首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The transient Ca2+ and Ca2+-dependent Cl? currents in the plasma membrane of voltage-clamped cells of the freshwater alga Chara corallina were studied. We used our own earlier proposed method, which utilized a rapid (~10 ms) injection of Ca2+ ions into the cell during the deactivation period of calcium channels after their activation with a positive voltage pulse (injection with a “tail” Ca2+ current). This procedure makes it possible to determine the amplitude of the Ca2+ component in the transient current as well as the amplitude and kinetics of the Cl? component, dependent on the Ca2+ submembrane concentration. The calculated results, which used a cell model that takes the diffusion of Ca2+, the Ca2+-buffering properties of the cytoplasm, and the nonlinear dependence of i Cl on [Ca2+]cyt, as well as the presence of chloroplasts into account, were in good agreement with the actual behavior of transient current in the experiments. It was demonstrated that the duration of the slow stage of [Ca2+]cyt relaxation to the resting level (~10?7 M) (which is related to the function of Ca2+-ATPases), was ~102 s. This suggests that the slow stage determines the duration of the refractory period after generation of the action potential.  相似文献   

2.
Voltage-activated Ca2+ currents in insulin-secreting cells   总被引:6,自引:0,他引:6  
I Findlay  M J Dunne 《FEBS letters》1985,189(2):281-285
Membrane voltage and voltage-clamped membrane currents have been investigated with the whole-cell patch clamp method in the insulin-secreting cell line RINm5F. The mean resting membrane potential of RINm5F cells was found to be -52 mV. Overshooting spike potentials could be evoked by depolarising voltage steps in the absence of a secretagogue. Inward membrane currents evoked by depolarising voltage steps were dependent upon extracellular Ca2+ and blocked by Co2+, nifedipine and verapamil. Outward membrane currents which were evoked by depolarising voltage steps to positive membrane potentials were reduced when Ca2+ entry was prevented. It is concluded that the voltage-activated Ca2+ currents underlie the voltage-activated spike potentials recorded from insulin-secreting cells.  相似文献   

3.
Summary The mechanism of Ca2+ regulation of the cytoplasmic streaming in characean cells was studied in relation to protein phosphorylation and dephosphorylation. A tonoplast-free cell model was developed which was sensitive to Ca2+. Protein phosphatase-1 and its inhibitor-1 were applied into the tonoplast-free cells. A synthetic inhibitor of protein phosphatase, -naphthylphosphate, was applied either to tonoplast-free cells from inside or to the outside of plasmalemma-permeabilized cells which are known to be very sensitive to Ca2+. ATP--S applied to permeabilized cells strongly inhibited the recovery of the streaming which had been stopped by 10 M Ca2+. Both inhibitor-l and -naphthylphosphate inhibited the streaming even in the absence of Ca2+. On the other hand, protein phosphatase-l recovered the streaming even in the presence of Ca2+.The results indicate that characean streaming is regulated by the phosphorylation state of a regulatory and/or motile protein component. Streaming is activated when the component is dephosphorylated and inactivated when the component is phosphorylated. Ca2+ is assumed to stimulate both phosphorylation and dephosphorylation of the component. Involvement of Ca2+/calmodulin in the streaming recovery was discussed in terms of the stimulation of dephosphorylation.Abbreviations ATP -S, Adenosine-5-O-(3-thiotriphosphate) - -NP -naphthylphosphate - EGTA ethylenglycol-bis-(-aminoethylether)N,N-tetraacetic acid - PIPES piperazine-N,N-bis(2-ethanesulfonic acid)  相似文献   

4.
Effects of local anesthetics (LA) and a number of organic cations on Ca2+-activated Cl-channels in plasmalemma of intracellularly perfused giant algae Nitellopsis obtusa were studied using voltage-clamp technique. It was shown earlier that Ca2+ ions cause irreversible inactivation of Cl-channels with a characteristic time equal to a few minutes, but not only activate Cl-channels. It has been found that amphiphilic cations (AC), including LA+, introduced intracellularly together with Ca2+ produced delayed action on the beginning of the inactivation process (approximately ten minutes) producing no effect on activation during this period. The time of delayed action was linearly dependent on the concentrations ratio alpha = [AC]/[Ca2+]. Procaine is the most effective agent in this respect, the time of its delayed action on the inactivation process being 20 min at alpha = 1. LA in the neural form, hydrophilic AC of tetraethylammonium, as well as LA+ from the outside had no effect on Cl-channels. Cl-channels inactivated "irreversibly" by Ca2+ ions may be restored after addition of AC in Ca2+-containing perfusion medium.  相似文献   

5.
Enterochromaffin-like (ECL) cells are histamine-containingendocrine cells in the gastric mucosa that maintain a negative membranepotential of about 50 mV, largely due to voltage-gated K+ currents [D. F. Loo, G. Sachs, and C. Prinz. Am. J. Physiol. 270 (Gastrointest Liver Physiol. 33):G739-G745, 1996]. The current study investigated thepresence of voltage-gated Ca2+channels in single ECL cells. ECL cells were isolated from rat fundicmucosa by elutriation, density gradient centrifugation, and primaryculture to a purity >90%. Voltage-gatedCa2+ currents were measured insingle ECL cells using the whole cell configuration of the patch-clamptechnique. Depolarization-activated currents were recorded in thepresence of Na+ orK+ blocking solutions and additionof 20 mM extracellular Ca2+. ECLcells showed inward currents in response to voltage steps that wereactivated at a test potential of around 20 mV with maximalinward currents observed at +20 mV and 20 mM extracellular Ca2+. The inactivation rate of thecurrent decreased with increasingly negative holding potentials and wastotally abolished at a holding potential of 30 mV. Addition ofextracellular 20 mM Ba2+ insteadof 20 mM Ca2+ increased thedepolarization-induced current and decreased the inactivation rate. Theinward current was fully inhibited by the specific L-typeCa2+ channel inhibitor verapamil(0.2 mM) and was augmented by the L-typeCa2+ channel activator BAY K 8644 (0.07 mM). We conclude that depolarization activateshigh-voltage-activated Ca2+channels in ECL cells. Activation characteristics,Ba2+ effects, and pharmacologicalresults imply the presence of L-type Ca2+ channels, whereasinactivation kinetics suggest the presence of additional N-typechannels in rat gastric ECL cells.

  相似文献   

6.
7.
The whole-cell voltage clamp technique was used to study the slow inward currents and K+ outward currents in single heart cells of embryonic chick and in rabbit aortic cells. In single heart cells of 3-day-old chick embryo three types of slow inward Na+ currents were found. The kinetics and the pharmacology of the slow INa were different from those of the slow ICa in older embryos. Two types of slow inward currents were found in aortic single cells of rabbit; angiotensin II increased the sustained type and d-cAMP and d-cGMP decreased the slow transient component. Two types of outward K+ currents were found in both aortic and heart cells. Single channel analysis demonstrated the presence of a high single K+ channel conductance in aortic cells. In cardiac and vascular smooth muscles, slow inward currents do share some pharmacological properties, although the regulation of these channels by cyclic nucleotides and several drugs seems to be different.  相似文献   

8.
Summary The whole-cell voltage clamp technique was used to study the slow inward currents and K+ outward currents in single heart cells of embryonic chick and in rabbit aortic cells. In single heart cells of 3-day-old chick embryo three types of slow inward Na+ currents were found. The kinetics and the pharmacology of the slow INa, were different from those of the slow Ica in older embryos. Two types of slow inward currents were found in aortic single cells of rabbit; angiotensin 11 increased the sustained type and d-cAMP and d-cGMP decreased the slow transient component. Two types of outward K+ currents were found in both aortic and heart cells. Single channel analysis demonstrated the presence of a high single K+ channel conductance in aortic cells. In cardiac and vascular smooth muscles, slow inward currents do share some pharmacological properties, although the regulation of these channels by cyclic nucleotides and several drugs seems to be different.  相似文献   

9.
Single Ca2+ channel and whole cell currents were measured in smooth muscle cells dissociated from resistance-sized (100-microns diameter) rat cerebral arteries. We sought to quantify the magnitude of Ca2+ channel currents and activity under the putative physiological conditions of these cells: 2 mM [Ca2+]o, steady depolarizations to potentials between -50 and -20 mV, and (where possible) without extrinsic channel agonists. Single Ca2+ channel conductance was measured over a broad range of Ca2+ concentrations (0.5-80 mM). The saturating conductance ranged from 1.5 pS at 0.5 mM to 7.8 pS at 80 mM, with a value of 3.5 pS at 2 mM Ca (unitary currents of 0.18 pA at -40 mV). Both single channel and whole cell Ca2+ currents were measured during pulses and at steady holding potentials. Ca2+ channel open probability and the lower limit for the total number of channels per cell were estimated by dividing the whole-cell Ca2+ currents by the single channel current. We estimate that an average cell has at least 5,000 functional channels with open probabilities of 3.4 x 10(-4) and 2 x 10(-3) at -40 and -20 mV, respectively. An average of 1-10 (-40 mV and -20 mV, respectively) Ca2+ channels are thus open at physiological potentials, carrying approximately 0.5 pA steady Ca2+ current at -30 mV. We also observed a very slow reduction in open probability during steady test potentials when compared with peak pulse responses. This 4- 10-fold reduction in activity could not be accounted for by the channel's normal inactivation at our recording potentials between -50 and -20 mV, implying that an additional slow inactivation process may be important in regulating Ca2+ channel activity during steady depolarization.  相似文献   

10.
C. Plieth  U. P. Hansen 《Protoplasma》1998,203(3-4):210-213
Summary The explanation of the coupling between butyrateinduced changes in cytosolic pH and pCa by means of a H+/Ca2+ exchange buffer as proposed by Plieth et al. [Protoplasma (1997) 198: 107–124; 199: 223] was questioned by Schönknecht and Bethmann [Protoplasma (1998) 203: 206–209]. They suggested an allosteric control of binding similar to the Hill equation. Fitting the measured pH-pCa coupling shows that a distinction between the models requires data which would be outside the experimentally accessible range. Plausibility considerations provide a support for the exchange buffer. The Hill equation is just a phenomenological approach which does not account for the diversity of allosteric mechanisms. The benefits of the exchanger model are firstly its mechanistic simplicity and secondly its flexibility as the same set of equations can also be used for an allosteric interaction between H+- and Ca2+-binding sites. The model can easily be extended to include future more detailed data. Finally, the cytosolic buffer capacities for H+ and Ca2+ are discussed.  相似文献   

11.
Summary Recently Plieth et al. [Protoplasma (1997) 198: 107–124; 199: 223] gave a quantitative picture of the Ca2+ and H+ buffers in green algae which we would like to comment. In that paper a mechanistic model was derived which describes the relationship between cytosolic Ca2+ and H+ assuming that Ca2+ and H+ interact with the same binding site of a Ca2+-H+-exchange buffer. But the increase of the cytosolic free Ca2+ concentration observed upon acidification can alternatively be described by a co-operative (n=2) protonation of a Ca2+/H+-binding buffer pointing to an allosteric mechanism of Ca2+ liberation. Furthermore we present evidences that the cytosolic buffer capacities for H+ (90 mM/pH) and Ca2+ (20 mM/pCa) given for Eremosphaera viridis were overestimated by a factor of three and three orders of magnitude, respectively.Abbreviations [Ca2+]c free cytosolic - Ca2+ concentration  相似文献   

12.
13.
Effects of cannabinoids on endogenous potassium and calcium currents in HEK293 cells were studied using the whole-cell variant of the patch-clamp technique. The cannabinoid agonists WIN 55,212-2, methanandamide, and anandamide (1 microM) decreased the calcium current by 53.1 +/- 2.6, 47.5 +/- 1.2, and 38.8 +/- 3.1%, respectively, after transfection of human CB1 cannabinoid receptor (hCB1) cDNA into HEK293 cells. The delayed rectifier-like current was not changed after application of these agonists, but the inward rectifier was increased by 94.0 +/- 3.6, 83.7 +/- 5.1, and 63.0 +/- 2.5% after application of WIN 55,212-2, methanandamide, and anandamide, respectively. The effects of the cannabinoid antagonists (AM251, AM281, and AM630) on the inward rectifier and calcium currents were the opposite of those seen with cannabinoid agonists; thus, these compounds act as inverse agonists in this preparation. These results suggest that endogenous inward rectifier and calcium currents are modulated by cannabinoids in HEK293 cells, and that some expressed receptors may be constitutively active.  相似文献   

14.
These experiments were performed to determine the effects ofreducing Ca2+ influx(Cain) onK+ currents(IK) inmyocytes from rat small mesenteric arteries by1) adding externalCd2+ or2) lowering externalCa2+ to 0.2 mM. When measured froma holding potential (HP) of 20 mV(IK20),decreasing Cain decreasedIK at voltageswhere it was active (>0 mV). When measured from a HP of 60 mV(IK60),decreasing Cain increasedIK at voltagesbetween 30 and +20 mV but decreased IK at voltagesabove +40 mV. Difference currents(IK) weredetermined by digital subtraction of currents recorded under controlconditions from those obtained whenCain was decreased. At testvoltages up to 0 mV,IK60 exhibitedkinetics similar to controlIK60, with rapidactivation to a peak followed by slow inactivation. At 0 mV, peakIK60 averaged75 ± 13 pA (n = 8) withCd2+ and 120 ± 20 pA(n = 9) with lowCa2+ concentration. At testvoltages from 0 to +60 mV,IK60 always had an early positive peak phase, but its apparent "inactivation" increased with voltage and its steady value became negative above +20mV. At +60 mV, the initial peakIK60 averaged115 ± 18 pA with Cd2+ and 187 ± 34 pA with low Ca2+. With 10 mM pipette BAPTA, Cd2+ produced asmall inhibition ofIK20 but stillincreased IK60 between 30 and +10 mV. InCa2+-free external solution,Cd2+ only decreased bothIK20 andIK60. In thepresence of iberiotoxin (100 nM) to inhibitCa2+-activatedK+ channels(KCa),Cd2+ increasedIK60 at allvoltages positive to 30 mV while BAY K 8644 (1 µM) decreasedIK60. Theseresults suggest that Cain, through L-type Ca2+ channels and perhapsother pathways, increases KCa(i.e., IK20) and decreases voltage-dependent K+currents in this tissue. This effect could contribute to membrane depolarization and force maintenance.

  相似文献   

15.
16.
We have studied Ca2+ currents in ascidian eggs using the whole-cell clamp technique. T and L components, as observed in somatic cells, are present and the L-type current predominates. Since the IV relationship for these inward currents overlap at -30 mV, separation of the two components using different voltage regimes is not feasible. Increasing external Ca2+ results in larger currents. The L-type current decreases in a dose-dependent fashion in the presence of Mn2+ and Nifedipine, while the T-type current is inhibited in Ni2+. When Ba2+ was used as the carrier ion, channel kinetics and conductance were completely altered. Considering the density and kinetics of L-type channels in unfertilized eggs it is probable they play an important role in regulating cytosolic Ca2+ during early developmental processes.  相似文献   

17.
Previous models of cardiac Ca2+ sparks have assumed that Ca2+ currents through the Ca2+ release units (CRUs) were approximately 1-2 pA, producing sparks with peak fluorescence ratio (F/F(0)) of approximately 2.0 and a full-width at half maximum (FWHM) of approximately 1 microm. Here, we present actual Ca2+ sparks with peak F/F(0) of >6 and a FWHM of approximately 2 microm, and a mathematical model of such sparks, the main feature of which is a much larger underlying Ca2+ current. Assuming infinite reaction rates and no endogenous buffers, we obtain a lower bound of approximately 11 pA needed to generate a Ca2+ spark with FWHM of 2 microm. Under realistic conditions, the CRU current must be approximately 20 pA to generate a 2- microm Ca2+)spark. For currents > or =5 pA, the computed spark amplitudes (F/F(0)) are large (approximately 6-12 depending on buffer model). We considered several factors that might produce sparks with FWHM approximately 2 microm without using large currents. Possible protein-dye interactions increased the FWHM slightly. Hypothetical Ca2+ "quarks" had little effect, as did blurring of sparks by the confocal microscope. A clusters of CRUs, each producing 10 pA simultaneously, can produce sparks with FWHM approximately 2 microm. We conclude that cardiac Ca2+ sparks are significantly larger in peak amplitude than previously thought, that such large Ca2+ sparks are consistent with the measured FWHM of approximately 2 microm, and that the underlying Ca2+ current is in the range of 10-20 pA.  相似文献   

18.
The effects of bethanidine sulphate, a pharmacological analog of the cardiac antibrillatory drug, bretylium tosylate, were studied on action potentials (APs) and K+, Na+, and Ca2+ currents of single cultured embryonic chick heart cells using the whole-cell current clamp and voltage clamp technique. Extracellular application of bethanidine (3 X 10(-4) M) increased the overshoot and the duration of the APs and greatly decreased the outward K+ current (IK) and potentiated the inward fast Na+ currents (INa) and the inward slow calcium current (ICa). However, intracellular introduction of bethanidine (10(-4) M) blocked INa. In isolated atria of rat, bethanidine increased the force of contraction in a dose-dependent manner. These findings suggest that when applied extracellularly, bethanidine exerts a potentiating effect on the myocardial fast Na+ current and slow Ca2+ current and an inhibitory effect of IK. The positive inotropic effect of bethanidine could be due, at least in part, to an increase of Ca2+ influx via the slow Ca2+ channel and the Na-Ca exchange. It is suggested that the decrease of IK by bethanidine may account for its antifibrillatory action.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号