type function. The performance of the proposed method is illustrated using simulation studies emphasizing the case when genetic information is in the form of haplotypes and missing data arises from haplotype-phase ambiguity. An application of our method is illustrated using a population-based case-control study of the association between calcium intake and the risk of colorectal adenoma.  相似文献   

9.
Genetic epidemiologic studies often involve investigation of the association of a disease with a genomic region in terms of the underlying haplotypes, that is the combination of alleles at multiple loci along homologous chromosomes. In this article, we consider the problem of estimating haplotype-environment interactions from case-control studies when some of the environmental exposures themselves may be influenced by genetic susceptibility. We specify the distribution of the diplotypes (haplotype pair) given environmental exposures for the underlying population based on a novel semiparametric model that allows haplotypes to be potentially related with environmental exposures, while allowing the marginal distribution of the diplotypes to maintain certain population genetics constraints such as Hardy-Weinberg equilibrium. The marginal distribution of the environmental exposures is allowed to remain completely nonparametric. We develop a semiparametric estimating equation methodology and related asymptotic theory for estimation of the disease odds ratios associated with the haplotypes, environmental exposures, and their interactions, parameters that characterize haplotype-environment associations and the marginal haplotype frequencies. The problem of phase ambiguity of genotype data is handled using a suitable expectation-maximization algorithm. We study the finite-sample performance of the proposed methodology using simulated data. An application of the methodology is illustrated using a case-control study of colorectal adenoma, designed to investigate how the smoking-related risk of colorectal adenoma can be modified by "NAT2," a smoking-metabolism gene that may potentially influence susceptibility to smoking itself.  相似文献   

10.
Outcome-dependent sampling (ODS) schemes can be a cost effective way to enhance study efficiency. The case-control design has been widely used in epidemiologic studies. However, when the outcome is measured on a continuous scale, dichotomizing the outcome could lead to a loss of efficiency. Recent epidemiologic studies have used ODS sampling schemes where, in addition to an overall random sample, there are also a number of supplemental samples that are collected based on a continuous outcome variable. We consider a semiparametric empirical likelihood inference procedure in which the underlying distribution of covariates is treated as a nuisance parameter and is left unspecified. The proposed estimator has asymptotic normality properties. The likelihood ratio statistic using the semiparametric empirical likelihood function has Wilks-type properties in that, under the null, it follows a chi-square distribution asymptotically and is independent of the nuisance parameters. Our simulation results indicate that, for data obtained using an ODS design, the semiparametric empirical likelihood estimator is more efficient than conditional likelihood and probability weighted pseudolikelihood estimators and that ODS designs (along with the proposed estimator) can produce more efficient estimates than simple random sample designs of the same size. We apply the proposed method to analyze a data set from the Collaborative Perinatal Project (CPP), an ongoing environmental epidemiologic study, to assess the relationship between maternal polychlorinated biphenyl (PCB) level and children's IQ test performance.  相似文献   

11.
Lu SE  Wang MC 《Biometrics》2002,58(4):764-772
Cohort case-control design is an efficient and economical design to study risk factors for disease incidence or mortality in a large cohort. In the last few decades, a variety of cohort case-control designs have been developed and theoretically justified. These designs have been exclusively applied to the analysis of univariate failure-time data. In this work, a cohort case-control design adapted to multivariate failure-time data is developed. A risk set sampling method is proposed to sample controls from nonfailures in a large cohort for each case matched by failure time. This method leads to a pseudolikelihood approach for the estimation of regression parameters in the marginal proportional hazards model (Cox, 1972, Journal of the Royal Statistical Society, Series B 34, 187-220), where the correlation structure between individuals within a cluster is left unspecified. The performance of the proposed estimator is demonstrated by simulation studies. A bootstrap method is proposed for inferential purposes. This methodology is illustrated by a data example from a child vitamin A supplementation trial in Nepal (Nepal Nutrition Intervention Project-Sarlahi, or NNIPS).  相似文献   

12.
Radiologists' interpretation on screening mammograms is measured by accuracy indices such as sensitivity and specificity. The hypothesis that radiologists' interpretation on screening mammograms is constant across time can be tested by measuring overdispersion. However, small sample sizes are problematic for the accuracy of asymptotic approaches. In this article, we propose an exact conditional distribution for testing overdispersion of the binomial assumption that is assumed for the accuracy indices. An exact p -value can be defined from the developed distribution. We also describe an algorithm for computing this exact test. This proposed method is applied to data from a study in reading screening mammograms in a population of US radiologists (Beam et al., 2003). The exact method is compared analytically with a currently available method based on large sample approximations.  相似文献   

13.
Guolo A 《Biometrics》2008,64(4):1207-1214
SUMMARY: We investigate the use of prospective likelihood methods to analyze retrospective case-control data where some of the covariates are measured with error. We show that prospective methods can be applied and the case-control sampling scheme can be ignored if one adequately models the distribution of the error-prone covariates in the case-control sampling scheme. Indeed, subject to this, the prospective likelihood methods result in consistent estimates and information standard errors are asymptotically correct. However, the distribution of such covariates is not the same in the population and under case-control sampling, dictating the need to model the distribution flexibly. In this article, we illustrate the general principle by modeling the distribution of the continuous error-prone covariates using the skewnormal distribution. The performance of the method is evaluated through simulation studies, which show satisfactory results in terms of bias and coverage. Finally, the method is applied to the analysis of two data sets which refer, respectively, to a cholesterol study and a study on breast cancer.  相似文献   

14.
Chen J  Lin D  Hochner H 《Biometrics》2012,68(3):869-877
Summary Case-control mother-child pair design represents a unique advantage for dissecting genetic susceptibility of complex traits because it allows the assessment of both maternal and offspring genetic compositions. This design has been widely adopted in studies of obstetric complications and neonatal outcomes. In this work, we developed an efficient statistical method for evaluating joint genetic and environmental effects on a binary phenotype. Using a logistic regression model to describe the relationship between the phenotype and maternal and offspring genetic and environmental risk factors, we developed a semiparametric maximum likelihood method for the estimation of odds ratio association parameters. Our method is novel because it exploits two unique features of the study data for the parameter estimation. First, the correlation between maternal and offspring SNP genotypes can be specified under the assumptions of random mating, Hardy-Weinberg equilibrium, and Mendelian inheritance. Second, environmental exposures are often not affected by offspring genes conditional on maternal genes. Our method yields more efficient estimates compared with the standard prospective method for fitting logistic regression models to case-control data. We demonstrated the performance of our method through extensive simulation studies and the analysis of data from the Jerusalem Perinatal Study.  相似文献   

15.
K Drescher  W Schill 《Biometrics》1991,47(4):1247-1256
By fitting an unconditional logistic regression model to unmatched case-control data, an estimate of the joint population attributable risk for the factor included is obtained. This estimate and its asymptotic variance can easily be computed from the intercept parameter and its asymptotic variance. A generalization to the analysis of stratified data with large strata enables the calculation of stratum-specific attributable risks and their variances via stratum-specific intercept parameters. If sampling of cases is independent of strata, an estimate of the summary attributable risk and its asymptotic variance may be obtained as a weighted sum of the stratum-specific attributable risks.  相似文献   

16.
Chan IS  Tang NS  Tang ML  Chan PS 《Biometrics》2003,59(4):1170-1177
Testing of noninferiority has become increasingly important in modern medicine as a means of comparing a new test procedure to a currently available test procedure. Asymptotic methods have recently been developed for analyzing noninferiority trials using rate ratios under the matched-pair design. In small samples, however, the performance of these asymptotic methods may not be reliable, and they are not recommended. In this article, we investigate alternative methods that are desirable for assessing noninferiority trials, using the rate ratio measure under small-sample matched-pair designs. In particular, we propose an exact and an approximate exact unconditional test, along with the corresponding confidence intervals based on the score statistic. The exact unconditional method guarantees the type I error rate will not exceed the nominal level. It is recommended for when strict control of type I error (protection against any inflated risk of accepting inferior treatments) is required. However, the exact method tends to be overly conservative (thus, less powerful) and computationally demanding. Via empirical studies, we demonstrate that the approximate exact score method, which is computationally simple to implement, controls the type I error rate reasonably well and has high power for hypothesis testing. On balance, the approximate exact method offers a very good alternative for analyzing correlated binary data from matched-pair designs with small sample sizes. We illustrate these methods using two real examples taken from a crossover study of soft lenses and a Pneumocystis carinii pneumonia study. We contrast the methods with a hypothetical example.  相似文献   

17.
The problem of exact conditional inference for discrete multivariate case-control data has two forms. The first is grouped case-control data, where Monte Carlo computations can be done using the importance sampling method of Booth and Butler (1999, Biometrika86, 321-332), or a proposed alternative sequential importance sampling method. The second form is matched case-control data. For this analysis we propose a new exact sampling method based on the conditional-Poisson distribution for conditional testing with one binary and one integral ordered covariate. This method makes computations on data sets with large numbers of matched sets fast and accurate. We provide detailed derivation of the constraints and conditional distributions for conditional inference on grouped and matched data. The methods are illustrated on several new and old data sets.  相似文献   

18.
Two-phase designs can reduce the cost of epidemiological studies by limiting the ascertainment of expensive covariates or/and exposures to an efficiently selected subset (phase-II) of a larger (phase-I) study. Efficient analysis of the resulting data set combining disparate information from phase-I and phase-II, however, can be complex. Most of the existing methods, including semiparametric maximum-likelihood estimator, require the information in phase-I to be summarized into a fixed number of strata. In this paper, we describe a novel method for the analysis of two-phase studies where information from phase-I is summarized by parameters associated with a reduced logistic regression model of the disease outcome on available covariates. We then setup estimating equations for parameters associated with the desired extended logistic regression model, based on information on the reduced model parameters from phase-I and complete data available at phase-II after accounting for nonrandom sampling design. We use generalized method of moments to solve overly identified estimating equations and develop the resulting asymptotic theory for the proposed estimator. Simulation studies show that the use of reduced parametric models, as opposed to summarizing data into strata, can lead to more efficient utilization of phase-I data. An application of the proposed method is illustrated using the data from the U.S. National Wilms Tumor Study.  相似文献   

19.
Case-cohort and nested case-control sampling methods have recently been introduced as a means of reducing cost in large cohort studies. The asymptotic distribution theory results for relative rate estimation based on Cox type partial or pseudolikelihoods for case-cohort and nested case-control studies have been accounted for. However, many researchers use (stratified) frequency table methods for a first or primary summarization of the most important evidence on exposure-disease or dose-response relationships, i.e. the classical Mantel-Haenszel analyses, trend tests and tests for heterogeneity of relative rates. These can be followed by exponential failure time regression methods on grouped or individual data to model relationships between several factors and response. In this paper we present the adaptations needed to use these methods with case-cohort designs, illustrating their use with data from a recent case-cohort study on the relationship between diet, life-style and cancer. We assume a very general setup allowing piecewise constant failure rates, possible recurrent events per individual, independent censoring and left truncation.  相似文献   

20.
A variety of statistical methods exist for detecting haplotype-disease association through use of genetic data from a case-control study. Since such data often consist of unphased genotypes (resulting in haplotype ambiguity), such statistical methods typically apply the expectation-maximization (EM) algorithm for inference. However, the majority of these methods fail to perform inference on the effect of particular haplotypes or haplotype features on disease risk. Since such inference is valuable, we develop a retrospective likelihood for estimating and testing the effects of specific features of single-nucleotide polymorphism (SNP)-based haplotypes on disease risk using unphased genotype data from a case-control study. Our proposed method has a flexible structure that allows, among other choices, modeling of multiplicative, dominant, and recessive effects of specific haplotype features on disease risk. In addition, our method relaxes the requirement of Hardy-Weinberg equilibrium of haplotype frequencies in case subjects, which is typically required of EM-based haplotype methods. Also, our method easily accommodates missing SNP information. Finally, our method allows for asymptotic, permutation-based, or bootstrap inference. We apply our method to case-control SNP genotype data from the Finland-United States Investigation of Non-Insulin-Dependent Diabetes Mellitus (FUSION) Genetics study and identify two haplotypes that appear to be significantly associated with type 2 diabetes. Using the FUSION data, we assess the accuracy of asymptotic P values by comparing them with P values obtained from a permutation procedure. We also assess the accuracy of asymptotic confidence intervals for relative-risk parameters for haplotype effects, by a simulation study based on the FUSION data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号