首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The role of transit peptides in intraorganellar targeting has been studied for a chlorophyll a/b binding (CAB) polypeptide of photosystem II (PSII) and the small subunit of ribulose-1,5-bisphosphate carboxylase (RBCS) from Pisum sativum (pea). These studies have involved in vitro import of fusion proteins into isolated pea chloroplasts. Fusion of the CAB transit peptide to RBCS mediates import to the stroma, as evidenced by assembly of RBCS with chloroplast-synthesized large subunit (RBCL) to form holoenzyme. Similarly, fusion of the RBCS transit peptide to the mature CAB polypeptide mediates import and results in integration of the processed CAB protein into the thylakoid membrane. Correct integration was indicated by association with PSII and assembly with chlorophyll to form the light-harvesting chlorophyll a/b protein complex (LHCII). We interpret these results as evidence that the CAB transit peptide is functionally equivalent to a stromal-targeting sequence and that intraorganellar sorting of the CAB protein must be determined by sequences residing within the mature protein. Our results and those of others suggest that import and integration of CAB polypeptides into the thylakoid proceeds via the stroma.  相似文献   

2.
3.
We have investigated the role of the circadian clock in the regulation of expression of genes required for ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) synthesis, assembly, and activation. Circadian oscillations in RCA (the gene encoding Rubisco activase) and RBCS (the gene encoding Rubisco small subunit) mRNA accumulation, with peak abundance occurring soon after dawn, occur in Arabidopsis thaliana grown in a light-dark (LD) photoperiod. These oscillations persist in plants that have been transferred from LD to either continuous darkness (DD) or continuous light (LL). In contrast, CPN60[alpha] (the gene encoding [alpha]-chaperonin) and CPN60[beta] (the gene encoding [beta]-chaperonin) mRNA abundance oscillates in a diurnal, but not in a circadian, fashion. Although rapid damping of the circadian oscillation in RCA mRNA abundance is observed in Arabidopsis that have been grown in LD and then transferred to DD for 2 d, the circadian oscillations in RCA and RBCS mRNA abundance persist for at least five continuous cycles in LL, demonstrating the robustness of the circadian oscillator.  相似文献   

4.
In leaves of tomato (Lycopersicon esculentum), the synthesis of a light-harvesting complex (LHC) polypeptide of photosystem II and the quinone B (QB)-binding protein varies at different time points during the day. In vivo labeling with [35S]methionine revealed diurnal oscillations of synthesis of these thylakoid membrane proteins. Both proteins are synthesized at elevated levels right after the transition from darkness to light, a maximum is reached around noon, and decreasing levels were measured during the afternoon and night. In addition, in constant darkness both proteins were also synthesized to varied extents at different diurnal time points. Together, these results indicate that the synthesis of a LHC II and the QB-binding protein is under the control of the circadian clock. This circadian oscillation of LHC II protein synthesis correlates with the very well documented circadian Lhc a/b mRNA accumulation.  相似文献   

5.
Steady-state mRNA levels for thylakoid proteins were analysed in spinach cotyledons under diurnally changing light conditions. Most fluctuate considerably throughout the day, while the levels of others show only low amplitude or no oscillation. Levels of mRNAs coding for proteins that belong to the same multiprotein complex generally oscillate in parallel and exhibit maxima that are specific for that complex: mRNAs for photosystem I proteins appear prior to those for photosystem II polypeptides and these again prior to mRNAs for the three polypeptides constituting the oxygen-evolving complex. For the mRNAs that change with high amplitudes (e.g. those for LHCP or the 20 kDa apoprotein of the CP24 complex) oscillations have also been found under constant conditions, indicating that a circadian oscillator is involved. Transgenic tobacco seedlings harbouring chimeric GUS gene fusions with 5-flanking sequences from the spinach genes Lhcb, PsaF and AtpD (encoding a light-harvesting chlorophyll a/b apoprotein of photosystem II, subunit 3 of photosystem I and subunit of the plastid ATP synthase, respectively) confirm that the differences in the amplitudes as well as the timepoints of maximum mRNA accumulation are perceived via cis-regulatory elements upstream of the respective ATG codons.  相似文献   

6.
7.
8.
9.
真核RNA聚合酶Ⅱ催化的mRNA转录是基因表达中一个重要阶段,但是对它的终止过程却知之甚少。大量实验表明,真核mRNA转录终止涉及到RNA聚合酶Ⅱ最大亚基(Rpb1)C末端结构域和多种转录终止相关因子以及两者之间的相互作用。这些结果初步勾画了真核mRNA转录终止的一般过程。  相似文献   

10.
Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) small subunit (RBCS) is encoded by a nuclear RBCS multigene family in many plant species. The contribution of the RBCS multigenes to accumulation of Rubisco holoenzyme and photosynthetic characteristics remains unclear. T-DNA insertion mutants of RBCS1A (rbcs1a-1) and RBCS3B (rbcs3b-1) were isolated among the four Arabidopsis RBCS genes, and a double mutant (rbcs1a3b-1) was generated. RBCS1A mRNA was not detected in rbcs1a-1 and rbcs1a3b-1, while the RBCS3B mRNA level was suppressed to ~20% of the wild-type level in rbcs3b-1 and rbcs1a3b-1 leaves. As a result, total RBCS mRNA levels declined to 52, 79, and 23% of the wild-type level in rbcs1a-1, rbcs3b-1, and rbcs1a3b-1, respectively. Rubisco contents showed declines similar to total RBCS mRNA levels, and the ratio of Rubisco-nitrogen to total nitrogen was 62, 78, and 40% of the wild-type level in rbcs1a-1, rbcs3b-1, and rbcs1a3b-1, respectively. The effects of RBCS1A and RBCS3B mutations in rbcs1a3b-1 were clearly additive. The rates of CO(2) assimilation at ambient CO(2) of 40 Pa were reduced with decreased Rubisco contents in the respective mutant leaves. Although the RBCS composition in the Rubisco holoenzyme changed, the CO(2) assimilation rates per unit of Rubisco content were the same irrespective of the genotype. These results clearly indicate that RBCS1A and RBCS3B contribute to accumulation of Rubisco in Arabidopsis leaves and that these genes work additively to yield sufficient Rubisco for photosynthetic capacity. It is also suggested that the RBCS composition in the Rubisco holoenzyme does not affect photosynthesis under the present ambient [CO(2)] conditions.  相似文献   

11.
Shoots of cold-acclimated seedlings of Pinus sylvestris L. were exposed to a temperature of –7°C for 4 h, in darkness or at a photon flux density of 1 300 μmol m-2s-1. Before and after freezing, fluorescence kinetics of intact needles and isolated chloroplast membranes were measured at both room temperature and 77 K. Maximum and variable fluorescence yield of photosystem II both at room temperature and 77 K decreased strongly after freezing in light, whereas the initial fluorescence yield was little affected. Quenching of maximum and variable fluorescence of photosystem I at 77 K also occurred. The results show that freezing in light damages photosystem II, thereby increasing the radiationless decay at the reaction centres of photosystem II. This is a typical symptom of photoinhibition of photosynthesis. Freezing in darkness did not significantly reduce fluorescence yield of photosystem II or photosystem I. Moreover, electron transport capacity was not significantly affected. We therefore suggest that the inhibition of the CO2 assimilation in pine seedlings by freezing alone does not involve thylakoid inactivation.  相似文献   

12.
13.
Liu X  Zhao J  Wu Q 《Biochemistry. Biokhimii?a》2006,71(Z1):S101-S104
The biogenesis of chlorophyll-binding proteins under iron stress has been investigated in vivo in a chlN deletion mutant of Synechocystis sp. PCC 6803. The chlN gene encodes one subunit of the light-independent protochlorophyllide reductase. The mutant is unable to synthesis chlorophyll in darkness, causing chlorophyll biosynthesis to become light dependent. When the mutant was propagated in darkness, essentially no chlorophyll and photosystems were detected. Upon return of the chlN deletion mutant to light, 77 K fluorescence emission spectra and oxygen evolution of greening cells under iron-sufficient or -deficient conditions were measured. The gradual blue shift of the photosystem I (PS I) peak upon greening under iron stress suggested the structural alteration of newly synthesized PS I. Furthermore, the rate of biogenesis of PS II was delayed under iron stress, which might be due to the presence of IsiA.  相似文献   

14.
Burke JJ  Oliver MJ 《Plant physiology》1993,102(1):295-302
Analysis of the temperatures providing maximal photosystem II fluorescence reappearance following illumination and thermal kinetic windows (TKWs), obtained from the temperature characteristics of enzyme apparent Km values, have been proposed as indicators of the bounds of thermal stress in plants. In this study, we have evaluated the temperature optimum for the accumulation of the chlorophyll a/b light-harvesting complex of photosystem II (LHCP II), its mRNA, and the mRNA of the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) in cucumber (Cucumis sativus L. cv Ashley) as a broader measure of metabolism than that provided by either the fluorescence reappearance or TKWs. The TKW for cucumber is between 23.5 and 39[deg]C, with the minimum apparent Km occurring at 32.5[deg]C. The photosystem II variable fluorescence reappearance following illumination was maximal between 30 and 35[deg]C. Maximum synthesis of the LHCP II occurred at 30[deg] C. The light-induced accumulation of the LHCP II and the small subunit of Rubisco mRNAs showed similar temperature characteristics. Suboptimal temperatures delayed germination, altered cotyledonary soluble sugar content, and broadened the temperature range for chlorophyll accumulation. These results demonstrate an effect of seed reserve mobilization on the range of temperatures for chlorophyll accumulation, and suggest that metabolic temperature characteristics may be broadened by increasing available substrates for enzyme utilization. This study provides new information about the relationship between TKWs and cellular responses to temperature. In addition, the results suggest that the temperature range outside of which plants experience temperature stress is narrower than traditionally supposed.  相似文献   

15.
The time course of appearance of competence to phytochrome (Pfr) was studied in cotyledons of mustard (Sinapis alba L.) with regard to the light-mediated accumulation of mRNAs encoding for SSU, CAB and the 23 kDa protein of the oxygen evolving complex of photosystem II (OEC). For each gene family a specific starting point of Pfr-induced mRNA accumulation was observed (SSU: 42 h; CAB: 36 h; OEC: 30 h). An increase of SSU-mRNA levels can be detected 24 h after sowing in dark-grown seedlings whereas for OEC the time points for the increase of mRNA are the same whether the seedlings are kept in darkness or induced by light via Pfr. For all gene families a responsiveness to Pfr (coupling point) could be demonstrated before the starting points. The coupling points are also gene specific (SSU: ca. 12 h; CAB and 23 kDa peptide of OEC: ca. 24 h). The responsiveness to light before the starting point indicates that the light-induced signal must be stored.  相似文献   

16.
We have analyzed plastid and nuclear gene expression in tobacco seedlings using the carotenoid biosynthesis inhibitor nor-flurazon. mRNA levels for three nuclear-encoded chlorophyll-binding proteins of photosystem I and photosystem II (CAB I and II and the CP 24 apoprotein) are no longer detectable in photobleached seedlings, whereas those for other components of the thylakoid membrane (the 33- and 23-kD polypeptides and Rieske Fe/S polypeptide) accumulate to some extent. Transgenic tobacco seedlings with promoter fusions from genes for thylakoid membrane proteins exhibit a similar expression behavior: a CAB-[beta]-glucuronidase (GUS) gene fusion is not expressed in herbicide-treated seedlings, whereas PC-, FNR-, PSAF-, and ATPC-promoter fusions are expressed, although at reduced levels. All identified segments in nuclear promoters analyzed that have been shown to respond to light also respond to photodamage to the plastids. Thus, the regulatory signal pathways either merge prior to gene regulation or interact with closely neighboring cis elements. These results indicate that plastids control nuclear gene expression via different and gene-specific cis-regulatory elements and that CAB gene expression is different from the expression of the other genes tested. Finally, a plastid-directing import sequence from the maize Waxy gene is capable of directing the GUS protein into the photodamaged organelle. Therefore, plastid import seems to be functional in photobleached organelles.  相似文献   

17.
There is increasing evidence that the circadian clock is a significant driver of photosynthesis that becomes apparent when environmental cues are experimentally held constant. We studied whether the composition of photosynthetic pigments is under circadian regulation, and whether pigment oscillations lead to rhythmic changes in photochemical efficiency. To address these questions, we maintained canopies of bean and cotton, after an entrainment phase, under constant (light or darkness) conditions for 30–48 h. Photosynthesis and quantum yield peaked at subjective noon, and non‐photochemical quenching peaked at night. These oscillations were not associated with parallel changes in carbohydrate content or xanthophyll cycle activity. We observed robust oscillations of Chl a/b during constant light in both species, and also under constant darkness in bean, peaking when it would have been night during the entrainment (subjective nights). These oscillations could be attributed to the synthesis and/or degradation of trimeric light‐harvesting complex II (reflected by the rhythmic changes in Chl a/b), with the antenna size minimal at night and maximal around subjective noon. Considering together the oscillations of pigments and photochemistry, the observed pattern of changes is counterintuitive if we assume that the plant strategy is to avoid photodamage, but consistent with a strategy where non‐stressed plants maximize photosynthesis.  相似文献   

18.
We report the isolation and characterization of a tomato nuclear gene encoding a chlorophyll a/b-binding (CAB) protein of photosystem I (PSI). The coding nucleotide sequence of the gene, designated Cab-6B, is different at eight positions from that of a previously isolated cDNA clone derived from the Cab-6A gene, but the two genes encode identical proteins. Sequence comparison with the cDNA clone revealed the presence of three short introns in Cab-6B. Genetic mapping experiments demonstrate that Cab-6A and Cab-6B are tightly linked and reside on chromosome 5, but the physical distance between the two genes is at least 7 kilobases. Cab-6A and Cab-6B have been designated Type I PSI CAB genes. They are the only two genes of this branch of the CAB gene family in the tomato genome, and they show substantial divergence to the genes encoding CAB polypeptides of photosystem II. The Type I PSI CAB genes, like the genes encoding PSII CAB proteins, are highly expressed in illuminated leaf tissue and to a lesser extent in other green organs.  相似文献   

19.
The cyanobacterium Synechocystis sp. PCC 6803 carries out oxygenic photosynthesis analogous to higher plants. Its photosystem I contains seven different polypeptide subunits. The cartridge mutagenesis technique was used to inactivate the psaD gene which encodes subunit II of photosystem I. A mutant strain lacking subunit II was generated by transforming wild type cells with cloned DNA in which psaD gene was interrupted by a gene conferring kanamycin resistance. The photoautotrophic growth of mutant strain is much slower than that of wild type cells. The membranes prepared from mutant cells lack subunit II of photosystem I. Studies on the purified photosystem I reaction center revealed that the complex lacking subunit II is assembled and is functional in P700 photooxidation but at much reduced rate. Therefore, subunit II of photosystem I is required for efficient function of photosystem I.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号