首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Swiss stone pine Pinus cembra L. is a species with fragmented range, occurring in the Alpine-East Carpathian mountain system. Seeds of P. cembra are dispersed by nutcrackers, which offers potential possibilities for gene exchange among populations. Using isozyme analysis, we have examined five samples from two parts of the Swiss stone pine range: the Alps (Switzerland and Austria) and the Carpathians (two samples from the northern macroslope of the Gorgany Ridge, Eastern Carpathians, Ivano-Frankovsk oblast and one sample from Trans-Carpathian oblast of Ukraine). The allele frequencies of 30 isozyme loci, coding for enzymes ADH, FDH, FEST, GDH, GOT, IDH, LAP, MNR, MDH, PEPCA, 6PGD, PGI, PGM, SDH, SKDH, SOD, were analyzed using cluster analysis and methods of principal components. Two clusters, corresponding to the isolated Alpine and Carpathian parts of the range, were found. The main contribution to these differences were made by loci Adh-1, Adh-2, Fest-2, Lap-3, Mdh-4, and Sod-4. The interpopulation differentiation proved to be somewhat higher than that typical for pines (F(ST) = 7.4%), but within the limits characteristic for taxonomically close species. Thus, isolation of the populations did not lead to their marked differentiation, which may be explained by gene flow and balancing selection, which equalizes gene frequencies across the fragmented species area. Interlocus F(ST) heterogeneity (from 0.003 to 0.173) suggests adaptive significance of some of the allozyme polymorphisms or linkage of some loci with adaptive genes. The Carpathian populations were shown to have higher gene diversity than the Alpine ones (expected heterozygosities 0.095-0.114 and 0.060-0.080, respectively). A deficit of heterozygotes (as compared to the Hardy-Weinberg proportions), observed in the embryo sample, was probably explained by inbreeding. The reduction in the area of Carpathian pine forests in Holocene, caused by the global climatic changes and the anthropogenic impact, is hazardous for the gene pool of the species. The maintenance of genetic uniqueness of both Carpathian populations of P. cembra in general, and individual stands in particular, requires special measures for protection of Swiss stone pine in the Eastern Carpathians.  相似文献   

2.
In Europe, most of the alpine timberline ecotone has been altered by human activities and climate change. Hence, mountain forests are of the highest conservation interest. Here, we screened 25 populations of Swiss stone pine (Pinus cembra L.) from the Carpathians and the Alps, using a set of ten microsatellite primers to assess the relative conservation value of populations sampled in Polish and Slovak Tatra National Parks, where potential extinction risk is the highest within the Carpathian range. Although endangered, with small and fragmented populations, P. cembra in the Tatra Mts. shows high levels of allelic richness (AR = 5.0) and observed heterozygosity (H o  = 0.554). Our results suggest that anthropogenic habitat fragmentation has had little impact on DNA variation of Swiss stone pine in the Tatra Mts. However, the effects of changing conditions on the genetic structure may occur with a substantial time delay due to the long life span of P. cembra. Moreover, inbreeding depression may occur in the next generations, since we found inbreeding (F IS  = 0.063) and elevated coancestry coefficient (θ = 0.062) in all populations. Also a shallow pattern of genetic differentiation between populations was found, indicating recent fragmentation of a common gene pool that formerly occupied a larger range. Therefore, the Tatra Mts. can be considered as a single conservation unit. Based on our results, we suggest possible conservation activities for Swiss stone pine both in Poland and Slovakia.  相似文献   

3.
The disjunct occurrence of Pedicularis exaltata in the White Carpathians (Czech Republic), isolated by more than 500 km from the nearest populations in the Eastern Carpathians, has been considered one of the mysteries of the Western Carpathian flora. We used molecular methods (AFLP, ITS and cpDNA sequencing) to reconstruct a possible scenario of the evolution of P. exaltata and its closely related congener P. hacquetii and to evaluate their differentiation. We paid particular attention to the origin of the isolated population in the White Carpathians. We also analysed the vegetation composition at the sampling sites to characterize the habitat preferences of the Pedicularis species and compare different sites. The pattern of molecular variability does not support a species boundary between P. exaltata and P. hacquetii. These assumed species should be merged into one bearing the name Pedicularis hacquetii following the priority rule, as also proposed by several early morphology-based taxonomic studies. The cpDNA variability pattern supports an evolutionary scenario involving a distribution centre (refugium) in the Eastern Carpathians from which the species expanded to the more westerly parts of its extant geographical range. Low population differentiation in AFLPs, high gene diversity and high DW index in isolated populations indicate that this expansion was contiguous rather than based on long-distance dispersal. Under such a scenario, the White Carpathian population is considered one of isolated relict populations scattered throughout the Carpathians and the East European Plain. A complete phylogeographic reconstruction of P. hacquetii s.l., however, requires ancient DNA analysis of herbarium specimens of nowadays extinct populations of the East European Plain. Extant habitats of P. hacquetii s.l. consist of species-rich dry-mesic to mesic (sub)montane grasslands and subalpine tall-herb growths, which may be relics of vegetation widespread in the late Glacial/early Holocene, when the contiguous expansion of the species possibly proceeded. The analysis of species with high fidelity to P. hacquetii s.l. throughout its range indicated that middle altitudes of south-western White Carpathians belong to the regions most suitable for the taxon within the Czech Republic and Slovakia. We found no support for the late introduction/long-distance dispersal scenarios and consider the relic survival scenario most parsimonious for the White Carpathians.  相似文献   

4.
To specify the taxonomic rank of form ciscaucasicus (independent species Sylvaemus ciscaucasicus, or intraspecific form of pygmy wood mouse, S. uralensis), a 402-bp the mtDNA cytochrome b gene fragment (402 bp) was examined in ciscaucasicus individuals from six geographic localities of the Caucasus and Ciscaucasus (Krasnodar krai and Adygeya Republic) and 17 S. uralensis individuals from seven localities of the Russian Plain (Saratov oblast, Smolensk oblast, Voronezh oblast, Tula oblast, Moscow oblast, Tver’ oblast, and northern Krasnodar krai). For comparison, the cytochrome b gene was partly sequenced in the samples of yellow necked, S. flavicollis (n = 2, Samara oblast), and Caucasian, S. ponticus (n = 6, Krasnodar krai), wood mice. One Mus musculus specimen from Western Europe, whose nucleotide sequences were deposed in the GenBank, was used as intergeneric outgroup. Phylogenetic trees for the forms examined were constructed based on the mtDNA sequence variation and using the neighbor joining and maximum parsimony methods. The network of the cytochrome b haplotypes was also constructed. The level of genetic divergence was evaluated using Kimura’s two-parameter algorithm. Based on the data on the sequence variation in a 402-bp mtDNA cytochrome b gene fragment, the hypothesis on the species status of the ciscaucasicus form was. The mean intergroup distances (d) between the geographic groups of S. uralensis varied from 0.0036 to 0.0152. At the same time, the distances between the pygmy wood mice and the group of S. flavicollis-S. ponticus varies in the range from 0.0860 to 0.0935, and the level of intergeneric genetic differentiation (Sylvaemus-Mus) is higher than the latter index (d = 0.142). Ciscaucasicus should be considered as geographic substitution form of S. uralensis. Furthermore, the Caucasian populations of S. uralensis (= ciscaucasicus) were characterized by a threefold lower value of intergroup genetic divergence (d = 0.0062) than the East European populations (d = 0.0179). This finding pointed to some isolation of Caucasian populations of pygmy wood mouse and depletion of their gene pool. However other molecular genetic data (similarity of nucleotide composition and consistence of the levels of intra-and intergroup distances) suggest the absence of geographic subdivision between Caucasian and East European populations of S. uralensis relative to the molecular marker examined.  相似文献   

5.
Local populations of the black honeybee Apis mellifera mellifera from the Urals and the Volga region were examined in comparison with local populations of southern honeybee subspecies A. m. caucasica and A. m. carpatica from the Caucasus and the Carpathians. Genetic analysis was performed on the basis of the polymorphism of nine microsatellite loci of nuclear DNA and the mtDNA COI–COII locus. On the territory of the Urals and the Volga region, five extant populations (reserves) of the black honeybee A. m. mellifera were identified, including the Burzyanskaya, Tatyshlinskaya, Yuzhno-Prikamskaya, Visherskaya, and Kambarskaya populations. These five populations are the basis of the modern gene pool of the black honeybee A. m. mellifera from the Urals and the Volga region. The greatest proportion of the remaining indigenous gene pool of A. m. mellifera (the core of the gene pool of the population of A. m. mellifera) is distributed over the entire territory of Perm krai and the north of the Republic of Bashkortostan. For the population of A. m. mellifera from the Urals and the Volga region, the genetic standards were calculated, which will be useful for future population studies of honeybees.  相似文献   

6.
In Russian populations, polymorphism of two pigmentation system genes, OCA2 (loci 305, 355, and 419, tested in Russians, Buryats, Chukchi, Koryaks, and Evens) and ASIP (locus 8818, tested in Russians and Buryats) was examined. Pairwise comparisons of the F ST distances between the populations showed that only the populations from Northeast Asia (Chukchi, Koryaks, and Evens) were statistically significantly different from all other populations, at least relative to one of the OCA2 locus. In Russians from Pskov oblast and Novgorod oblast, increased frequency (up to 6%) of the OCA2 allele 419A was revealed. In earlier studies, as association of this allele with green eye color was demonstrated. The data obtained in terms of their application for ethnic population genetics.  相似文献   

7.
The population genetic structure of plant pathogenic fungus Pyrenophora tritici-repentis was examined using microsatellite (SSR) markers. According to the geographical origin of the pathogen populations, they were designated as North Caucasian (S, 33 isolates), northwest (Nw, 39), and Omsk (Om, 43). The populations were analyzed at the nine most polymorphic SSR loci, at which 75 alleles were identified. To characterize the genetic variation within and between populations, the AMOVA algorithm as implemented in the Arlequin v. 3.5 software program was used. The number of alleles per locus ranged from 5 to 12 and their sizes varied within the range from 180 to 400 bp. The mean gene diversity at SSR loci was high for all populations (H = 0.58–0.75). The populations were considerably different in the frequencies of individual alleles of the SSR loci. Most isolates in the populations were represented by unique haplotypes. The within-population variation of the isolates at molecular markers was 86.4%; among the populations, 13.6%. Substantial interpopulation differences were found between the Om and S (Fst = 0.16) and between the Om and Nw (Fst = 0.20) populations, whereas between the S and Nw populations, these differences were small (Fst = 0.05). Thus, it was demonstrated that the population of P. tritici-repentis from Omsk oblast had the independent status of the geographical population; northwest and North Caucasian populations differed in the allelic diversity of SSR loci, and despite the low Fst value (0.05), they also belonged to independent geographical populations.  相似文献   

8.
Distribution of several widespread, extensively studied polymorphic variants of genes of the cytosol glutathione-S-transferase subfamily (GSTA1, GSTM1, GSTM3, GSTP1, and GSTT1) has been studied in samples from Russian populations of European Russia, as well as Komi and Yakut populations used for comparison. Analysis of the GSTP1 and GSTM3 polymorphisms has not revealed significant differences in the distribution of alleles of the loci, including two-site GSTP1 haplotypes, in most Russian populations and between Komi populations. Only in the Yakut sample have a significant difference been found with respect to these loci in each pairwise comparison. Regarding the GSTT1 and GSTA1 genes, in addition to differences between the Yakut population and all other populations with respect to the GSTA1 gene, it has been found that the frequencies of the GSTT1 0/0 deletion genotype and GSTA1 ?69T allele in the Russian sample from Mezen’ (Arkhangel’sk oblast) are substantially lower than in other Russian populations and Komi populations. The significance of these differences has been confirmed by tests for heterogeneity of the entire pool of Russian populations.  相似文献   

9.
A climate-related shift in the range boundaries of the western–central Eurasian subboreal species Melanargia russiae in the Ural region from the northern forest-steppe zone to pine–birch forests was found. Morphological variation of M. russiae wings from the boundary northern populations and populations from the main part of the range in the Urals were studied. The results of a complex analysis of the morphological traits (size, wing shape, and wing pattern eyespots) confirm the hypothesis that the local population formed in the south of Sverdlovsk oblast and contradict the hypothesis of the migratory origin of M. russiae imago.  相似文献   

10.
Aim To characterize the genetic structure and diversity of Pinus cembra L. populations native to two disjunct geographical areas, the Alps and the Carpathians, and to evaluate the rate of genetic differentiation among populations. Location The Swiss Alps and the Carpathians. Methods We screened 28 populations at three paternally inherited chloroplast simple sequence repeats (cpSSRs) for length variation in their mononucleotide repeats. Statistical analysis assessed haplotypic variation and fixation indices. Hierarchical analysis of molecular variance (AMOVA), Mantel test, spatial analysis of molecular variance (SAMOVA) and barrier analyses were applied to evaluate the geographical partitioning of genetic diversity across the species’ range. Results Haplotypic diversity was generally high throughout the natural range of P. cembra, with the mean value substantially higher in the Carpathians (H = 0.53) than in the Alps (H = 0.35). The isolated Carpathian populations showed the highest haplotype diversity among the populations originating from the High Tatras (Velka Studena Dolina) and South Carpathians (Retezat Mountains). AMOVA revealed that only 3% of the total genetic variation derived from genetic differentiation between the two mountain ranges. Differentiation among Carpathian populations was higher (FST = 0.19) than among Alpine populations (FST = 0.04). Low, but significant, correlation was found between the geographical and genetic distances among pairs of populations (r = 0.286, P < 0.001). SAMOVA results revealed no evident geographical structure of populations. barrier analysis showed the strongest differentiation in the eastern part of the species’ range, i.e. in the Carpathians. Main conclusions The populations of P. cembra within the two parts of the species’ range still share many cpDNA haplotypes, suggesting a common gene pool conserved from a previously large, continuous distribution range. Carpathian populations have maintained high haplotypic variation, even higher than Alpine populations, despite their small population sizes and spatial isolation. Based on our results, we emphasize the importance of the Carpathian populations of Swiss stone pine for conservation. These populations comprise private haplotypes and they may represent a particular legacy of the species’ evolutionary history.  相似文献   

11.
The genetic diversity, subdivision, and differentiation of nine populations of Norway spruce (Picea abies (L.) Karst.) in Ukrainian Carpathians were studied using electrophoretic analysis of variability of enzyme systems in 346 trees aged from 80 to 150 years. Based on electrophoretic fractionation of enzymes extracted from seed endosperms in vertical slabs of 7.5% polyacrylamide gel, 20 loci of nine enzyme systems (ADH, ACP, DIA, GDH, GOT, MDH, LAP, FDH, SOD) were identified, and 71 allele variant were revealed. Each tree was heterozygous on average in 15.8% of its genes. The populations were characterized by low subdivision (F ST = 0.017) and differentiation (D N = 0.005). The main contribution to heterogeneity of population genetic structure was made by loci Dia-3, Lap-1, and Sod-3. Clustering and multivariate analysis revealed no observed trends in geographical or altitudinal position of the populations.  相似文献   

12.
We carried out an allozyme analysis to investigate polymorphism and genetic structure of the populations of D. incarnata and D. ochroleuca in regions of their joint growth in Russia and Belarus. We found that D. ochroleuca individuals in the populations of the Urals and Siberia, which are distant fragments from the main range of the species, do not differ significantly from individuals within the main part of the area (Belarus) on the basis of the allelic composition of eight gene loci. We revealed that D. ochroleuca and D. incarnata are differentiated by different alleles of the GDH locus. Thus, we established a genetic marker suitable to distinguish these closely related taxa. In addition to the GDH locus, D. ochroleuca and D. incarnata in the places of their joint growth, differ in the allelic structure of the PGI and NADHD loci. D. incarnata from the Urals and Siberia were polymorphic for both loci, and individuals from Belarus were polymorphic for one locus (PGI). In contrast, all D. ochroleuca individuals growing in sympatric populations with polymorphic D. incarnata were homozygous for the same alleles. Thus, comparison of the genetic structure of D. ochroleuca and D. incarnata points to the existence of a genetic isolation and a functioning isolation mechanism even under conditions of their joint growth. We found that the GDH locus in D. incarnata is polymorphic only in populations which grow together with D. ochroleuca, with exception a few examples. Thus, we conclude that variability of the GDH locus in D. incarnata is associated with hybridization with D. ochroleuca.  相似文献   

13.
Variability of nuclear microsatellite loci was examined in Siberian dwarf pine. Six microsatellite loci (RPS2, RPS6, RPS12, RPS124, RPS127, Pc18) demonstrated different polymorphism levels in ten populations of Siberian dwarf pine. The average number of alleles per locus was 4.88, the average observed heterozygosity was 0.465, and the average expected heterozygosity was 0.510. About 13% of total genetic variability was explained by the genetic differences between the populations (F ST = 0.129). Genetic distances between the examined populations of Pinus pumila inferred from the data on the SSR marker frequencies statistically significantly correlated with the geographical distances between the population samples. The level of genetic variability of the populations from Kamchatka Peninsula was lower than that demonstrated by continental and island populations. The genetic differentiation of the Kamchatka–Magadan and other populations of Siberian dwarf pine observed in our study can be explained in terms of their formation from different Pleistocene refugial centers.  相似文献   

14.
Genetic variability of yellow potato cyst nematode G. rostochiensis from three Russian populations (Karelia, Vladimir oblast, and Moscow oblast) was investigated using two types of nuclear markers. Using RAPD markers identified with the help of six random primers (P-29, OPA-10, OPT-14, OPA-11, OPB-11, and OPH-20), it was possible to distinguish Karelian population from the group consisting of the populations from two adjacent regions (Moscow oblast and Vladimir oblast). Based on the combined matrix, containing 294 RAPD fragments, dendrogram of genetic differences was constructed, and the indices of genetic divergence and partition (P, H, and G st), as well as the gene flow indices N m between the nematode samples examined, were calculated. The dendrogram structure, genetic diversity indices, and variations of genetic distances between single individuals in each population from Karelia and Central Russia pointed to genetic isolation and higher genetic diversity of the nematodes from Karelia.Based on polymorphism of rDNA first intergenic spacer ITS1, attribution of all populations examined to the species G. rostochiensis was proved. Small variations of the ITS1 sequence in different geographic populations of nematodes from different regions of the species world range did not allow isolation of separate groups within the species. Possible factors (including interregional transportations of seed potato) affecting nematode population structure in Russia are discussed.  相似文献   

15.
The distributions of European high mountain species are often characterised by small and geographically isolated populations and, in many cases, have highly complex biogeographic histories. The butterfly genus Erebia represents one of the best examples for small-scale diversification in the European high mountain systems and therefore to understand speciation processes and associated range dynamics of high mountain species. In this study, we analysed 17 polymorphic allozyme loci of 1731 individuals from 49 populations representing four species, one of which has three subspecies: Erebia nivalis; Erebia tyndarus; Erebia ottomana; and Erebia cassioides cassioides, Erebia cassioides arvernensis, and Erebia cassioides neleus. Samples were collected in the high mountain systems of Europe (i.e. Pyrenees, Massif Central, Alps, Apennines, Carpathians, Balkan high mountains). Genetic analyses supported all previously accepted species. However, the genetic differentiation within E. cassioides sensu lato into three geographically delimited groups is justifying species rank: E. arvernensis distributed in the Pyrenees, Massif Central and western Alps; E. cassioides sensu stricto in the eastern Alps and Apennines; and E. neleus in the Balkan mountains and the south-western Carpathians. While the differentiation between western Alps and Massif Central as well as eastern Alps and Apennines was low, the Pyrenees as well as the south-western Carpathians were significantly differentiated from the other regions within the respective taxon. In general, the differentiation among the populations of E. neleus was stronger than between populations of the other taxa. Within E. cassioides, we found a west-east gradient of genetic similarity over the eastern Alps. Based on the obtained genetic structures, we are able to delineate glacial refugia and interglacial range modifications. Based on the genetic structures and genetic diversity patterns, we conclude that, triggered by the glacial-interglacial cycles, repeated range modifications have taken place with subsequent differentiation and speciation in the region of the Alps and Balkans. Colonisations to Pyrenees (E. arvernensis pseudomurina, E. arvernensis pseudocarmenta), Massif Central (E. ottomana tardenota, E. a. arvernensis) and Apennines (E. cassioides majellana) appear to be recent and most probably not older than the last interglacial period.  相似文献   

16.
The objectives of conservation and sustainable forest management require in depth study of genomes of woody plants and definition of their intraspecific genetic diversity. In recent years, an approach was developed based on the study of “candidate genes” that can potentially be involved in the formation of adaptive traits. In this study, we investigated nucleotide polymorphism of several adaptive candidate genes in the populations of Siberian larch (Larix sibirica Ledeb.) in the Urals. Representatives of this genus are among the most valuable and widely distributed forest tree species in Russia. From ten selected gene loci in the genome of L. sibirica, we isolated and investigated three loci, one of which (ABA-WDS) was sequenced in L. sibirica for the first time. The total length of the analyzed sequence in each individual amounted to 2865 bp. The length of locus alignment was from 360 bp to 1395 bp. In total, we identified 200 polymorphic positions. The most conservative is locus 4CL1-363, and the most polymorphic is locus sSPcDFD040B03103-274. The studied populations of L. sibirica are characterized by a high level of nucleotide polymorphism in comparison with other species and genuses (Picea, Pinus, Pseudotsuga, Abies) conifers plants (Hd = 0.896; π = 0.007; θW = 0.015). The most selectively neutral polymorphism (D T =–0.997) was attributed to locus 4CL1-363, and polymorphism with high probability of adaptability (D T =–1.807) was determined for the ABA-WDS locus. We identified 54 SNP markers, only five of which were nonsynonymous (9.26%) replacements. The average frequency of SNPs in the three studied loci of L. sibirica was one SNP in 53 bp. We detected unique SNP markers for eight populations, which could potentially be used to identify populations. Populations that are characterized by the highest number of unique SNP markers can be recommended for selection in order to preserve the gene pool of the species.  相似文献   

17.
RAPD and ISSR analyses revealed genetic diversity and relationships among 11 populations of two closely related northeast China Vicia species, Vicia ramuliflora and V. unijuga. Both methods yielded similar and complementary results, showing high genetic diversity. Vicia ramuliflora had 100% polymorphic loci in both RAPD and ISSR, and V. unijuga had 100% polymorphic loci for RAPD and 98.96% for ISSR. Genetic differentiation was moderate among populations of each species. Genetic variation was distributed mainly within populations for the two species. The high level of gene flow was important for the allocation of genetic variation. The UPGMA dendrogram and principal coordinates analysis at the level of individuals and populations showed that V. ramuliflora and V. unijuga were more closely related than either of them was to the outgroup species, V. cracca. The small molecular variance of V. ramuliflora and V. unijuga supports the conclusion that these two species had a common ancestor.  相似文献   

18.
The results of studying the polymorphism and genetic structure of populations of D. salina and D. incarnata growing in Zabaykalsky krai and Buryatia are represented according to the data of allozyme analysis of eight genetic loci (PGI, NADHD, SKDH, GDH, PGM, DIA, ADH, and IDH). The specificity of the allelic structure of loci SKDH, PGM, and IDH is established, for which D. salina and D. incarnata reliably differ from each other. It is shown that interspecies introgressive hybrid complexes with different genetic structures were formed in Transbaikalia. Places of mass growth of D. incarnata were observed to have single plants of D. salina, the interspecies hybrids of the first and subsequent generations. Places of mass growth of D. salina were observed to contain only the hybrids that are not hybrids of the first generation. They were heterozygous not for three loci with differentiating alleles of both parents, SKDH, PGM, and IDH, but for only one of them. The degree of genetic differentiation among five populations of D. salina was on average 7.5% and that of D. incarnata was 7.1%, which in accordance with Wright’s estimation relates to mean values. The average value of FST for all studied populations of the two related species of the genus Dactylorhiza was 0.478, indicating a very high degree of genetic differentiation between D. salina and D. incarnata growing in Transbaikalia. The greatest differences between the species are for the allelic structure of loci SKDH, PGM, and IDH (FST was equal to 0.705, 0.976, and 0.762, respectively). Analysis of molecular variance (AMOVA) showed that populations of D. salina and D. incarnata in the zone where their ranges in Zabaykalsky krai and Buryatya overlap have essential differences both for the variation of alleles frequencies of eight loci (71%, d.f. = 9) and for the variability of genotypes (61%, d.f. = 9). Despite the fact that D. salina and D. incarnata explicitly share a gene flow as a result of interspecies hybridization, the genetic differentiation of populations of these related species remains at a high level.  相似文献   

19.
Lignin is a major component of stone cells in pear fruit, which significantly affects fruit quality. Hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl transferase (HCT), a recently discovered enzyme in plants, is an important gene that participates in the formation of lignin. Although HCT gene cloning and expression patterns have been studied in several species, including pear, there is still no extensive genome-wide bioinformatics analysis on the whole gene family, and the evolutionary history of HCT gene family is still unknown. A total of 82 HCT genes were identified in pear, most of which have one or two exons, and all with the conserved HXXXD motif and transferase domains. Based on the structural characteristics and phylogenetic analysis of these sequences, the HCT gene family genes could be classified into four main groups. Structural analysis also revealed that 25 % of HCT genes share a MYB binding site. Expansion of the HCT gene family mostly occurred before the divergence between Arabidopsis and Rosaceae, with whole-genome duplication or segmental duplication events playing the most important role in the expansion of the HCT gene family in pear. At the same time, purifying selection also played a critical role in the evolution of HCT genes. Five of the 82 HCT genes were verified by qRT-PCR to correspond to the pattern of stone cell formation during pear fruit development. The genome-wide identification, chromosome localization, gene structures, synteny, and expression analyses of pear HCT genes provide an overall insight into HCT gene family and their potential involvement in growth and development of stone cells.  相似文献   

20.
For the first time, an analysis was carried out of allozyme variability in trout (Salmo trutta) from three rivers of Iran. We studied 23 gene loci coding enzymes: glycerol-3-phosphate dehydrogenase (G3PDH), aspartate aminotransferase (AAT), malate dehydrogenase (MDH), lactate dehydrogenase (LDH), creatine kinase (CK), malic enzyme [NADP-dependent MDH] (MEP), superoxide dismutase (SOD), esterase (EST), and esterase D (EST-D). The obtained data demonstrate the similarity between the trout samples from different rivers of Iran according to genetic characteristics. Taking into account the differences by allozyme markers of allele frequencies and allele composition of some loci, we should expect that Iranian trout diverges significantly in genetics from the other trout populations of the Caspian Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号