首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
A kinetics study has demonstrated histone synthesis occurring at two distinct phases during meiotic prophase of mouse spermatogenesis. These two periods have been delineated by quantifying the synthesis of DNA and basic nuclear proteins in spermatogenic cells at discrete intervals following the intratesticular injection of [3H] thymidine and [14C] arginine, respectively. One phase of histone synthesis occurs coincident with DNA synthesis in preleptotene spermatocytes. By contrast, a second phase of histone synthesis occurs during midprophase of meiosis, independent of semiconservative DNA synthesis. The [14C] arginine incorporated into the basic nuclear proteins of pachytene spermatocytes is conserved during spermiogenesis and then subsequently discarded within the residual bodies, which are formed during late spermiogenesis. Fluorographic analyses of isotopically labeled basic nuclear proteins in pachytene spermatocytes has shown that only the somatic complement of histones are synthesized during the preleptotene period, whereas the second phase involves the synthesis of proteins H1t, H2S, and "A". In addition, several nonhistone basic nuclear proteins are synthesized concomitant with the germ cell-specific histones. Thus, the data clearly demonstrate that pachytene spermatocytes actively synthesize a number of novel chromatin-associated polypeptides.  相似文献   

2.
The accumulation and synthesis of sperm-specific basic nuclear proteins (SPs) in Xenopus spermatids in vitro were studied by acid-urea-Triton polyacrylamide gel electrophoresis and fluorography. In synchronous cultures of round spermatids, the amount of SP2 and SP3-5 accumulated almost linearly with time, while that of SP1 remained almost constant. Fluorography showed that round spermatids incorporated [14C]arginine mostly into SP1 and SP3-5, very little into SP2, and none into histones. When [14C]arginine was incorporated into cells for 24 h on Days 0, 3, and 6, followed by immediate extraction of basic nuclear proteins, the SP1 band was detected faintly on Day 0 and the intensity increased to the maximum level by Day 3 and remained constant on Day 6; the SP3-5 bands were first detected on Day 3 and their intensity increased by Day 6. Thus, SP1 and SP3-5 were synthesized differentially during the culture period. When [14C]arginine or [14C]lysine was incorporated into round spermatids on Days 0, 3, and 6 for 15 h and chased for 3-12 days, the intensity of the SP2 band increased significantly, while the intensity of the SP1 band decreased concomitantly. This result indicates that SP2 was processed from a precursor protein which is probably SP1.  相似文献   

3.
Spermatogenesis in the blue swimming crab, Portunus pelagicus, is described by light and electron microscopy. The testis is composed of anterior (AT) and posterior (PT) lobes, that are partitioned into lobules by connective tissue trabecula, and further divided into zones (germinal, transformation and evacuation), each with various stages of cellular differentiation. The vas deferens is classified into three distinct regions: anterior (AVD), median (MVD), and posterior (PVD), on the presence of spermatophores and two secretions, termed substance I and II. Based on the degree and patterns of heterochromatin, spermatogenesis is classified into 13 stages: two spermatogonia (SgA and SgB), six primary spermatocytes (leptotene, zygotene, pachytene, diplotene, diakinesis, and metaphase), a secondary spermatocyte (SSc), three spermatids (St 1-3), and a mature spermatozoon. Spermatid stages are differentiated by chromatin decondensation and the formation of an acrosomal complex, which is unique to brachyurans. Mature spermatozoa are aflagellated, and have a nuclear projection and a spherical acrosome. AUT-PAGE and Western blots show that, during chromatin decondensation, there is a reduction of most histones, with only small amounts of H2B and H3 remaining in mature spermatozoa.  相似文献   

4.
Calf thymus histories comprising two fractions, one rich in lysine, the other having roughly equal amounts of lysine and arginine, Loligo testes histones rich in arginine, and salmine, are compared with respect to their amino acid compositions, and their staining properties when the proteins are fixed on filter paper. The three types of basic proteins; somatic, arginine-rich spermatid histones, and protamine can be distinguished on the following basis. Somatic and testicular histones stain with fast green or bromphenol blue under the same conditions used for specific staining of histones in tissue preparations. The former histones lose most or all of their stainability after deamination or acetylation. Staining of the arginine-rich testicular histones remains relatively unaffected by this treatment. Protamines do not stain with fast green after treatment with hot trichloracetic acid, but are stained by bromphenol blue or eosin after treatment with picric acid. These methods provide a means for the characterization of nuclear basic proteins in situ. Their application to the early developmental stages of Helix aspersa show the following: After fertilization the protamine of the sperm is lost, and is replaced by faintly basic histones which differ from adult histones in their inability to bind fast green, and from protamines, by both their inability to bind eosin, and their weakly positive reaction with bromphenol blue. These "cleavage" histones are found in the male and female pronuclei, the early polar body chromosomes, and the nuclei of the cleaving egg and morula stages. During gastrulation, the histone complement reverts to a type as yet indistinguishable from that of adult somatic cells.  相似文献   

5.
Newly synthesized histones have been extracted from Rana pipiens oocytes or cleaving embryos previously injected with [3H]lysine or [3H]arginine. The radioactive proteins were fractionated by cation-exchange chromatography and electrophoresis on acid/urea or SDS-polyacrylamide gels; histones were identified by coelectrophoresis with authentic markers. From percentage total incorporation in the putative histones, and absolute rates of lysine or arginine incorporation, rates of histone synthesis were estimated. Rates of histone synthesis in two-cell embryos were at least 10-fold higher than in maturing oocytes. Between the two-cell and blastula stages, the rate increased an additional threefold, from about 1200 pg hr?1 per embryo to about 4500 pg hr?1 per embryo. While all histone classes are synthesized during cleavage, synthesis of the various classes is not coordinated; histones are not synthesized in the same relative proportions at which they are found in blastula chromatin. The synthesis of histone H4 in particular is barely detectable during cleavage. This, and other observations, suggested the existence of cytoplasmic histone pools. In approaching the possible existence of histone pools, the amount of H4 present in oocytes was determined. Oocytes contain about 74 ng of H4, an amount sufficient to allow development to the blastula stage. These data are compared to those reported by others on histone synthesis during cleavage in Xenopus.  相似文献   

6.
As part of our continuing program to understand the molecular mechanisms controlling the synthesis of sperm-specific nuclear proteins (SPs1–6) during spermatogenesis in Xenopus, we report here on the isolation of a cDNA clone for SP5, the partial sequencing of the amino acids in the SPs, and the expression of the mRNA for SP5. A cDNA clone (pXSP633) was isolated from a cDNA library, previously prepared from poly (A)+ mRNA obtained from Xenopus round spermatids. Determination of the amino acid sequence of the N-terminal regions of all the SPs(1–6) suggested that pXSP633 encodes SP5, whereas SPs3, 4, and 6 are derived from a second mRNA species, and SPs1 and 2 from a third mRNA species. Thus it seems likely that the six SPs are derived from three different mRNA species. Northern blot analyses of RNA, extracted from primary spermatocytes and round spermatids, was performed with oligonucleotide probes specific for SPs4 and 5 mRNAs. The results showed that whereas both SPs4 and 5 mRNAs are expressed in primary spermatocytes, the amount of SP5 mRNA is only about one-fifth of that of SP4 mRNA. However, both mRNA species undergo a similar size change in the length of their poly (A) tracts during spermatogenesis: the size of the mRNA in cultured round spermatids on day 0 was longer than that in primary spermatocytes, but the size of the mRNA in round spermatids on day 6 was shorter than that in round spermatids on day 0. © 1994 Wiley-Liss, Inc.  相似文献   

7.
The synthesis of basic proteins has been studied in the oocytes, eggs and embryos of the South African clawed frog, Xenopus laevis. A group of newly synthesized proteins has been identified as histones by the following criteria: solubility properties; incorporation of [3H]lysine and [3H]arginine in the correct proportions, but lack of incorporation of [3H]tryptophan; co-cleotrophoresis with marker histones in various types of polyacrylamide gels, including a type run in two dimensions; peptide analysis of the arginine-rich fraction, F2A1. The four main histone fractions other than F1 were found to be synthesized at all stages of development. F1 histone synthesis was first detected at the late blastula stage.Rates of histone synthesis were estimated for the different stages of development and it was concluded that histone synthesis was not co-ordinated with DNA synthesis either temporally or quantitatively. Histone synthesis was unusual in the following major respects: histones were synthesized in oocytes, and yet in these cells DNA replication had not occurred for several months; histones were synthesized in activated or fertilized eggs at a rate far in excess (about 500 times) of the immediate requirements. We suggest that in order to provide enough histones for the late blastula embryo a store of histone is accumulated during the early cleavage stages and possibly during oogenesis.  相似文献   

8.
1. The histones of Euglena gracilis were separated by gel filtration into five fractions. 2. Each fraction was characterized in terms of its electrophoretic, solubility and compositional properties. 3. Euglena gracilis clearly contains histones corresponding to vertebrate H1, H2B, H3 and H4 fractions, although they all differ in containing more lysine. 4. The remaining Euglena histone is considered to be homologous to vertebrate histone H2A, but it differs in having a much higher ratio of lysine to arginine. 5. The Euglena histone H1 appears to be lacking in aspartic acid. 6. Electrophoresis in the presence of sodium dodecyl sulphate indicates that the molecular weights of the Euglena histones are close to those of the homologous vertebrate histones.  相似文献   

9.
Basic spermal proteins of various species of hydrobionts attributed to Pisces and Cephalopoda are studied. It is established that chromatin of nine species referring to two Cypriniformes families includes the somatic histones. Histone H1 of Cypriniformes is attributed to the lysine-rich type histones and contains 35% mol. of lysine and 0.7% mol. of tyrosine. Chromatin of 14 species of fish referring to nine families of the percoid fish superorder includes protamines similar to salmin, a typical protamine of salmon. The amino acidic analysis of protamine from the sandre sperma has shown that it contains 59% mol. of arginine and no tyrosine. Chromatin of three species from squid superorder referring to Cephalopoda includes gametones -- proteins differing from histones and protamines both in the electrophoretic mobility and amino acidic composition (75% mol. of arginine, 3% mol. of tyrosine).  相似文献   

10.
Histone variants in rat spermatogonia and primary spermatocytes   总被引:5,自引:0,他引:5  
The levels and synthesis of histone variants have been directly measured in spermatogonia and in various stages of primary spermatocytes purified from the rat testis. These measurements were made possible by the development of a procedure, employing centrifugal elutriation and density gradient centrifugation, to separate highly enriched populations of such cells from immature rat testes at the early stages of spermatogenesis. The results show a difference in regulation of the synthesis and accumulation of testis-specific histones H1t, TH2A, TH2B, and TH3. TH3 is present and actively synthesized in A and B spermatogonia. The testis-enriched variants, H2A.X and H1a, are also present at their maximal levels in A spermatogonia. No detectable amounts of H1t, and at most, low levels of TH2A and TH2B could be found in spermatogonia. While TH2A and TH2B are already present and actively synthesized in early primary spermatocytes (around the preleptotene stage), H1t does not accumulate until the pachytene stage.  相似文献   

11.
IN VIVO METHYLATION AND TURNOVER OF RAT BRAIN HISTONES   总被引:3,自引:1,他引:2  
Abstract— The turnover of the different histone components from brain nuclei was studied after the administration of l -[3H]lysine and l -[14C-methyl]methionine to newborn rats. The radioactivities of the different histone subfractions as well as other proteins were determined over a 280-day period. Biphasic type decay curves (3H and 14C) were obtained for total brain histones and all the subfractions. From 6 to 40 days of age the half life of total brain histones was 19 days. After reaching brain maturity the half life was 132 days. The lysine rich histone (F1) was found to turnover the fastest of all the histones, having half lives of 13 and 112 days, respectively. The decay curve for the slightly lysine rich histones (F2a2, F2b) gave half lives of 25 days up to 40 days of age and 189 days after reaching brain maturity. The arginine rich histones (F2a1, F3) gave a half life of 32 days up to 40 days of age, while no turnover was observed after maturity. The turnover rates of the methyl groups and/or methionyl residues did not vary significantly from the turnover rates of the lysyl residues in the F2 and F3 histones. The lysine-rich histones did not contain significant amounts of methionyl residues or methyl groups.
Amino acid analysis of the brain histones revealed that about 3·6 per cent of the lysyl residues in the slightly lysine rich histones were methylated, mainly as ε-N-dimethyllysine. About 13 per cent of the lysyl residues in the arginine rich histones were methylated, mainly as ε-N-monomethyllysine and ε-N-dimethyllysine.  相似文献   

12.
The distribution, quantitation, and synthesis of high mobility group (HMG) proteins during spermatogenesis in the rat have been determined. HMG1, -2, -14, and -17 were isolated from rat testes by Bio-Rex 70 chromatography combined with preparative gel electrophoresis. Amino acid analysis revealed that each rat testis HMG protein was similar to its calf thymus analogue. Tryptic peptide maps of somatic and testis HMG2 showed no differences and, therefore, failed to detect an HMG2 variant. Testis levels of HMG proteins, relative to DNA content, were equivalent to other tissues for HMG1 (13 micrograms/mg of DNA), HMG14 (3 micrograms/mg of DNA), and HMG17 (5 micrograms/mg of DNA). The testis was distinguished in that it contained a substantially higher level of HMG2 than any other rat tissue (32 micrograms/mg of DNA). HMG protein levels were determined from purified or enriched populations of testis cells representing the major stages of spermatogenesis; spermatogonia and early primary spermatocytes, pachytene spermatocytes, early spermatids, and late spermatids; and testicular somatic cells. High levels of HMG2 in the testis were due to pachytene spermatocytes and early spermatids (56 +/- 4 and 47 +/- 6 micrograms/mg of DNA, respectively). Mixtures of spermatogonia and early primary spermatocytes showed lower levels of HMG2 (12 +/- 3 micrograms/mg of DNA) similar to proliferating somatic tissues, whereas late spermatids had no detectable HMG proteins. The somatic cells of the testis, including isolated populations of Sertoli and Leydig cells, showed very low levels of HMG2 (2 micrograms/mg of DNA), similar to those in nonproliferating somatic tissues. HMG proteins were synthesized in spermatogonia and primary spermatocytes, but not in spermatids. Rat testis HMG2 exhibited two bands on acid-urea gels. A "slow" form comigrated with somatic cell HMG2, while the other "fast" band migrated ahead of the somatic form and appeared to be testis-specific. The "fast" form of HMG2 accounted for the large increase of HMG2 levels in rat testes. These results show that the very high level of HMG2 in testis is not associated with proliferative activity as previously hypothesized.  相似文献   

13.
Over 200 genes have been shown to be associated with infertility in mouse models. However, knockout mice reveal unexpected functional redundancy of some germ cell expressed genes. Single null mutations in mouse genes encoding four male germ cell proteins, transition protein 2 (Tnp2), proacrosin (Acr), histone H1.1 (H1.1), histone H1t (H1t) and sperm mitochondria-associated cysteine-rich protein (Smcp) have been generated and analysed. Tnp2 is believed to participate in the removal of the nuclear histones and initial condensation of the spermatid nucleus. Proacrosin is an acrosomal protease synthesized as a proenzyme and activated into acrosin during the acrosome reaction. The linker histone subtype H1.1 belongs to the group of main-type histones and is synthesized in somatic tissues as well as in germ cells during the S-phase of the cell cycle. The histone gene Hist1h1t is expressed exclusively in spermatocytes and may have a function in establishing an open chromatin structure for the replacement of histones by transition proteins and protamines. Sperm mitochondria-associated cysteine-rich protein (Smcp) is a major structural element of the mitochondria in the midpiece of the sperm tail. Male mutant mice lacking any of these proteins show no apparent defects in spermatogenesis or fertility. To examine the synergistic effects of these proteins in spermatogenesis and during fertilization four lines of double knockout mice Hist1h1a/Mcsp, Hist1h1t/Mcsp, Tnp2/Mcsp and Acr/Mcsp were established. It was found that even when knockout mice are heterozygous for one allele (-/+) and homozygous for the other allele (-/-), mice were subfertile. Homozygous double knockout mice of all four lines are nearly infertile. However, in the four homozygous double knockout mouse lines, different characteristic abnormalities are prominently manifested: In Hist1h1a-/-/Mcsp-/- the migration of spermatozoa is disturbed in female genital tract, in Hist1h1t-/-/Mcsp-/- spermatozoa show morphological head abnormalities, in Tnp2-/-/Mcsp-/- the motility of sperm is affected, and in Acr-/-/Mcsp-/- the sperm-oocyte interaction is impaired. These findings indicate strongly that male germ cell expressed genes have synergistic effects on male fertility.  相似文献   

14.
Separation of labelled nuclei by sedimentation velocity at unit gravity (Staput method) was used to study the timing of histone synthesis and replacement by testis-specific basic nuclear protein (TSP) during spermatogenesis in the mouse. Animals were injected (intratesticularly) with 1.25 micronCi per testis 3H-arginine or 2.5 micronCi per testis 3H-lysine, testis nuclei were separated, and the acid extract of each nuclear fraction was analyzed by acrylamide gel electrophoresis. The distribution of labelled histones and TSP in separated nuclei was assessed 2 h after incorporation. Changes in the labelled histone and TSP content of nuclei during subsequent differentiation (1--34 days post-label) was followed in fractions of separated testis cell nuclei and in nuclei of cauda epididymal spermatozoa. Analysis of total histone and (TSP) content indicated quantitative changes during development. Nuclei from primary spermatocytes had relatively larger amounts of histones H1 and H4. Spermatid nuclei showed a relative reduction in histones H1 and H4, coincident with the appearance of TSP in these nuclei. These results suggested that synthesis and/or removal of certain histones must occur in late primary spermatocyte and early spermatid stages of spermatogenesis. Results of labelling experiments indicated several periods of histone synthesis during spermatogenesis: (1) closely associated with the last DNA synthesis(i.e., in early primary spermatocytes), (2) late in meiotic prophase (i.e., in pachytene primary spermatocytes) and (3) simultaneous with TSP synthesis (i.e., in late spermatids). Histone H1 was more heavily labelled toward the end of the primary spermatocyte period. Histone H4 was more heavily labelled in the early primary spermatocyte period, and again at the time of TSP synthesis in spermatids. Histones synthesized before the pachytene primary spermatocyte stage appeared to be replace, but histones synthesized later in spermatogenesis appeared to be at least partially retained in epididymal spermatozoa. These results suggested that repeated specific alterations in the protein complement of the nucleus are an integral part of spermatogenic differentiation in the mouse.  相似文献   

15.
The histone lysine methyltransferases catalyze the transfer of methyl groups from S-adenosylmethionine to specific epsilon-N-lysine residues in the N-terminal regions of histones H3 and H4. These enzymes are located exclusively within the nucleus and are firmly bound to chromatin. The chromosomal bound enzymes do not methylate free or nonspecifically associated histones, while histones H3 and H4 within newly synthesized chromatin are methylated. These enzymes can be solubilized by limited digestion (10-16%) of chromosomal DNA from rapidly proliferating rat brain chromatin with micrococcal nuclease. Histone H3 lysine methyltransferase remained associated with a short DNA fragment throughout purification. Dissociation of the enzyme from the DNA fragment with DNAase digestion resulted in complete loss of enzyme activity; however, when this enzyme remained associated with DNA it was quite stable. Activity of the dissociated enzyme could not be restored upon the addition of sheared calf thymus or Escherichia coli DNA. Histone H3 lysine methyltransferase was found to methylate lysine residues in chromosomal bound or soluble histone H3, while H3 associated with mature nucleosomes was not methylated. The histone H4 lysine methyltransferase which was detectable in the crude nuclease digest was extremely labile, losing all activity upon further purification. We isolated a methyltransferase by DEAE-cellulose chromatography, which would transfer methyl groups to arginine residues in soluble histone H4. However, this enzyme would not methylate nucleosomal or chromosomal bound histone H4, nor were methylated arginine nucleosomal or chromosomal bound histone H4, nor were methylated arginine residues detectable upon incubating intact nuclei or chromatin with S-adenosylmethionine.  相似文献   

16.
《Journal of Asia》2006,9(2):139-143
Storage proteins (SPs) were significantly detected in the hemolymph during the late instar larvae of diamondback moth, Plutella xylostella. These SPs were resolved into three proteins (SP1, SP2, and SP3) at 7% SDS-PAGE. Their apparent molecular sizes were around 80 kDa. SP1 was synthesized later than SP2 and SP3 during the development of the last instar. Total soluble proteins of last instar larvae were extracted and fractionated sequentially with ammonium sulfate, size-exclusion chromatography, and ion-exchange chromatography. The SPs were purified and their developmental expression was discussed.  相似文献   

17.
In recent years, much knowledge about the functions of defined genes in spermatogenesis has been gained by making use of mouse transgenic and gene knockout models. Single null mutations in mouse genes encoding four male germ cell proteins, transition protein 2 (Tnp-2), proacrosin (Acr), histone H1.1 (H1.1), and histone H1t (H1t), have been generated and analyzed. Tnp-2 is believed to participate in the removal of the nuclear histones and initial condensation of the spermatid nucleus. Proacrosin is an acrosomal protease synthesized as a proenzyme and activated into acrosin during the acrosome reaction. The linker histone subtype H1.1 belongs to the group of main-type histones and is synthesized in somatic tissues and germ cells during the S-phase of the cell cycle. The histone gene H1t is expressed exclusively in spermatocytes and may have a function in establishing an open chromatin structure for the replacement of histones by transition proteins and protamines. Male mutant mice lacking any of these proteins show no apparent defects in spermatogenesis or fertility. To examine the synergistic effects of these proteins in spermatogenesis and during fertilization, two lines of triple null mice (Tnp-2-/-/Acr-/-/H1.1-/- and Tnp-2-/-/Acr-/-/H1t-/-) were established. Both lines are fertile and show normal sperm parameters, which clearly demonstrate the functional redundancy of these proteins in male mouse fertility. However, sperm only deficient for Acr (Acr-/-) are able to compete significantly with sperm from triple knockout mice Tnp-2-/-/Acr-/-/H1.1-/- (70.7% vs. 29.3%) but not with sperm from triple knockout mice Tnp-2-/-/Acr-/-/H1t-/- (53.6% vs. 46.4%). These results are consistent with a model that suggests that some sperm proteins play a role during sperm competition.  相似文献   

18.
At concentrations normally used to inhibit eukaryotic type II topoisomerase activity (100-1000 micrograms/ml) novobiocin binds core histones. Approximately 15 moles of novobiocin bind per mole of histone resulting in histone precipitation from solution in either 0.15 M or 2 M NaCl. The interaction between novobiocin and proteins appears to involve arginine residues: histones H3 and H4 (13.5 and 14 mole percent arginine) are precipitated at lower novobiocin concentrations than histones H2A and H2B (9.5 and 6.5 mole percent arginine). Furthermore, polyarginine but not polyornithine competes for novobiocin in histone precipitation. Moreover, histones with arginine residues modified with 1,2-cyclohexanedione are soluble in 1000 micrograms/ml novobiocin. Because novobiocin can remove histones from solution as well as inhibit topoisomerase activity, and because both of these events can alter DNA topology, novobiocin should be used with caution in experiments designed to implicate topoisomerase activity in chromatin dynamics.  相似文献   

19.
Nuclear proteins in spermatogenesis   总被引:2,自引:0,他引:2  
Mammalian somatic type histone variants are replaced or supplemented in early primary spermatocytes and possibly spermatogonia by testis specific and testis enriched histone variants. The testis complement of histones is replaced entirely by transition basic proteins in mid-spermatids. This transition is accompanied by a dramatic reduction of thermal stability of mid-spermatid chromatin which may be due in part to hyperacetylation of histone H4. The transition basic proteins are replaced by protamines which are arginine-rich and contain cysteine.  相似文献   

20.
Histones are DNA-binding proteins found in the chromatin of all eukaryotic cells. They are highly conserved and can be grouped into five major classes: H1/H5, H2A, H2B, H3, and H4. Two copies of H2A, H2B, H3, and H4 bind to about 160 base pairs of DNA forming the core of the nucleosome (the repeating structure of chromatin) and H1/H5 bind to its DNA linker sequence. Overall, histones have a high arginine/lysine content that is optimal for interaction with DNA. This sequence bias can make the classification of histones difficult using standard sequence similarity approaches. Therefore, in this paper, we applied support vector machine (SVM) to recognize and classify histones on the basis of their amino acid and dipeptide composition. On evaluation through a five-fold cross-validation, the SVM-based method was able to distinguish histones from nonhistones (nuclear proteins) with an accuracy around 98%. Similarly, we obtained an overall >95% accuracy in discriminating the five classes of histones through the application of 1-versus-rest (1-v-r) SVM. Finally, we have applied this SVM-based method to the detection of histones from whole proteomes and found a comparable sensitivity to that accomplished by hidden Markov motifs (HMM) profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号