首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transgenic potato plants with the nptII gene coding for neomycin phosphotransferase (kanamycin resistance) as a selection marker were examined for the spread of recombinant DNA into the environment. We used the recombinant fusion of nptII with the tg4 terminator for a novel biomonitoring technique. This depended on natural transformation of Acinetobacter sp. strain BD413 cells having in their genomes a terminally truncated nptII gene (nptII′; kanamycin sensitivity) followed by the tg4 terminator. Integration of the recombinant fusion DNA by homologous recombination in nptII′ and tg4 restored nptII, leading to kanamycin-resistant transformants. DNA of the transgenic potato was detectable with high sensitivity, while no transformants were obtained with the DNA of other transgenic plants harboring nptII in different genetic contexts. The recombinant DNA was frequently found in rhizosphere extracts of transgenic potato plants from field plots. In a series of field plot and greenhouse experiments we identified two sources of this DNA: spread by roots during plant growth and by pollen during flowering. Both sources also contributed to the spread of the transgene into the rhizospheres of nontransgenic plants in the vicinity. The longest persistence of transforming DNA in field soil was observed with soil from a potato field in 1997 sampled in the following year in April and then stored moist at 4°C in the dark for 4 years prior to extract preparation and transformation. In this study natural transformation is used as a reliable laboratory technique to detect recombinant DNA but is not used for monitoring horizontal gene transfer in the environment.  相似文献   

2.
The nptII(+) gene present in the genome of transgenic potato plants transforms naturally competent cells of the soil bacteria Pseudomonas stutzeri and Acinetobacter BD413 (both harboring a plasmid with an nptII gene containing a small deletion) with the same high efficiency as nptII(+) genes on plasmid DNA (3x10(-5)-1x10(-4) transformants per nptII(+)) despite the presence of a more than 10(6)-fold excess of plant DNA. However, in the absence of homologous sequences in the recipient cells the transformation by nptII(+) dropped by at least about 10(8)-fold in P. stutzeri and 10(9)-fold in Acinetobacter resulting in the latter strain in < or =1x10(-13) transformants per nptII(+). This indicated a very low probability of non-homologous DNA fragments to be integrated by illegitimate recombination events during transformation.  相似文献   

3.
Previous studies had shown that recombinant DNA can be detected for several months in soil after the deposition of litter from transgenic (tg) plants. Here we show by PCR monitoring of field releases of tg sugar beet plants that during the growth of the plants the soil close to the plants and also plant material contains recombinant DNA, in the form of extracellular molecules. Surprisingly, the monitoring also revealed the presence of tg DNA in many field plots (30–70%) in which tg plants were never grown. These studies and the further monitoring during other tg sugar beet release experiments by PCR and a novel bioassay (measuring the transforming potential of recombinant DNA for Pseudomonas stutzeri) indicated that recombinant DNA was only detectable in the surface soil of field plots and their vicinity where flowering of the tg beet plants was allowed. Recombinant DNA was found in soil at a distance of 50 m from pollen-producing plants surrounded by a strip with hemp plants as a containment regime. It is concluded that recombinant DNA is deposited in soil during the growth of tg sugar beets and that a major mechanism of recombinant DNA spread in the environment is the dispersal of pollen which allows recombinant DNA to persist in the field plot for at least a year.  相似文献   

4.
A marker rescue system based on the repair of the kanamycin resistance gene nptII was constructed for use in Gram-positive bacteria and established in Bacillus subtilis 168. Marker rescue was detected in vitro using different types of donor DNA containing intact nptII. The efficiency of marker rescue using chromosomal DNA of E. coli Sure as well as plasmids pMR2 or pSR8-30 ranged from 3.8 x 10(-8) to 1.5 x 10(-9) transformants per nptII gene. Low efficiencies of ca. 10(-12) were obtained with PCR fragments of 792 bp obtained from chromosomal DNA of E. coli Sure or DNA from a transgenic potato. B. subtilis developed competence during growth in milk and chocolate milk, and marker rescue transformation was detected with frequencies of ca. 10(-6) and 10(-8), respectively, using chromosomal DNA of E. coli Sure as donor DNA. Although the copy number of nptII genes of the plant DNA exceeded that of chromosomal E. coli DNA in the marker rescue experiments, a transfer of DNA from the transgenic plant to B. subtilis was detectable neither in vitro nor in situ.  相似文献   

5.
The kanamycin resistance encoded by the neomycin phosphotransferase II gene (nptII) of transposon Tn5 is widely used in higher plant genetic transformation. The general process of plant transformation using nptII as a selectable marker gene, however, requires selecting kanamycin-resistant plants or tissues in culture. Even with the recently developed vacuum infiltration method for Arabidopsis transformation, the plant culture steps are not completely eliminated in selection for kanamycin-resistant transformants. The herbicide resistance genes, such as bar, which provides resistance to bialaphos, allow Arabidopsis transformation to become a true non-culture procedure. In this report, we assessed the feasibility of applying kanamycin as a spray in selecting for kanamycin-resistant Arabidopsis transformants grown in soil. We find that kanamycin-resistant transformants were effectively selected by spraying soil-grown Arabidopsis seedlings.  相似文献   

6.
An efficient genetic transformation method for african tobacco Nicotiana africana Merxm. has been established. African tobacco is a valuable source for cytoplasmic male sterility (CMS) and nuclear encoded resistance to potato virus Y (PVY). N. africana transgenic plants have been obtained using both Agrobacterium-mediated and direct transformation of leaf explants with gold particle bombardment using particle inflow gun. Plasmid vectors containing phosphinothricin resistance gene (bar gene) coding region without promoter and independent 35S promoter between lox sites (lox-bar-35S-lox) and nptII gene were used. Transgenic plants were selected according to growth capacity on the selective medium containing 50 mg/l kanamycin. PCR analyses of kanamycin-resistant plants confirmed the presence of nptII and bar genes in their genome. Agrobacterium-mediated transformation of root explants has proved to be the most efficient transformation method for N. africana.  相似文献   

7.
AIM: To estimate the likelihood of transfer of kanamycin-resistance gene (nptII) from commercially available genetically modified (GM) plants. METHODS AND RESULTS: Acinetobacter sp. BD413 carrying a plasmid containing an inactivated nptII gene was treated with DNA derived from GM potato and GM papaya. Kanamycin-resistant transformants were obtained at a frequency of 10-30 microg(-1) DNA. Calculation of the results suggested that 6-9 x 10(4) molecules of genomic DNA from GM plants were needed to obtain one transformant. However, such transformation events were not detectable in the absence of the plasmid in the host strain. CONCLUSIONS: Acinetobacter sp. BD413 was transformed with DNA derived from GM potato and GM papaya, in the presence of an inactivated nptII gene on a plasmid. However, the frequency of such events in the natural environment on wild-type strains, while evidently low, remains unknown. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results may help to evaluate potential risks associated with the use of antibiotic-resistance determinants as genetic markers in GM plants. Complete risk assessment must consider factors other than transformation frequency alone, including the natural background of antibiotic resistance present in bacterial populations, and the spectrum and clinical use of the antimicrobial agents in question.  相似文献   

8.
9.
Tuber, minituber and in vitro-grown microtuber discs of potato (Solanum tuberosum L.) cultivars 85-14-3, 86-2 and Favorita were used in Agrobacterium mediated gene transfer. A simple, rapid and efficient transformation system was established. Among the three kinds of discs used, the microtuber disc was superior in obtaining transformants. Microtuber discs star ted to form shoots on shoot inducing medium containing kanamycin two to three weeks after cocultivation. Rooted transformants could be obtained in 6–7 weeks. The transformation efficiency could reach as high as 67.5%. The majority of kanamycin resistant plants gave nopaline positive or GUS expression. A number of transgenic plants were obtained using the plasmid containing a sweet protein NPT Ⅱ and nopaline synthase genes. The leaf callus assay and nopaline assay indicated that the foreign sweet protein gene was introduced into the potato genome.  相似文献   

10.
We have developed a novel system for the sensitive detection of nptII genes (kanamycin resistance determinants) including those present in transgenic plant genomes. The assay is based on the recombinational repair of an nptII gene with an internal 10-bp deletion located on a plasmid downstream of a bacterial promoter. Uptake of an nptII gene by transformation restores kanamycin resistance. In Escherichia coli, promoterless nptII genes provided by electroporation were rescued with high efficiency in a RecA-dependent recombinational process. For the rescue of nptII genes present in chromosomal plant DNA, the system was adapted to natural transformation, which favours the uptake of linear DNA. When competent Acinetobacter sp. BD413 (formerly A. calcoaceticus) cells containing the mutant nptII gene on a plasmid were transformed with DNA from various transgenic plants carrying nptII as a marker gene (Solanum tuberosum, Nicotiana tabacum, Beta vulgaris, Brassica napus, Lycopersicon esculentum), kanamycin-resistant transformants were obtained roughly in proportion to the concentration of nptII genes in the plant DNA. The rescue of nptII genes occurred in the presence of a more than 6?×?106-fold excess of plant DNA. Only 18 ng of potato DNA (2.5?×?103 genome equivalents, each with one copy of nptII) was required to produce one kanamycin-resistant transformant. These experiments and others employing DNA isolated from soil samples demonstrate that the system allows reliable and highly sensitive monitoring of nptII genes in transgenic plant DNA and in DNA from environmental sources, such as soil, without the need for prior DNA amplification (e.g. by PCR).  相似文献   

11.
Different approaches to producing transgenic grapevines based on regeneration via embryogenesis were investigated. Embryogenic callus was initiated from anther tissue of Vitis vinifera cv. Sultana and three embryogenic culture types (embryogenic callus, tissue type I; proliferating embryos, tissue type II; and a suspension) were established. The three culture types were incolucaled with Agrobacterium tumefaciens harbouring a binary vector which contained a uidA reporter gene and either a hpt or nptII selectable marker gene or the cultures were bombarded with microprojectiles carrying a uidA/nptII binary vector. Transgenic plants were produced only from Agrobacterium transformation experiments. Transformed embryos were selected with kanamycin or hygromycin antibiotics and recovered with the highest efficiency from inoculated type I cultures. Southern analysis of genomic DNA extracted from ten transgenic plants showed that the number of T-DNA insertions in the genome ranged from 1 to at least 4. Evidence for methylation of the T-DNA at cytosine and adenine residues in transgenic plants was found by Southern analysis of DNA digested with two isoschizomer pairs of restriction endonucleases. No evidence for genotype alterations or somatic meiosis was found when DNA from 80 somatic embryos and seven plants regenerated from embryogenic culture were analysed at six sequence-tagged sites which are heterozygous in cv. Sultana. Expression of the uidA gene in in vitro grown leaves of transgenic plants was most often high and uniform but GUS staining was occasionally observed to be low and/or patchy. Transgenic plants and all plants regenerated from embryogenic culture produced red veined, lobed leaves which are uncharacteristic of the accepted ampelographic phenotype of Sultana. It is suggested that this phenotype may represent a juvenile growth stage.  相似文献   

12.
用基因枪法介导OSISAP1基因遗传转化洋葱   总被引:1,自引:0,他引:1  
以洋葱栽培品种‘HG400B’的鳞茎盘胚性愈伤组织为受体,利用基因枪介导法将水稻锌指蛋白基因OSISAP1导入洋葱中。组织化学染色检测到GUS基因在胚性愈伤组织中的瞬间表达活性,PCR、Southern杂交和RT-PCR分析,证实OSISAP1基因已整合到洋葱基因组中并实现高水平表达,转化率约为10%。对获得的转基因植株进行NaC1和NaHCO_3胁迫处理,当总浓度为200 mmol/L、处理1周后,未转基因植株会黄化、枯萎、死亡,而转基因植株却有很强的抗性,能耐受400mmol/L浓度的胁迫,表明OSISAP1基因的导入提高了转基因植株的耐盐碱性。  相似文献   

13.
To study the possibility of gene rescue in plants by direct gene transfer we chose the Arabidopsis mutant GH50 as a source of donor DNA. GH50 is tolerant of chlorsulfuron, a herbicide of the sulfonylurea class. Tobacco protoplasts were cotransfected with genomic DNA and the plasmid pHP23 which confers kanamycin resistance. A high frequency of cointegration of the plasmid and the genomic DNA was expected, which would allow the tagging of the plant selectable trait with the plasmid DNA. After transfection by electroporation the protoplasts were cultivated on regeneration medium supplemented with either chlorsulfuron or kanamycin as a selective agent. Selection on kanamycin yielded resistant calluses at an absolute transformation frequency (ATF) of 0.8 x 10(-3). Selection on chlorsulfuron yielded resistant calluses at an ATF of 4.7 x 10(-6). When a selection on chlorsulfuron was subsequently applied to the kanamycin resistant calluses, 8% of them showed resistance to this herbicide. Southern analysis carried out on the herbicide resistant transformants detected the presence of the herbicide resistance gene of Arabidopsis into the genome of the transformed tobacco. Segregation analysis showed the presence of the resistance gene and the marker gene in the progeny of the five analysed transformants. 3 transformants showed evidence of genetic linkage between the two genes. In addition we show that using the same technique a kanamycin resistance gene from a transgenic tobacco could be transferred into sugar beet protoplasts at a frequency of 0.17% of the transformants.  相似文献   

14.
Resistance to bialaphos, a broad-spectrum herbicide, was introduced into Lactuca sativa cv. Evola by Agrobacterium tumefaciens-mediated transformation. A. tumefaciens strains 0310 and 1310, both carrying the bialaphos resistance (bar) and neomycin phosphotransferase (nptII) genes, were used for transformation. Primary transformants were selected on kanamycin sulphate-supplemented shoot regeneration medium. Integration of both transgenes was confirmed by non-radioactive Southern hybridisation. The hypervirulent plasmid ToK47 in A. tumefaciens strain 1310 generated multiple insertions of T-DNA in some transgenic plants; the absence of pToK47 (strain 0310) resulted in single gene inserts in all plants tested. Resistance to glufosinate ammonium was observed in axenic seedlings grown on medium supplemented with the herbicide at 5 mg l–1 and in glasshouse-grown plants sprayed with the compound at 300 mg l–1. Stable expression of the bar gene was observed in R2 generation plants. The kanamycin resistance of R1 seedlings was observed by germinating seeds on medium supplemented with 200 mg l–1 kanamycin sulphate. The presence of NPTII protein and PAT enzyme activity were demonstrated by ELISA and PAT enzyme assay respectively. Transgenes segregated in a Mendelian fashion in some plant lines in the R1 generation; herbicide resistance also segregated in the expected ratio in the R2 generation in most transgenic lines. This study confirmed that an agronomically important transgene can be integrated and stably expressed over several generations in lettuce.  相似文献   

15.
Abstract The reliability of Tn 5 as labelling tool was investigated in soil microcosm. The occurence of a selective in soil microcosm. The occurence of resistances encoded by Tn 5 nptII gene was assesed by kanamycin and neomycin amendment. The bioassay developed to monitor the persistence of the soil-added kanamycin did not detect the antibiotic activity in soil extract. A nptII -engineered Escherichia coli strain showed no enhanced survival in aminoglycoside amended soil. Tn 5-marker properties were investigated within indigenous bacteria to determine the specificity of labelling to follow the fate of recombinant DNA. Kanamycin and neomycin resistant population levels made Tn 5 aminoglycoside-resistance phenotype non-sensitive enough to select a soil dissemination of the labelled DNA. The unexpected occurrence of homologous sequences among soil organisms also prevented Tn 5 from being a specific DNA marker. By contrast, colony hybridization did not reveal homology to nptII suggesting its use as a reliable gene transfer indicator.  相似文献   

16.
17.
Here we show that horizontal transfer of DNA, extracted from transgenic sugar beets, to bacteria, based on homologous recombination, can occur in soil. Restoration of a 317-bp-deleted nptII gene in Acinetobacter sp. strain BD413(pFG4) cells incubated in sterile soil microcosms was detected after addition of nutrients and transgenic plant DNA encoding a functional nptII gene conferring bacterial kanamycin resistance. Selective effects of the addition of kanamycin on the population dynamics of Acinetobacter sp. cells in soil were found, and high concentrations of kanamycin reduced the CFU of Acinetobacter sp. cells from 10(9) CFU/g of soil to below detection. In contrast to a chromosomal nptII-encoded kanamycin resistance, the pFG4-generated resistance was found to be unstable over a 31-day incubation period in vitro.  相似文献   

18.
 The use of genetically engineered crop plants has raised concerns about the transfer of their engineered DNA to indigenous microbes in soil. We have evaluated possible horizontal gene transfer from transgenic plants by natural transformation to the soil bacterium Acinetobacter calcoaceticus BD413. The transformation frequencies with DNA from two sources of transgenic plant DNA and different forms of plasmid DNA with an inserted kanamycin resistance gene, nptII, were measured. Clear effects of homology were seen on transformation frequencies, and no transformants were ever detected after using transgenic plant DNA. This implied a transformation frequency of less than 10-13 (transformants per recipient) under optimised conditions, which is expected to drop even further to a minimum of 10-16 due to soil conditions and a lowered concentration of DNA available to cells. Previous studies have shown that chromosomal DNA released to soil is only available to A. calcoaceticus for limited period of time and that A. calcoaceticus does not maintain detectable competence in soil. Taken together, these results suggest that A. calcoaceticus does not take up non-homologous plant DNA at appreciable frequencies under natural conditions. Received: 1 November 1996 / Accepted: 18 April 1997  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号