首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lignans are natural products, some of which were recently discovered in animal urines, semen and blood plasma. We investigated the actions of animal lignans obtained by total synthesis or extracted from urines of pregnant women on Na+, K+-ATPase in human red cells and human and guinea-pig heart cell membranes. Some of the tested lignans (enterolactone, prestegane B and 3-O-methyl enterolactone) inhibited Na+, K+-pump activity in human red cells with IC50 ranging from 5 to 9 X 10(-4) M. The IC50 for ouabain (7 X 10(-7) M) was not modified by addition of lignans. Enterolactone inhibited Na+, K+-ATPase activity in human and guinea pig heart membranes. It also displaced [3H]-ouabain binding from human heart with IC50 = 1.5 X 10(-4) M. The apparent dissociation rate constants (kd) of [3H]-ouabain were not different in presence of digoxin or enterolactone. Enterolactone exhibited a poor cross reactivity against antidigoxin antibodies. The aglycones of the lignans studied here were slight inhibitors of the Na+, K+-ATPase. However, we cannot exclude that a glycosyl- (and/or butenolide-) derivative of enterolactone could be one "endogenous ouabain-like" factor.  相似文献   

2.
[(3)H]noradrenaline ([(3)H]NA) released from sympathetic nerves in the isolated main pulmonary artery of the rabbit was measured in response to field stimulation (2Hz, 1ms, 60V for 3min) in the presence of uptake blockers (cocaine, 3 x10(-5)M and corticosterone, 5 x10(-5)M). The [(3)H]NA-release was fully blocked by the combined application of the selective and irreversible 'N-type' voltage-sensitive Ca(2+)-channel (VSCC)-blocker omega-conotoxin (omega-CgTx) GVIA (10(-8)M) and the 'non-selective' VSCC-blocker aminoglycoside antibiotic neomycin (3x10(-3)M). Na(+)-loading (Na(+)-pump inhibition by K(+)-free perfusion) was required to elicit further NA-release after blockade of VSCCs (omega-CgTx GVIA+neomycin). In K(+)-free solution, in the absence of functioning VSCCs (omega-CgTx GVIA+neomycin), the fast Na(+)-channel activator veratridine (10(-5)M) further potentiated the nerve-evoked release of [(3)H]NA. This NA-release was significantly inhibited by KB-R7943, and fully blocked by Ca(o)(2+)-removal. However, Li(+)-substitution was surprisingly ineffective. The non-selective K(+)-channel blocker 4-aminopyridine (4-AP, 10(-4)M) also further potentiated the nerve-evoked release of NA in K(+)-free solution. This potentiated release was concentration-dependently inhibited by KB-R7943, significantly inhibited by Li(+)-substitution and abolished by Ca(o)(2+)-removal. It is concluded that in Na(+)-loaded sympathetic nerves, in which the VSCCs are blocked, the reverse Na(+)/Ca(2+)-exchange-mediated Ca(2+)-entry is responsible for transmitter release on nerve-stimulation. Theoretically we suppose that the fast Na(+)-channel and the exchanger proteins are close to the vesicle docking sites.  相似文献   

3.
The interaction between the nicotinic acetylcholine receptor and Na+,K(+)-ATPase described previously was further studied in isolated rat diaphragm and in a membrane preparation of Torpedo californica electric organ. Three specific agonists of the nicotinic receptor: acetylcholine, nicotine and carbamylcholine (100 nmol/L each), all hyperpolarized the non-synaptic membranes of muscle fibers by up to 4 mV. Competitive antagonists of nicotinic acetylcholine receptor, d-tubocurarine (2 mcmol/L) or alpha-bungarotoxin (5 nmol/L) completely blocked the acetylcholine-induced hyperpolarization indicating that the effect requires binding of the agonists to their specific sites. The noncompetitive antagonist, proadifen (5 mcmol/L), exerted no effect on the amplitude of hyperpolarized but decreased K0.5 for this effect from 28.3 +/- 3.6 nmol/L to 7.1 +/- 2.3 nmol/L. Involvement of the Na+,K(+)-ATPase was suggested by data demonstrating that three specific Na+,K(+)-ATPase inhibitors: ouabain, digoxin or marinobufagenin (100 nmol/L each), all inhibit the hyperpolarizing effect of acetylcholine. Acetylcholine did not affectation either the catalytic activity of the Na+,K(+)-ATPase purified from sheep kidney or the transport activity of the Na+,K(+)-ATPase in the rat erythrocytes, i. e. in preparations not containing acetylcholine receptors. Hence, acetylcholine does not directly affect the Na+,K(+)-ATPase. In a Torpedo membrane preparation, ouabain (< or = 100 nmol/L) increased the binding of the fluorescent ligand: Dansyl-C6-choline (DCC). No ouabain effect was observed either when the agonist binding sites of the receptor were occupied by 2 mmol/L carbamylcholine, or in the absence Mg2+, when the binding of ouabain to the Na+,K(+)-ATPase is negligible. These results indicate that ouabain only affects specific DCC binding and only when bound to the Na+,K(+)-ATPase. The data obtained suggest that, in two different systems, the interaction between the nicotinic acetylcholine receptor and the Na+,K(+)-ATPase specifically involve the ligand binding sites of these two proteins.  相似文献   

4.
It was shown that the specific inhibitors of Na+, K(+)-ATPase ouabain and marinobufagenin increased the contraction of an isolated rat diaphragm (positive inotropic effect) by up to approximately 15% in a dose-dependent manner with EC50 = 1.2 +/- 0.3 and 0.3 +/- 0.1 nM, respectively. The results indicate the involvement of the ouabain-sensitive alpha 2 isoform of Na+, K(+)-ATPase. The analysis of ouabain-resting membrane potential dose-response relationships in the presence and absence of hyperpolarizing concentration of acetylcholine (100 nM) suggests the existence of two pools of alpha 2 Na+, K(+)-ATPase with different affinities for ouabain. The pool with a higher ouabain affinity is involved in the hyperpolarizing effect of acetylcholine and, presumably, in the positive inotropic effect of ouabain, which might be a mechanism of regulation of muscle efficiency by circulating endogenous inhibitors of Na+, K(+)-ATPase.  相似文献   

5.
The effects of 16 group-specific, amino acid-modifying agents were tested on ouabain binding, catalytical activity of membrane-bound (rat brain microsomal), sodium dodecyl sulfate-treated Na+,K(+)-ATPase, and Na+,K(+)-pump activity in intact muscle cells. With few exceptions, the potency of various tryptophan, tyrosine, histidine, amino, and carboxy group-oriented drugs to suppress ouabain binding and Na+,K(+)-ATPase activity correlated with inhibition of the Na+,K(+)-pump electrogenic effect. ATP hydrolysis was more sensitive to inhibition elicited by chemical modification than ouabain binding (membrane-bound or isolated enzyme) and than Na+,K(+)-pump activity. The efficiency of various drugs belonging to the same "specificity" group differed markedly. Tyrosine-oriented tetranitromethane was the only reagent that interfered directly with the cardiac receptor binding site as its inhibition of ouabain binding was completely protected by ouabagenin preincubation. The inhibition elicited by all other reagents was not, or only partially, protected by ouabagenin. It is surprising that agents like diethyl pyrocarbonate (histidine groups) or butanedione (arginine groups), whose action should be oriented to amino acids not involved in the putative ouabain binding site (represented by the -Glu-Tyr-Thr-Trp-Leu-Glu- sequence), are equally effective as agents acting on amino acids present directly in the ouabain binding site. These results support the proposal of long-distance regulation of Na+,K(+)-ATPase active sites.  相似文献   

6.
Effects of Na+,K(+)-ATPase inhibitor: marinobufagenin, on contractile and electric characteristics of isolated rat diaphragm were studied for the first time. Marinobufagenin induced dose-dependent (EC50 = 0.3 +/- 0.1 nM) increase in the contraction force (positive inotropic effect). At 1-2 nM, it slowed down the fatigue induced by continuous direct stimulation (2/s) of the muscle. Marinobufagenin at the same concentrations did not affect resting membrane potential or parameters of action potentials of muscle fibers, while at 10 and 20 nM it induced hyperpolarization by approximately 2 mV. Marinobufagenin blocked dose-dependently (IC50 = 2.9 +/- 2.0 nM) hyperpolarizing effect of acetylcholine (100 nM) mediated by increase in electrogenic contribution of alpha2 isoform of the Na+,K(+)-ATPase. This result suggests a capability of marinobufagenin to inhibit this isoform of the Na+,K(+)-ATPase. Possible mechanisms of marinobufagenin effects in skeletal muscle are discussed.  相似文献   

7.
Studies were made on the direct effects of glycyrrhizin and its aglycone, glycyrrhetinic acid on the activities of (Na+ + K+)-ATPase and (Ca2+ + Mg2+)-ATPase, a membrane bound Na+ and Ca2+-extrusion pump enzyme of the basolateral membranes (BLM) of canine kidney. Glycyrrhetinic acid inhibited the activity of the Na+-pump enzyme dose-dependently (IC50 = 1.5 x 10(-4) M), but had no effect on that of the Ca2+-pump enzyme of kidney BLM and homogenates. Glycyrrhizin also inhibited the Na+-pump enzyme activity but had less effect (IC50 = 2 x 10(-3) M). The effects of these compounds were due to competitive inhibition with ATP binding to the enzyme (Ki = 12 microM) and so were different from that of ouabain, which inhibits the Na+-pump by binding to its extracellular K+-binding site. The direct effect of glycyrrhetinic acid on the membrane may be important role in the multiple actions of licorice.  相似文献   

8.
During the development of large bowel cancer alterations in colonic epithelial ion transport have been observed some of which result in altered intracellular ionic composition. In many tumors intracellular sodium and potassium become elevated and depressed, respectively. This observation suggests that mechanisms governing intracellular homeostasis for sodium and potassium are no longer tightly regulated. Changes in cell membrane permeability, sodium, potassium-ATPase K(+)-ATPase) pump activity, or both may be responsible for these alterations. It is not known when during initiation and development of cancer such changes may occur. To assess whether there are changes in the Na+, K(+)-ATPase pump early during the induction of large bowel cancer and prior to any notable histological changes, we measured the kinetics of the Na+, K(+)-pump in distal colonic mucosa of CF1 mice one week following only four weekly injections of the carcinogen 1,2-dimethyhydrazine (DMH). The kinetics of the pump were found to be best described by a model of highly cooperative binding. The VMAX of the pump in premalignant mucosa was lower for both sodium and potassium substrate activation (55-65% of control) with little change in other kinetic parameters. Depression of VMAX could not be attributed to an increased barium blockable potassium conductance of the basolateral membrane. Na+,K(+)-ATPase activity was also decreased by 50% in the distal colon of DMH treated mice, but was not affected in the less cancer susceptible proximal colon. These data demonstrate that alterations occur in the Na+,K(+)-pump in premalignant mucosa months before gross tumors develop, and these changes may partially explain the altered levels of Na+ and K+ in the cytoplasm of pre-malignant and malignant colonocytes.  相似文献   

9.
It is well-known that the first stage of the calcium paradox involves decreasing of Na+ gradient. The decreased sodium gradient is a cause of activation of the Na(+)-Ca+ exchange and formation of cardiac injury during the calcium repletion. Potassium ions are natural extracellular activators of Na(+)-pump. It has been shown that heart perfusion by Ca(2+)-free medium evoked extrusion from cells of hydrophilic amino acids whose transport-depends on sodium gradient. The heart reperdusion with Ca(2+)-containing agent leads to myofibrillar contracture and extensive myoglobin release. The simultaneous events are: elevation in tissue water contents, decreasing of intracellular concentration of adeninnucleotides, uncoupling of oxidation and phosphorylation in mitochondria. The decreasing of K+ level to 0.5 mM exacerbates myocardial damage during the calcium paradox, despite absence of myocardial contracture. The elevation of K+ (to 10 mM or 20 mM) attenuated the calcium paradox development in the heart. The elevated K+ concentration protected isolated heart from extensive myoglobin release, development of myocardial contracture. The high K+ concentrations alleviate mitochondrial damage and elevate contents of adeninnucleotide in the tissue. The positive effect of the elevated K+ concentration can be completely blocked by strophanthine, the selective Na+, K(+)-pumb blocker.  相似文献   

10.
The effects of Na+, other cations and the neurotransmitters, acetylcholine and norepinephrine on 32Pi incorporation into phospholipids of the rabbit iris smooth muscle were investigated [1]. The basal 32P-labelling of phospholipids including phosphatidic acid, phosphatidylinositol, phosphatidylcholine, phosphatidylethanolamine and the polyphosphoinositides increased with Na+ concentration [2]. The neurotransmitter-stimulated 32P labelling of phosphatidic acid, phosphatidylinositol and phosphatidylcholine is dependent on the presence of extracellular Na+ [3]. The monovalent cation requirement for Na+ specific. Of the monovalent cations Li+, NH+4, K+, Choline+ and Tris, only Li+ partially substituted for Na+ [4]. A significant decrease in 32P labelling of phospholipids in response to acetylcholine was observed when Ca2+ and/or K+ were added to an isoosmotic medium deficient of Na+ [5]. Ouabain, which blocks the Na+-pump, inhibited the basal 32Pi incorporation into phosphatidylcholine and the acetylcholine-stimulated 32P labelling of phosphatidic acid, phosphatidylinositol and phosphatidylcholine [6]. It was suggested that phosphoinositide breakdown is associated with Ca2+ influx as we have previously reported (Akhtar, R.A. and Abdel-Latif, A.A. (1978) J. Pharmacol. Exp. Ther. 204, 655-668) and that the enhanced 32P-labelling of phosphoinositides could be associated with Na+ outflux, via the Na+-pump mechanism.  相似文献   

11.
The participation of Mg2+ and Ca2+ in complicated mechanisms of Na+, K(+)-ATPase regulation is discussed in the survey. The regulatory actions of Mg2+ on Na+, K(+)-ATPase such as its participation in phosphorylation and dephosphorylation of the enzyme, ADP/ATP-exchange inhibition, cardiac glycosides and vanadate binding with the enzyme, conformational changes induction during ATPase cycle are reviewed in detail. Some current views of mechanisms of above mentioned Mg2+ regulatory effects are discussed. The experimental evidence of Ca2+ immediate influence on the functional activity of Na+, K(+)-ATPase (catalytic, transport and glycoside-binding) are given. It's noted that these effects are based on the conformational changes in the enzyme and also on the phase transition in membrane induced by Ca2+. Unimmediate action of Ca2+ on Na+, K(+)-ATPase is also discussed, especially due to its effect on other membrane systems functionally linked with Na(+)-pump (for instance, due to Na+/Ca(+)-exchanger activation). It's concluded that Mg2+ and Ca2+ as "universal regulators" of the cell effectively influence the functional activity and conformational states of Na+, K(+)-ATPase.  相似文献   

12.
The inhibition of guinea-pig heart (Na+ + K+)-ATPase (ATP phosphohydrolase EC 3.6.1.3) by calcium has been studied at pH 7.4, 6.8 and 6.4. 1. A decrease in pH reduced the threshold inhibitory concentration of calcium and the calcium concentration producing an inhibition of 50% of the enzyme activity. 2. Calcium reduced the apparent affinity of the enzyme of Na+, this effect occurred only at pH 7.4. 3. Calcium increased the apparent affinity of the enzyme for K+, this effect was enhanced at acidic pH. 4. Activation of the enzyme by Na+ for a constant Na+ : K+ ratio has been studied at pH 7.4 and at pH 6.8 in the absence and in the presence of 3.10(-4) M Ca 2+; the results of this experiment indicate that Ca2+ effect at pH 7.4 was not influenced by Na+ -- K+ competition and was probably due to a Na+ -- Ca2+ interaction. 5. At pH 7.4, the calcium inhibitory threshold concentration and the concentration producing 50% inhibition were reduced when Na+ was low; at pH 6.8, the calcium inhibition was not markedly modified by the change of Na+ concentration. 6. The Ca2+ -activated ATPase of myosin B which is related to the contractile behaviour of muscle and the Ca2+ -ATPase of the sarcoplasmic reticulum which is related to the ability of this structure to accumulate calcium were activated in a range of calcium concentration producing an inhibition of (Na2+ + K+) -ATPase. The present results indicate that the increase by acidity of the (Na2+ + K+) -ATPase sensitivity to calcium might be due to a suppression of a Na+ -Ca2+ interaction. On the basis of these observations, it is proposed that calcium might inhibit the Na+ -pump during the repolarization phase of the action potential and that, by this effect, it might control cell excitability.  相似文献   

13.
Hormonal control of the Na+,K+-pump modulates membrane potential in mammalian cells, which in turn drives ion coupled transport processes and maintains cell volume and osmotic balance. Na+,K+-pump regulation is particularly important in the musculoskeletal, cardiovascular and renal systems. Decreased Na+,K+-pump activity can result in a rise in intracellular Na+ concentrations which in turn increase Na+/Ca2+ exchange, thereby raising intracellular Ca2+ levels. In cardiac and skeletal muscle, this could interfere with normal contractile activity. Similarly, in vascular smooth muscle the result would be resistance to vasodilation. Inhibition of the Na+,K+-pump can also reduce the driving force for renal tubular Na+ reabsorption, elevating Na+ excretion. By virtue of decreasing the membrane potential, thus allowing more efficient depolarization of nerve endings and by increasing intracellular Ca2+, inhibition of the Na+,K+-pump can increase nervous tone. The ability of insulin to stimulate the Na+,K+-pump in various cells and tissues, and the physiological significance thereof, have been well documented. Much less is known about the effect of leptin on the Na+,K+-pump. We have shown that leptin inhibits Na+,K+-pump function in 3T3-L1 fibroblasts. Defects in insulin and leptin action are associated with diabetes and obesity, respectively, both of which are commonly associated with cardiovascular complications. In this review we discuss the mechanisms of Na+,K+-pump regulation by insulin and leptin and highlight how, when they fail, they may contribute to the pathophysiology of hypertension associated with diabetes and obesity.  相似文献   

14.
A series of 23-oxosteroid derivatives have been synthesized and tested for their inhibiting Na+, K(+)-dependent ATPase from rat brain in the 1 x 10(-6)-1 x 10(-4) M concentrations. Natural 23-oxogenins from sea star Asterias amurensis and synthetic monoesters showed the inhibiting activity upto 50-55%. These compounds caused heart contraction in frogs at the level of the known cardiotonic strophanthin G, and inotropic activity on isolated heart of mollusk Spisula sachalinensis.  相似文献   

15.
Nerve growth factor (NGF) is required for the growth and development of sensory and sympathetic neurons. Incubation of chick dorsal root ganglionic cells without NGF resulted in a decrease of active (Na+,K+-pump-mediated) K+ influx over a period of several hours. Addition of NGF to NGF-deprived cells caused 1) a return of the active K+ influx to the values occurring in cells continuously exposed to NGF, preceded by 2) a very rapid, but transient overstimulation of the Na+,K+-pump-mediated K+ influx. Restoration of normal Na+,K+-pump activity occurred at NGF concentrations of 1 biological unit/ml or greater, whereas the NGF concentration in the 1-100 biological unit/ml range affected the rapidity with which the pump restoration took place. The transient pump behavior was only observed in NGF-deprived cells and could not be elicited in NGF-supported steady-state cells or in cells having already received delayed NGF once. This transient Na+,K+-pump behavior was exclusively displayed in conjunction with a high intracellular Na+ concentration. Decreasing the external Na+ concentration below 70 mM reduced the hyperstimulation response to NGF, until at 10 mM Na+ the delayed presentation of NGF caused no overshoot at all. The effect of NGF on the Na+,K+-pump was specific for the NGF molecule and could not be mimicked by other proteins.  相似文献   

16.
L-NAME (LN) induces hypertension by blocking nitric oxide (NO) synthesis. It produces vascular hyperreactivity to phenylephrine (PHE) associated with a reduced vascular Na+, K+-ATPase activity. The aim of this work was to investigate whether products of the cyclooxygenase pathway are involved in alterations of vascular reactivity and Na+-pump activity in the tail artery from LN-induced hypertension rats. Four groups of rats were used: Control (CT, normotensive), LN (50 mg/kg/day, hypertensive), indomethacin (Indo-4 mg/kg/day, normotensive), and LN plus Indo (LN + Indo, partially prevented hypertension). All drugs were administered in drinking water during 7 days. In isolated rat tail vascular beds; the reactivity to PHE, acetylcholine (ACh), sodium nitroprusside (SNP), the functional activity of the Na+, K+-ATPase (K+-induced relaxation) and the modulation of PHE-induced vasoconstriction by constitutively available NO were evaluated. LN increased vascular sensitivity (pD2) and reactivity (Emax) to PHE and Indo blocked the effect of LN on Emax without changing pD2. Emax and pD2 values for ACh were reduced by LN and partially reverted by Indo. SNP-induced vasodilatation was similar in all groups. LN reduced the activity of Na+, K+-ATPase and Indo prevented LN effects. LN also abolished NO ability to modulate PHE-induced contractions. This effect was partially prevented by Indo suggesting that products from the cyclooxygenase pathway might reduce NO actions. Indo itself did not affect vascular reactivity to PHE, ACh or SNP or the Na+,K+-ATPase activity. Results suggested that products from cyclooxygenase pathway are involved in the genesis or maintenance of LN-induced hypertension, playing a role in the increased vascular reactivity, in the reduction of the endothelium-dependent relaxation and in the inhibition of the functional activity of the Na+, K+-ATPase.  相似文献   

17.
During final maturation the oocytes of many marine teleosts swell four to five times their original size due to uptake of water. The involvement of active inorganic ion transport and Na+,K(+)-ATPase in oocyte hydration in Atlantic croaker (Micropogonias undulatus) and spotted seatrout (Cynoscion nebulosus), marine teleosts which spawn pelagic eggs, was investigated by examining changes in the inorganic ion content of ovarian follicles containing mainly oocytes, by performing in vitro incubations of the follicles with ion channel blockers, and by assaying membrane preparations of ovaries containing hydrating and non-hydrating oocytes for Na+,K(+)-ATPase activity and content. There were marked increases in the contents of K+, Mg++, and Ca++, but not Na+, in oocytes of M. undulatus and C. nebulosus during hydration. Incubation of follicle-enclosed oocytes in K(+)-free medium or with ouabain or amiloride, inhibitors of Na+,K(+)-ATPase and Na+ channels, respectively, blocked gonadotropin-induced oocyte hydration in M. undulatus. In addition, Na+,K(+)-ATPase activity increased threefold and the concentration of the enzyme increased 50% in ovarian tissue during oocyte hydration. These results strongly suggest a major role for active ion regulation by a ouabain-sensitive Na+,K(+)-ATPase system in oocyte hydration in two species of sciaenid fishes.  相似文献   

18.
New evidence for active sodium transport from fluid-filled rat lungs   总被引:4,自引:0,他引:4  
The hypothesis that fluid reabsorption from the air spaces is mediated at least in part by active transport of Na+ was investigated in six sets of experiments conducted in isolated fluid-filled rat lungs. Fluid reabsorption was monitored by following the changes in the air space concentration of labeled albumin. We found that incorporation of bicarbonate rather than a nonvolatile buffer (N-2-hydroxy-ethylpiperazine-N'-2-ethanesulfonic acid) in the air space solution more than doubled the rate of fluid reabsorption. Addition of 10(-4) M amiloride to the air space solution reduced the rate of fluid reabsorption over a 2-h experiment from 1.2 +/- 0.1 to 0.7 +/- 0.1 ml and decreased reabsorption of both labeled and unlabeled Na+ from the air spaces. To show that Na+ could be reabsorbed from the air spaces even if the concentrations of Na+ in the perfusate increased above those in the air space, mannitol (150 mM) was added to the perfusate and air space solutions and the concentrations of Na+ and Cl- were reduced to 90 and 60 mM, respectively. Mannitol diffuses across the pulmonary epithelium very slowly, and it osmotically restrained the movement of water out of the air spaces. Na+ concentrations in the perfusate increased by 10 +/- 2 mM, but concentrations in the air space remained unchanged. Despite an increasingly unfavorable concentration gradient for Na+, 0.2 mmol Na+ and 0.6 ml water were reabsorbed from the air spaces in 2 h. Ouabain (10(-4) M) did not appear to slow fluid reabsorption in the presence of mannitol, but it reduced K+ secretion into the air spaces and increased K+ appearance in the perfusate in a manner consistent with inhibition of Na+-K+-adenosinetriphosphatase at the basolateral surface of the epithelial cells. Fluid reabsorption was not altered when the lungs were exposed to a hypotonic solution (185 mM), but secretion of K+ into the air spaces was accelerated and K+ was lost from the perfusate. These experiments are consistent with active Na+ transport from the air spaces.  相似文献   

19.
Cells of marine pseudomonad B-16 (ATCC 19855) washed with a solution containing 0.3 M NaCl, 50 mM MgCl2, and 10 mM KCl (complete salts) could be protected from lysis in a hypotonic environment if the suspending medium contained either 20 mM Mg2+, 40 mM Na+, or 300 mM K+. When the outer double-track layer (the outer membrane) of the cell envelope was removed to yield mureinoplasts, the Mg2+, Na+ or K+, requirements to prevent lysis were raised to 80, 210, and 400 mM, respectively. In the presence of 0.1% Triton X-100, 220, 320, and 360 mM Mg2+, Na+ or K+, respectively, prevented lysis of the normal cells. Mureinoplasts and protoplasts, however, lysed instantly in the presence of the detergent at all concentrations of Mg2+, Na+, or K+ tested up to 1.2 M. Thus, the structure of the outer membrane appears to be maintained by appropriate concentrations of Mg2+ or Na+ in a form preventing the penetration of Triton X-100 and thereby protecting the cytoplasmic membrane from dissolution by the detergent. K+ was effective in this capacity with cells washed with complete salts solution but not with cells washed with a solution of NaCl, suggesting that bound Mg2+ was required in the cell wall membrane for K+ to be effective in preventing lysis by the detergent. At high concentrations (1 M) K+ and Mg2+, but not Na+, appeared to destabilize the structure of the outer membrane in the presence of Triton X-100.  相似文献   

20.
Inhibitors of Na(+), K(+)-pump belonging to the class of cardiac glycosides were investigated in organotypic tissue culture of dorsal root ganglia cells of 10-12 days old chicken embryos. The data obtained show that the application of cardiac glycosides (strophantin K and digoxin) in a wide range of concentrations controls the neurite growth in sensory neurons in the dose-dependent manner. It was shown, that at the concentrations of cardiac glycoside exceeding 1 x 10(-6) M the growth of neurites was totally inhibited. Our data indicate that cardiac glycoside have the down-regulation effect on the neurite growth. The data obtained indicate that the Na(+), K(+)-ATPase is involved in the control of the process of neurite growth as a signal transducer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号