首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Mitochondria are physically and biochemically in contact with other organelles including the endoplasmic reticulum (ER). Such contacts are formed between mitochondria‐associated ER membranes (MAM), specialized subregions of ER, and the outer mitochondrial membrane (OMM). We have previously shown increased expression of MAM‐associated proteins and enhanced ER to mitochondria Ca2+ transfer from ER to mitochondria in Alzheimer's disease (AD) and amyloid β‐peptide (Aβ)‐related neuronal models. Here, we report that siRNA knockdown of mitofusin‐2 (Mfn2), a protein that is involved in the tethering of ER and mitochondria, leads to increased contact between the two organelles. Cells depleted in Mfn2 showed increased Ca2+ transfer from ER to mitchondria and longer stretches of ER forming contacts with OMM. Interestingly, increased contact resulted in decreased concentrations of intra‐ and extracellular Aβ40 and Aβ42. Analysis of γ‐secretase protein expression, maturation and activity revealed that the low Aβ concentrations were a result of impaired γ‐secretase complex function. Amyloid‐β precursor protein (APP), β‐site APP‐cleaving enzyme 1 and neprilysin expression as well as neprilysin activity were not affected by Mfn2 siRNA treatment. In summary, our data shows that modulation of ER–mitochondria contact affects γ‐secretase activity and Aβ generation. Increased ER–mitochondria contact results in lower γ‐secretase activity suggesting a new mechanism by which Aβ generation can be controlled.  相似文献   

2.
Abstract: Perlecan is a specific heparan sulfate proteoglycan that accumulates in the fibrillar β-amyloid (Aβ) deposits of Alzheimer's disease. Perlecan purified from the Engelbreth-Holm-Swarm tumor was used to define perlecan's interactions with Aβ and its effects on Aβ fibril formation. Using a solid-phase binding immunoassay, freshly solubilized full-length Aβ peptides bound immobilized perlecan at two sites, representing both high-affinity [KD = ~5.8 × 10?11M for Aβ (1–40); KD = ~6.5 × 10?12M for Aβ (1–42)] and lower-affinity [KD = 3.5 × 10?8M for Aβ (1–40); KD = 4.3 × 10?8M for Aβ (1–42)] interactions. An increase in the binding capacity of Aβ (1–40) to perlecan correlated with an increase in Aβ amyloid fibril formation during a 1-week incubation period. The high-capacity binding of Aβ (1–40) to perlecan was similarly observed using perlecan heparan sulfate glycosaminoglycans and was completely abolished by heparin, but not by chondroitin-4-sulfate. Using a thioflavin T fluorometry assay, perlecan accelerated the rate of Aβ (1–40) amyloid fibril formation, causing a significant increase in Aβ fibril assembly over a 2-week incubation period at 1 h (2.8-fold increase), 1 day (3.6-fold increase), and 3 days (2.8-fold increase) in comparison with Aβ (1–40) alone. Perlecan also initially accelerated the formation of Aβ (1–42) fibrils within 1 h and maintained significantly higher levels of Aβ (1–42) thioflavin T fluorescence throughout a 2-week experimental period in comparison with Aβ (1–42) alone, suggesting perlecan's ability to maintain amyloid fibril stability. Perlecan's effects on Aβ (1–40) fibril formation and maintenance of Aβ (1–42) fibril stability occurred in a dose-dependent manner and was also mediated primarily by perlecan's glycosaminoglycan chains. Perlecan was the most effective enhancer and accelerator of Aβ fibril formation when compared directly with other amyloid plaque components, including apolipoprotein E, α1-antichymotrypsin, P component, C1q, and C3. This study, therefore, demonstrates that perlecan not only binds to the predominant isoforms of Aβ, but also accelerates Aβ fibril formation and stabilizes amyloid fibrils once formed, confirming pivotal roles for perlecan in the pathogenesis of Aβ amyloidosis in Alzheimer's disease.  相似文献   

3.
Abstract: The β-amyloid peptide (Aβ) is a normal proteolytic processing product of the amyloid precursor protein, which is constitutively expressed by many, if not most, cells. For reasons that are still unclear, Aβ is deposited in an aggregated fibrillar form in both diffuse and senile plaques in the brains of patients with Alzheimer's disease (AD). The factor(s) responsible for the clearance of soluble Aβ from biological fluids or tissues are poorly understood. We now report that human α2-macroglobulin (α2M), a major circulating endoproteinase inhibitor, which has recently been shown to be present in senile plaques in AD, binds 125I-Aβ(1–42) with high affinity (apparent dissociation constant of 3.8 × 10?10M). Approximately 1 mol of Aβ is bound per mole of α2M. Both native and methylamine-activated α2M bind 125I-Aβ(1–42). The binding of 125I-Aβ(1–42) to α2M is enhanced by micromolar concentrations of Zn2+ (but not Ca2+) and is inhibited by noniodinated Aβ(1–42) and Aβ(1–40) but not by the reverse peptide Aβ(40-1) or the cytokines interleukin 1β or interleukin 2. α1-Antichymotrypsin, another plaque-associated protein, inhibits both the binding of 125I-Aβ(1–42) to α2M as well as the degradation of 125I-Aβ(1–42) by proteinase-activated α2M. Moreover, the binding of 125I-Aβ(1–42) to α2M protects the peptide from proteolysis by exogenous trypsin. These data suggest that α2M may function as a carrier protein for Aβ and could serve to either facilitate or impede clearance of Aβ from tissues such as the brain.  相似文献   

4.
Deposition of beta‐amyloid (Aβ) is considered as an important early event in the pathogenesis of Alzheimer's Disease (AD), and reduction of Aβ levels by various therapeutic approaches is actively being pursued. A potentially non‐inflammatory approach to facilitate clearance and reduce toxicity is to hydrolyze Aβ at its α‐secretase site. We have previously identified a light chain fragment, mk18, with α‐secretase‐like catalytic activity, producing the 1–16 and 17–40 amino acid fragments of Aβ40 as primary products, although hydrolysis is also observed following other lysine and arginine residues. To improve the specific activity of the recombinant antibody by affinity maturation, we constructed a single chain variable fragment (scFv) library containing a randomized CDR3 heavy chain region. A biotinylated covalently reactive analog mimicking α‐secretase site cleavage was synthesized, immobilized on streptavidin beads, and used to select yeast surface expressed scFvs with increased specificity for Aβ. After two rounds of selection against the analog, yeast cells were individually screened for proteolytic activity towards an internally quenched fluorogenic substrate that contains the α‐secretase site of Aβ. From 750 clones screened, the two clones with the highest increase in proteolytic activity compared to the parent mk18 were selected for further study. Kinetic analyses using purified soluble scFvs showed a 3‐ and 6‐fold increase in catalytic activity (kcat/KM) toward the synthetic Aβ substrate compared to the original scFv primarily due to an expected decrease in KM rather than an increase in kcat. This affinity maturation strategy can be used to select for scFvs with increased catalytic specificity for Aβ. These proteolytic scFvs have potential therapeutic applications for AD by decreasing soluble Aβ levels in vivo. © 2009 American Institute of Chemical Engineers. Biotechnol. Prog., 2009  相似文献   

5.
The molecular mechanisms governing γ‐secretase cleavage specificity are not fully understood. Herein, we demonstrate that extending the transmembrane domain of the amyloid precursor protein‐derived C99 substrate in proximity to the cytosolic face strongly influences γ–secretase cleavage specificity. Sequential insertion of leucines or replacement of membrane‐anchoring lysines by leucines elevated the production of Aβ42, whilst lowering production of Aβ40. A single insertion or replacement was sufficient to produce this phenotype, suggesting that the helical length distal to the ε–site is a critical determinant of γ‐secretase cleavage specificity. Replacing the lysine at the luminal membrane border (K28) with glutamic acid (K28E) increased Aβ37 and reduced Aβ42 production. Maintaining a positive charge with an arginine replacement, however, did not alter cleavage specificity. Using two potent and structurally distinct γ–secretase modulators (GSMs), we elucidated the contribution of K28 to the modulatory mechanism. Surprisingly, whilst lowering the potency of the non‐steroidal anti‐inflammatory drug‐type GSM, the K28E mutation converted a heteroaryl‐type GSM to an inverse GSM. This result implies the proximal lysine is critical for the GSM mechanism and pharmacology. This region is likely a major determinant for substrate binding and we speculate that modulation of substrate binding is the fundamental mechanism by which GSMs exert their action.  相似文献   

6.
Given that amyloid‐β 42 (Aβ42) is believed to be a culprit in Alzheimer's disease (AD), reducing Aβ42 production should be a potential therapeutic approach. γ‐Secretase modulators (GSMs) cause selective reduction of Aβ42 or both reduction of Aβ42 and Aβ40 without affecting total Aβ through shifting the γ‐cleavage position in amyloid precursor protein. We recently reported on GSM‐2, one of the second‐generation GSMs, that selectively reduced brain Aβ42 level and significantly ameliorated cognitive deficits in plaque‐free 5.5‐month‐old Tg2576 AD model mice. Here, we investigated the effects of GSM‐2 on 10‐, 14‐, and 18‐month‐old mice which had age‐dependent increase in amyloid plaques. Eight‐day treatment with GSM‐2 significantly ameliorated cognitive deficits measured by Y‐maze task in the mice of any age. However, GSM‐2 reduced brain soluble Aβ42 only in 10‐month‐old mice. In contrast, GSM‐2 markedly reduced newly synthesized soluble Aβ42 in both 10‐ and 18‐month‐old mice with similar efficacy when measured using the stable isotope‐labeling technique, suggesting that nascent Aβ42 plays a more significant role than plaque‐associated soluble Aβ42 in the cognitive deterioration of Tg2576 mice. These findings further indicate the potential utility of approach to reducing Aβ42 synthesis in AD therapeutic regimens.  相似文献   

7.
An important pathological hallmark of Alzheimer's disease (AD) is the deposition of amyloid‐beta (Aβ) peptides in the brain parenchyma, leading to neuronal death and impaired learning and memory. The protease γ‐secretase is responsible for the intramembrane proteolysis of the amyloid‐β precursor protein (APP), which leads to the production of the toxic Aβ peptides. Thus, an attractive therapeutic strategy to treat AD is the modulation of the γ‐secretase activity, to reduce Aβ42 production. Because phosphorylation of proteins is a post‐translational modification known to modulate the activity of many different enzymes, we used electrospray (LC‐MS/MS) mass spectrometry to identify new phosphosites on highly purified human γ‐secretase. We identified 11 new single or double phosphosites in two well‐defined domains of Presenilin‐1 (PS1), the catalytic subunit of the γ‐secretase complex. Next, mutagenesis and biochemical approaches were used to investigate the role of each phosphosite in the maturation and activity of γ‐secretase. Together, our results suggest that the newly identified phosphorylation sites in PS1 do not modulate γ‐secretase activity and the production of the Alzheimer's Aβ peptides. Individual PS1 phosphosites shall probably not be considered therapeutic targets for reducing cerebral Aβ plaque formation in AD.

  相似文献   


8.
Abstract: The serine protease inhibitor α1-antichymotrypsin (ACT) consistently colocalizes with amyloid deposits of Alzheimer's disease (AD) and may contribute to the generation of amyloid proteins and/or physically affect fibril assembly. AD amyloid fibrils are composed primarily of Aβ, which is a proteolytic fragment of the larger β-amyloid precursor protein. Using negative-stain and immunochemical electron microscopy, we have investigated the binding of ACT to the fibrils formed by four synthetic Aβ analogues corresponding to the wild-type human 1–40 sequence [HWt(1–40)], a 1–40 peptide [HDu(1–40)] containing the Glu22→ Gln mutation found in hereditary cerebral hemorrhage with amyloidosis of the Dutch type, the N-terminal 1–28 residues [β(1–28)], and an internal fragment of Aβ containing residues 11–28 [β(11–28)]. Each of these peptide analogues assembled into 70–90-Å-diameter fibrils resembling native amyloid and, except for β(11–28), bound ACT, as indicated by the appearance of 80–100-Å globular particles that adhered to preformed fibrils and that could be decorated with anti-ACT antibodies. Under the conditions used, ACT binding destabilized the in vitro fibrils and produced a gradual dissolution of the macromolecular assemblies into constituent filaments and shorter fragments. The internal fragment (11–28) did not exhibit ACT binding or any structural changes. These results suggest that a specific sequence likely contained within the N-terminal 10 residues of Aβ is responsible for the formation of the ACT-amyloid complex. Although the observed fibril disassembly is surprising in view of the notion that ACT contributes directly to the physical process involved in amyloid fibril formation, the induced structural changes may expose new domains in Aβ for additional proteolysis or for interactions with cell-surface receptors.  相似文献   

9.
The biological underpinnings linking stress to Alzheimer's disease (AD) risk are poorly understood. We investigated how corticotrophin releasing factor (CRF), a critical stress response mediator, influences amyloid‐β (Aβ) production. In cells, CRF treatment increases Aβ production and triggers CRF receptor 1 (CRFR1) and γ‐secretase internalization. Co‐immunoprecipitation studies establish that γ‐secretase associates with CRFR1; this is mediated by β‐arrestin binding motifs. Additionally, CRFR1 and γ‐secretase co‐localize in lipid raft fractions, with increased γ‐secretase accumulation upon CRF treatment. CRF treatment also increases γ‐secretase activity in vitro, revealing a second, receptor‐independent mechanism of action. CRF is the first endogenous neuropeptide that can be shown to directly modulate γ‐secretase activity. Unexpectedly, CRFR1 antagonists also increased Aβ. These data collectively link CRF to increased Aβ through γ‐secretase and provide mechanistic insight into how stress may increase AD risk. They also suggest that direct targeting of CRF might be necessary to effectively modulate this pathway for therapeutic benefit in AD, as CRFR1 antagonists increase Aβ and in some cases preferentially increase Aβ42 via complex effects on γ‐secretase.  相似文献   

10.
The β‐amyloid peptides (Aβ), Aβ1–40 and Aβ1–42, have been implicated in Alzheimer's disease (AD) pathology. Although Aβ1–42 is generally considered to be the pathological peptide in AD, both Aβ1–40 and Aβ1–42 have been used in a variety of experimental models without discrimination. Here we show that monomeric or oligomeric forms of the two Aβ peptides, when interact with the neuronal cation channel, α7 nicotinic acetylcholine receptors (α7nAChR), would result in distinct physiologic responses as measured by acetylcholine release and calcium influx experiments. While Aβ1–42 effectively attenuated these α7nAChR‐dependent physiology to an extent that was apparently irreversible, Aβ1–40 showed a lower inhibitory activity that could be restored upon washings with physiologic buffers or treatment with α7nAChR antagonists. Our data suggest a clear pharmacological distinction between Aβ1–40 and Aβ1–42. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 25–30, 2003  相似文献   

11.
γ‐Secretase plays a central role in the generation of the Alzheimer disease‐causing amyloid β‐peptide (Aβ) from the β‐amyloid precursor protein (APP) and is thus a major Alzheimer′s disease drug target. As several other γ‐secretase substrates including Notch1 and CD44 have crucial signaling functions, an understanding of the mechanism of substrate recognition and cleavage is key for the development of APP selective γ‐secretase‐targeting drugs. The γ‐secretase active site domain in its catalytic subunit presenilin (PS) 1 has been implicated in substrate recognition/docking and cleavage. Highly critical in this process is its GxGD active site motif, whose invariant glycine residues cannot be replaced without causing severe functional losses in substrate selection and/or cleavage efficiency. Here, we have investigated the contribution of the less well characterized residue x of the motif (L383 in PS1) to this function. Extensive mutational analysis showed that processing of APP was overall well‐tolerated over a wide range of hydrophobic and hydrophilic mutations. Interestingly, however, most L383 mutants gave rise to reduced levels of Aβ37–39 species, and several increased the pathogenic Aβ42/43 species. Several of the Aβ42/43‐increasing mutants severely impaired the cleavages of Notch1 and CD44 substrates, which were not affected by any other L383 mutation. Our data thus establish an important, but compared with the glycine residues of the motif, overall less critical functional role for L383. We suggest that L383 and the flanking glycine residues form a spatial arrangement in PS1 that is critical for docking and/or cleavage of different γ‐secretase substrates.  相似文献   

12.
We have recently reported that a ~19‐kDa polypeptide, rPK‐4, is a protein kinase Cs inhibitor that is 89% homologous to the 1171–1323 amino acid region of the 228‐kDa human pericentriolar material‐1 (PCM‐1) protein (Chakravarthy et al. 2012). We have now discovered that rPK‐4 binds oligomeric amyloid‐β peptide (Aβ)1‐42 with high affinity. Most importantly, a PCM‐1‐selective antibody co‐precipitated Aβ and amyloid β precursor protein (AβPP) from cerebral cortices and hippocampi from AD (Alzheimer's disease) transgenic mice that produce human AβPP and Aβ1‐42, suggesting that PCM‐1 may interact with amyloid precursor protein/Aβ in vivo. We have identified rPK‐4′s Aβ‐binding domain using a set of overlapping synthetic peptides. We have found with ELISA, dot‐blot, and polyacrylamide gel electrophoresis techniques that a ~ 5 kDa synthetic peptide, amyloid binding peptide (ABP)‐p4‐5 binds Aβ1‐42 at nM levels. Most importantly, ABP‐p4‐5, like rPK‐4, appears to preferentially bind Aβ1‐42 oligomers, believed to be the toxic AD‐drivers. As expected from these observations, ABP‐p4‐5 prevented Aβ1‐42 from killing human SH‐SY5Y neuroblastoma cells via apoptosis. These findings indicate that ABP‐p4‐5 is a possible candidate therapeutic for AD.  相似文献   

13.
γ-Secretase-mediated cleavage of amyloid precursor protein (APP) results in the production of Alzheimer disease-related amyloid-β (Aβ) peptides. The Aβ42 peptide in particular plays a pivotal role in Alzheimer disease pathogenesis and represents a major drug target. Several γ-secretase modulators (GSMs), such as the nonsteroidal anti-inflammatory drugs (R)-flurbiprofen and sulindac sulfide, have been suggested to modulate the Alzheimer-related Aβ production by targeting the APP. Here, we describe novel GSMs that are selective for Aβ modulation and do not impair processing of Notch, EphB2, or EphA4. The GSMs modulate Aβ both in cell and cell-free systems as well as lower amyloidogenic Aβ42 levels in the mouse brain. Both radioligand binding and cellular cross-competition experiments reveal a competitive relationship between the AstraZeneca (AZ) GSMs and the established second generation GSM, E2012, but a noncompetitive interaction between AZ GSMs and the first generation GSMs (R)-flurbiprofen and sulindac sulfide. The binding of a (3)H-labeled AZ GSM analog does not co-localize with APP but overlaps anatomically with a γ-secretase targeting inhibitor in rodent brains. Combined, these data provide compelling evidence of a growing class of in vivo active GSMs, which are selective for Aβ modulation and have a different mechanism of action compared with the original class of GSMs described.  相似文献   

14.
Gradual changes in steady-state levels of beta amyloid peptides (Aβ) in brain are considered an initial step in the amyloid cascade hypothesis of Alzheimer's disease. Aβ is a product of the secretase cleavage of amyloid precursor protein (APP). There is evidence that the membrane lipid environment may modulate secretase activity and alters its function. Cleavage of APP strongly depends on membrane properties. Since Aβ perturbs cell membrane fluidity, the cell membrane may be the location where the neurotoxic cascade of Aβ is initiated. Therefore, we tested effects of oligomeric Aβ on membrane fluidity of whole living cells, the impact of exogenous and cellular Aβ on the processing of APP and the role of GM-1 ganglioside. We present evidence that oligoAβ(1-40) stimulates the amyloidogenic processing of APP by reducing membrane fluidity and complexing with GM-1 ganglioside. This dynamic action of Aβ may start a vicious circle, where endogenous Aβ stimulates its own production. Based on our novel findings, we propose that oligoAβ(1-40) accelerates the proteolytic cleavage of APP by decreasing membrane fluidity.  相似文献   

15.
Gamma-secretase modulators (GSMs) selectively inhibit the production of amyloid-β 42 (Aβ42) and may therefore be useful in the management of Alzheimer’s disease. Most heterocyclic GSMs that are not derived from nonsteroidal anti-inflammatory drugs contain an arylimidazole moiety that potentially inhibits cytochrome P450 (CYP) activity. Here, we discovered imidazopyridine derivatives that represent a new class of scaffold for GSMs, which do not have a strongly basic end group such as arylimidazole. High-throughput screening identified 2-methyl-8-[(2-methylbenzyl)oxy]-3-(pyridin-4-yl)imidazo[1,2-a]pyridine (3a), which inhibited the cellular production of Aβ42 (IC50?=?7.1?µM) without changing total production of Aβ. Structural optimization of this series of compounds identified 5-[8-(benzyloxy)-2-methylimidazo[1,2-a]pyridin-3-yl]-2-ethylisoindolin-1-one (3m) as a potent inhibitor of Aβ42 (IC50?=?0.39?µM) but not CYP3A4. Further, 3m demonstrated a sustained pharmacokinetic profile in mice and sufficiently penetrated the brain.  相似文献   

16.
The mechanisms by which mutations in the presenilins (PSEN) or the amyloid precursor protein (APP) genes cause familial Alzheimer disease (FAD) are controversial. FAD mutations increase the release of amyloid β (Aβ)42 relative to Aβ40 by an unknown, possibly gain‐of‐toxic‐function, mechanism. However, many PSEN mutations paradoxically impair γ‐secretase and ‘loss‐of‐function’ mechanisms have also been postulated. Here, we use kinetic studies to demonstrate that FAD mutations affect Aβ generation via three different mechanisms, resulting in qualitative changes in the Aβ profiles, which are not limited to Aβ42. Loss of ε‐cleavage function is not generally observed among FAD mutants. On the other hand, γ‐secretase inhibitors used in the clinic appear to block the initial ε‐cleavage step, but unexpectedly affect more selectively Notch than APP processing, while modulators act as activators of the carboxypeptidase‐like (γ) activity. Overall, we provide a coherent explanation for the effect of different FAD mutations, demonstrating the importance of qualitative rather than quantitative changes in the Aβ products, and suggest fundamental improvements for current drug development efforts.  相似文献   

17.
The aggregation of soluble amyloid‐beta (Aβ) peptide into oligomers/fibrils is one of the key pathological features in Alzheimer's disease (AD). The Aβ aggregates are considered to play a pivotal role in the pathogenesis of AD. Therefore, inhibiting Aβ aggregation and destabilizing preformed Aβ fibrils would be an attractive therapeutic target for prevention and treatment of AD. S14G‐humanin (HNG), a synthetic derivative of Humanin (HN), has been shown to be a strong neuroprotective agent against various AD‐related insults. Recent studies have shown that HNG can significantly improve cognitive deficits and reduce insoluble Aβ levels as well as amyloid plaque burden without affecting amyloid precursor protein processing and Aβ production in transgenic AD models. However, the potential mechanisms by which HNG reduces Aβ‐related pathology in vivo remain obscure. In the present study, we found that HNG could significantly inhibit monomeric Aβ1–42 aggregation into fibrils and destabilize preformed Aβ1–42 fibrils in a concentration‐dependent manner by Thioflavin T fluorescence assay. In transmission electron microscope study, we observed that HNG was effective in inhibiting Aβ1–42 fibril formation and disrupting preformed Aβ1–42 fibrils, exhibiting various types of amorphous aggregates without identifiable Aβ fibrils. Furthermore, HNG‐treated monomeric or fibrillar Aβ1–42 was found to significantly reduce Aβ1–42‐mediated cytotoxic effects on PC12 cells in a dose‐dependent manner by MTT assay. Collectively, our results demonstrate for the first time that HNG not only inhibits Aβ1–42 fibril formation but also disaggregates preformed Aβ1–42 fibrils, which provides the novel evidence that HNG may have anti‐Aβ aggregation and fibrillogenesis, and fibril‐destabilizing properties. Together with previous studies, we concluded that HNG may have promising therapeutic potential as a multitarget agent for the prevention and/or treatment of AD. Copyright © 2013 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

18.
19.
γ-Secretase modulators (GSMs) have received much attention as potential therapeutic agents for Alzheimer's disease (AD). GSMs increase the ratio between short and long forms of the amyloid-β (Aβ) polypeptides produced by γ-secretase and thereby decrease the amount of the toxic amyloid species. However, the mechanism of action of these agents is still poorly understood. One recent paper [Richter et al. (2010) Proc. Natl. Acad. Sci. U. S. A.107, 14597-14602] presented data that were interpreted to support direct binding of the GSM sulindac sulfide to Aβ(42), supporting the notion that GSM action is linked to direct binding of these compounds to the Aβ domain of its immediate precursor, the 99-residue C-terminal domain of the amyloid precursor protein (C99, also known as the β-CTF). Here, contrasting results are presented that indicate there is no interaction between monomeric sulindac sulfide and monomeric forms of Aβ42. Instead, it was observed that sulindac sulfide is itself prone to form aggregates that can bind nonspecifically to Aβ42 and trigger its aggregation. This observation, combined with data from previous work [Beel et al. (2009) Biochemistry48, 11837-11839], suggests both that the poor behavior of some NSAID-based GSMs in solution may obscure results of binding assays and that NSAID-based GSMs do not function by directly targeting C99. It was also observed that another GSM, flurbiprofen, fails to bind to monomeric Aβ42 or to C99 reconstituted into bilayered lipid vesicles. These results disfavor the hypothesis that these NSAID-based GSMs exert their modulatory effect by directly targeting a site located in the Aβ42 domain of free C99.  相似文献   

20.
The amyloid peptides Aβ40 and Aβ42 of Alzheimer's disease are thought to contribute differentially to the disease process. Although Aβ42 seems more pathogenic than Aβ40, the reason for this is not well understood. We show here that small alterations in the Aβ42:Aβ40 ratio dramatically affect the biophysical and biological properties of the Aβ mixtures reflected in their aggregation kinetics, the morphology of the resulting amyloid fibrils and synaptic function tested in vitro and in vivo. A minor increase in the Aβ42:Aβ40 ratio stabilizes toxic oligomeric species with intermediate conformations. The initial toxic impact of these Aβ species is synaptic in nature, but this can spread into the cells leading to neuronal cell death. The fact that the relative ratio of Aβ peptides is more crucial than the absolute amounts of peptides for the induction of neurotoxic conformations has important implications for anti‐amyloid therapy. Our work also suggests the dynamic nature of the equilibrium between toxic and non‐toxic intermediates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号