首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of chemical modification on milk clotting and proteolytic activities of aspartyl protease obtained from Rhizomucor miehei NRRL 3500 was examined in the absence and the presence of its specific inhibitor pepstatin A. The effect on the ratio of milk clotting activity (MC) to proteolytic activity (PA), an index of the quality of milk clotting proteases was also determined. Modification of the enzyme with trinitrobenzenesulfonic acid, diethylpyrocarbonate and phenylglyoxal produced an increase in the ratio of MC/PA, while modification with 2- hydroxy-5-nitrobenzyl bromide did not affect the ratio. Modification with N-acetylimidazole resulted in a marginal increase in MC/PA ratio. Protection using pepstatin A during modification with phenylglyoxal, N-acetylimidazole and 2-hydroxy-5-nitrobenzyl bromide, protected both MC and PA. In the case of modification by diethylpyrocarbonate, pepstatin A protected only MC. Pepstatin A did not protect both the activities on the modification of the enzyme by trinitrobenzene sulfonic acid. These observations indicate the presence of arginine, tyrosine and tryptophan at the catalytic site of the enzyme, for eliciting MC and PA of the enzyme. In general, modification of the positively charged residues increases the MC/PA ratio of the enzyme. In addition the modified lysine residues responsible for the inactivation of the enzyme were not involved in the active site of the enzyme. Thus the lysine residues might have a secondary role in enzyme catalysis. Further, histidine at the catalytic site was found to be exclusively involved in milk clotting activity. The enzyme with modified histidine residues were more susceptible to autocatalysis, indicating that histidine residues protect the enzyme against autolysis.  相似文献   

2.
The effect of chemical modification of various amino acid residues on the enzymatic activity of glucoamylase from Asp. awamori was studied. Modification of the carboxyl groups by taurine in the presence of water-soluble carbodiimide results in complete inactivation of the enzyme. The inactivation process includes two steps, namely non-specific modification and modification of the active center carboxyls. The rate constants of inactivation at both steps were measured in the presence and absence of the substrate, i. e. maltose. It was shown that the enzyme is inactivated by N-bromosuccinimide. Based on the data on the protection of the enzyme active center by the substrates (maltooligosaccharides of various lengths), it was concluded that the essential tryptophane residue(s) is localized in the fourth subsite. Ethoxycarbonylation, nitration and acetylation of glucoamylase do not change the catalytic activity of the enzyme. The protein was shown to contain no SH-groups.  相似文献   

3.
Glyoxalase I ((R)-S-lactoylglutathione methylglyoxal-lyase (isomerizing), EC 4.4.1.5) from monkey intestinal mucosa was purified to homogeneity. The purified enzyme had a molecular weight of 48,000, composed of two apparently identical subunits. Active-site modification was carried out on the purified enzyme in presence and absence of S-hexylglutathione, a reversible competitive inhibitor of glyoxalase I. Modification by tetranitromethane and N-acetylimidazole caused inactivation of the enzyme. Inactivation by N-acetylimidazole was reversible with hydroxylamine treatment, suggesting the importance of tyrosine residues for the activity of the enzyme. The enzyme was inactivated by 2-hydroxy-5-nitrobenzyl bromide, N-bromosuccinimide, 2,4,6-trinitrobenzenesulphonic acid, pyridoxal phosphate and 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide, indicating the importance of tryptophan, lysine and glutamic acid/aspartic acid residues for the activity of the enzyme. The enzyme was inactivated by diethyl pyrocarbonate and the activity was not restored by hydroxylamine treatment, suggesting that histidine residues may not be important for activity. Modification by N-ethylmaleimide and p-hydroxymercuribenzoate did not affect its activity, indicating that sulphydryl groups may not be important for activity. These studies indicated that the amino acids present in the active site of glyoxalase I from intestinal mucosa which may be important for activity are tyrosine, tryptophan, lysine and glutamic acid/aspartic acid residues.  相似文献   

4.
Tryptophanase purified from Escherichia coli B/1t7-A was irreversibly inactivated by chloramine T (sodium N-chloro-p-toluenesulfonamide). The mode of inactivation was rather complex and did not follow pseudo-first-order kinetics. The inactivation of the apoenzyme was much faster than that of the holoenzyme. The Km value for the synthetic substrate S-o-nitrophenyl-L-cysteine (SOPC) increased concomitantly with the modification. In contrast, the Km value for the coenzyme, pyridoxal 5'-phosphate (PLP), was not altered. L-Serine, another substrate, and L-alanine, a competitive inhibitor, protected the enzyme from inactivation. Determination of SH groups in the enzyme protein with 5,5'-dithiobis(2-nitrobenzoic acid) (DTNB) showed that modification of two SH groups per enzyme subunit resulted in a complete inactivation. When the enzyme was subjected to chloramine T-modification following the SH group modification with DTNB, further inactivation was still observed, even after the addition of dithiothreitol. The SH-blocked enzyme preparation thus obtained, however, exhibited less pH dependency of inactivation by chloramine T than that of the native enzyme. The amino acid analysis of the chloramine T-modified enzyme showed that modification of four or five methionine residues among the 16 residues per subunit proceeded concomitantly with the complete inactivation. Modification of the enzyme with chloramine T quenched the absorption peak near 500 nm, characteristic of a quinoidal structure formed by labilization of the alpha-proton. These results suggest the possibility that chloramine T modifies not only the SH groups, but also methionine residues important for the catalytic activity of the enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The function of arginine, cysteine and carboxylic amino acid (glutamic and aspartic) residues of sigma was studied using chemical modification by group specific reagents. Following modification of 3 arginine residues with phenylglyoxal or 3 cysteine residues with N-ethylmaleimide (NEM) sigma activity was lost. Analysis of the kinetic data for inactivation indicated that one arginine or cysteine residue is essential for sigma activity. At low NEM concentration alkylation was limited to a non-critical cysteine which was identified as cysteine-132. Modification of arginine or cysteine residues had no observable effect on the binding of the inactivated sigma to the core polymerase. Modification of aspartic and/or glutamic acid residues with the water-soluble carbodiimides 1-ethyl-3-(3-dimethylamino-propyl) carbodiimide hydrochloride (EDC) or 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfonate (CMC) resulted in loss of sigma activity. The inactivation data indicated that one carboxylic amino acid residue is essential for sigma activity. Sigma modified with EDC, CMC or EDC in the presence of glycine was inactive in supporting promoter binding and initiation by core polymerase. Reaction with EDC plus (3H)glycine resulted in the incorporation of glycine into sigma. The (3H)glycine-sigma was unable to form a stable holoenzyme complex.  相似文献   

6.
Exposed thiol groups of rabbit muscle aldolase A were modified by 5,5'-dithiobis(2-nitrobenzoic) acid with concomittant loss of enzyme activity. When 5-thio-2-nitrobenzoate residues bound to enzyme SH groups were replaced by small and uncharged cyanide residues the enzyme activity was restored by more than 50%. The removal of a bulky C-terminal tyrosine residue from the active site of aldolase A resulted in enzyme which was inhibited by 5,5'-dithiobis(2-nitrobenzoic) acid only by 50% and its activity was nearly unchanged after modification of its thiol groups with cyanide. The results obtained show directly that rabbit muscle aldolase A does not possess functional cysteine residues and that the inactivation of the enzyme caused by sulfhydryl group modification reported previously can be attributed most likely to steric hindrance of a catalytic site by modifying agents.  相似文献   

7.
The effect of chemical modification on the pseudocholinesterase and aryl acylamidase activities of purified human serum pseudocholinesterase was examined in the absence and presence of butyrylcholine iodide, the substrate of pseudocholinesterase. Modification by 2-hydroxy-5-nitrobenzyl bromide, N-bromosuccinimide, diethylpyrocarbonate and trinitrobenzenesulfonic acid caused a parallel inactivation of both pseudocholinesterase and aryl acylamidase activities that could be prevented by butyrylcholine iodide. With phenylglyoxal and 2,4-pentanedione as modifiers there was a selective activation of pseudocholinesterase alone with no effect on aryl acylamidase. This activation could be prevented by butyrylcholine iodide. N-Ethylmaleimide and p-hydroxy-mercuribenzoate when used for modification did not have any effect on the enzyme activities. The results suggested essential tryptophan, lysine and histidine residues at a common catalytic site for pseudocholinesterase and aryl acylamidase and an arginine residue (or residues) exclusively for pseudocholinesterase. The use of N-acetylimidazole, tetranitromethane and acetic anhydride as modifiers indicated a biphasic change in both pseudocholinesterase and aryl acylamidase activities. At low concentrations of the modifiers a stimulation in activities and at high concentrations an inactivation was observed. Butyrylcholine iodide or propionylcholine chloride selectively protected the inactivation phase without affecting the activation phase. Protection by the substrates at the inactivation phase resulted in not only a reversal of the enzyme inactivation but also an activation. Spectral studies and hydroxylamine treatment showed that tyrosine residues were modified during the activation phase. The results suggested that the modified tyrosine residues responsible for the activation were not involved in the active site of pseudocholinesterase or aryl acylamidase and that they were more amenable for modification in comparison to the residues responsible for inactivation. Two reversible inhibitors of pseudocholinesterase, namely ethopropazine and imipramine, were used as protectors during modification. Unlike the substrate butyrylcholine iodide, these inhibitors could not protect against the inactivation resulting from modification by 2-hydroxy-5-nitrobenzyl bromide, N-bromosuccinimide and trinitrobenzenesulfonic acid. But they could protect against the activation of pseudocholinesterase and aryl acylamidase by low concentrations of N-acetylimidazole and acetic anhydride thereby suggesting that the binding site of these inhibitors involves the non-active-site tyrosine residues.  相似文献   

8.
Human plasma lecithin-cholesterol acyltransferase (LCAT) transacylates the sn-2 fatty acid of lecithin to cholesterol forming cholesteryl ester and lysolecithin. Measurement of the phospholipase A2 and transacylase activities of the enzyme using proteoliposome substrates and following selective chemical modification of serine, histidine, and cysteine residues of pure homogeneous LCAT indicated the following catalytic mechanism: HS-Cys-E-Ser-OH + lecithin in equilibrium HS-Cys-E-Ser-O-FA + lysolecithin, HS-Cys-E-Ser-O-FA in equilibrium FA-S-Cys-E-Ser-OH, FA-S-Cys-E-Ser-OH + cholesterol-OH in equilibrium HS-Cys-E-Ser-OH + cholesterol-O-FA, where FA denotes fatty acid. Modification of 2 LCAT cysteine residues with 5,5'-dithiobis-(2-nitrobenzoic acid) or treatment with ferricyanide inactivated the transacylase but not the phospholipase A2 activity. Modification of 1 serine residue with phenylmethanesulfonyl fluoride or 1 histidine residue with diethyl pyrocarbonate inhibited cholesteryl ester formation and phospholipase A2 activity. Proteoliposome substrates protected both activities against chemical inactivation. Lecithin alone protected the phospholipase A2 activity against phenylmethanesulfonyl fluoride inactivation but not the transacylase against 5,5'-dithiobis-(2-nitrobenzoic acid) inactivation. Incubation of native LCAT with arachidonyl-CoA or the lecithin-apo-A-I proteoliposome resulted in acylation of three enzyme sites, only one of which was stable to neutral hydroxylamine after denaturation. Fatty acylenzyme oxy- and thioesters were demonstrable in both cases. No transfer of arachidonic acid from iodoacetamide-modified LCAT to cholesterol occurred, indicating that the fatty-acylated serine residue cannot directly esterify cholesterol. Cholesterol arachidonate was formed upon incubation of phenylmethanesulfonyl fluoride-modified LCAT with arachidonyl-CoA.  相似文献   

9.
Dopamine beta-hydroxylase (3,4- dihydroxyphenylethylamine ,ascorbate:oxygen oxidoreductase (beta-hydroxylating), EC 1.14.17.1) is the terminal enzyme in the biosynthetic pathway of norepinephrine. Chemical modification studies of this enzyme were executed to investigate contributions of specific amino-acid side-chains to catalytic activity. Sulfhydryl reagents were precluded, since no free cysteine residue was detected upon titration of the denatured or native protein with 2-chloromercuri-4-nitrophenol. Incubation of enzyme with diazonium tetrazole caused inactivation of the protein coupled with extensive reaction of lysine and tyrosine residues. Reaction with iodoacetamide resulted in complete loss of enzymatic activity with reaction of approximately three histidine residues; methionine reaction was also observed. Modification of the enzyme using diethylpyrocarbonate resulted in complete inactivation of the enzyme, and analysis of the reacted protein indicated a loss of approx. 1.7 histidine residues per protein monomer with no tyrosine or lysine modification observed. The correlation of activity loss with histidine modification supports the view that this residue participates in the catalytic function of dopamine beta-hydroxylase.  相似文献   

10.
Modification of phosphoenolpyruvate carboxylase with o-phthalaldehyde (OPA) resulted in rapid and irreversible inactivation exhibiting biphasic reaction kinetics. The kinetic analysis and correlation of spectral changes with activity indicated that inactivation by OPA results from the modification of two lysine and two cysteine residues per subunit of the enzyme. PEP plus Mg2+ offered substantial protection against modification. Some of the effectors also gave appreciable protection against modification indicating that the residues may be located at or close to the active site. Thus, the results indicate formation of two isoindoles showing the proximity of the essential lysine and cysteine residues at the active site.  相似文献   

11.
1. The inactivation of rat skeletal muscle AMP deaminase by Dnp-F (1-fluoro-2,4-dinitrobenzene) is accompanied by the arylation of thiol, amino and phenolic hydroxyl groups. 2. The number of thiol groups that react with Dnp-F is about 12; this is the number that reacts with Nbs2 [5,5'-dithiobis-(2-nitrobenzoic acid)] and N-ethylmaleimide without loss of enzyme activity, and it appears to be the same thiol groups that all three reagents attack. 3. Dinitrophenylation of these reactive SH groups is not the cause of inactivation, since active N-ethylmaleimide-substituted enzyme is also inactivated by Dnp-F.4. Complete inactivation of the N-ethylmaleimide-treated AMP deaminase occurs when about six tyrosine and two lysine residues are dinitrophenylated. 5. Since the treatment of Dnp-enzyme with 2-mercaptoethanol restores much of the enzyme activity, inactivation of AMP deaminase by Dnp-F is probably largely due to modification of tyrosine residues. 6. The kinetic properties of the Dnp-enzyme indicate that a marked decrease in V occurs only after extensive enzyme modification. The decreased activity after slight inactivation results from modification of Km.  相似文献   

12.
Mammalian carbonic anhydrase III has previously been shown to catalyze the hydrolysis of p-nitrophenyl phosphate in addition to possessing the conventional CO2 hydratase and p-nitrophenylacetate esterase activities. Modification of pig muscle carbonic anhydrase III with the arginine reagent phenylglyoxal yielded two clearly distinctive results. Reaction of the enzyme with phenylglyoxal at concentrations equivalent to those of the enzyme yielded stoichiometric inactivation titration of the enzyme's phosphatase activity, approaching 100% loss of activity with the simultaneous modification of one arginine residue, the latter based on a 1:1 reaction of phenylglyoxal with arginine. At this low ratio of phenylglyoxal to enzyme, neither the CO2 hydratase activity nor the acetate esterase activity was affected. When the modification was performed with a significant excess of phenylglyoxal, CO2 hydratase and acetate esterase activities were diminished as well. That loss of activity was accompanied by the incorporation of an additional half dozen phenylglyoxals and, presumably, the modification of an equal number of arginine residues. The data in their entirety are interpreted to show that the p-nitrophenylphosphatase activity is a unique property of carbonic anhydrase III and that excessive amounts of the arginine-modifying reagent lead to unspecific structural changes of the enzyme as a result of which all of its enzymatic activities are inactivated.  相似文献   

13.
The role of arginyl residues in porphyrin binding to ferrochelatase   总被引:1,自引:0,他引:1  
The role of cationic amino acid residues in the binding of porphyrin substrates by purified bovine ferrochelatase (protoheme ferro-lyase, EC 4.99.1.1) have been examined via chemical modification with camphorquinone-10-sulfonic acid, phenylglyoxal, butanedione, and trinitrobenzene sulfonate. The data obtained show that modification of arginyl, but not lysyl, residues results in the rapid inactivation of ferrochelatase. The 2,4-disulfonate deuteroporphyrin, which is a competitive inhibitor of mammalian ferrochelatase, protects the enzyme against inactivation. Ferrous iron has no protective effect. Reaction with radiolabeled phenylglyoxal shows that modification of 1 arginyl residue causes maximum inhibition of enzyme activity. The inactivation does not follow simple pseudo-first order reaction kinetics, but is distinctly biphasic in nature. Comparison of the enzyme kinetics for modified versus unmodified enzyme show that modification with camphorquinone-10-sulfonic acid has no effect on the Km for iron but does alter the Km for porphyrin.  相似文献   

14.
1. A single, high specific activity carbonic anhydrase (CA) isozyme was present in erythrocytes of the teleostean species Salmo gairdneri (rainbow trout). 2. Purification of trout CA to homogeneity was accomplished using chloroform ethanol extraction, Sephadex G-75 gel filtration, and DEAE Bio-Gel anion exchange chromatography. 3. Trout CA was a zinc metalloenzyme of mol. wt 28,300 and pI9.3. 4. Amino acid analysis indicated the presence of 6 half-cystine residues per enzyme molecule, and the presence of a sulfhydryl reducing agent was required to maintain full activity in vitro. 5. Sulfhydryl modification with both N-ethylmaleimide and acrylonitrile indicated the presence of 3 reactive sulfhydryl groups per CA molecule. Modification of those groups had no direct effect on enzyme activity, but modified CA was no longer subject to inactivation by oxidizing conditions.  相似文献   

15.
1. Modification with 2,4,6-trinitrobenzenesulphonic acid was studied for its effect on the structure, activity and response to regulatory effectors of ox liver glutamate dehydrogenase. 2. The modification affected amino groups only, and the relative reactivities of the amino groups of the enzyme are described. 3. A biphasic inactivation of the enzyme was observed and analysis of the course of inactivation and of modification showed that the rapid reaction of one amino group/subunit leads to loss of 80% of the enzymic activity. 4. NADH retarded the inactivation by 2,4,6-trinitrobenzenesulphonic acid, the protection increasing with NADH concentration. This, together with the previous observation, suggests that the rapidly reacting group is essential for the activity of the enzyme. 5. The effects of modification on the optical-rotatory-dispersion and sedimentation behaviour of the enzyme were studied. 6. The enzyme's response to the allosteric effector GTP was rapidly lost on modification, whereas its response to ADP was unaffected. Comparison of the inactivation and desensitization suggests that the reactive amino group is essential for both activity and GTP response, and that only a completely unmodified enzyme oligomer responds fully to GTP. 7. The merits of chemical-modification studies of large enzymes are discussed critically in connexion with the interpretation of these results.  相似文献   

16.
1. Incubation of purified (Na+ + K+)-ATPase (ATP phosphohydrolase EC 3.6.1.3) from rabbit kidney outer medulla with butanedione in borate buffer leads to reversible inactivation of the (Na+ + K+)-ATPase activity. 2. The reaction shows second-outer kinetics, suggesting that modification of a single amino acid residue is involved in the inactivation of the enzyme. 3. The pH dependence of the reaction and the effect of borate ions strongly suggest that modification of an arginine residue is involved. 4. Replacement of Na+ by K+ in the butanedione medium decreases inactivation. 5. ATP, ADP and adenylyl imido diphosphate, particularly in the presence of trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid to complex Mg2+, protect the enzyme very efficiently against inactivation by butanedione. 6. The (Na+ + Mg2+)-dependent phosphorylation capacity of the enzyme is inhibited in the same degree as the (Na+ + K+)-ATPase activity by butanedione. 7. The K+-stimulated p-nitrophenylphosphatase activity is much less inhibited than the (Na+ + K+)ATPase activity. 8. The ATP stimulation of the K+-stimulated p-nitrophenylphosphatase activity is inhibited by butanedione to the same extent as the (Na+ + K+)-ATPase activity. 9. Modification of sulfhydryl groups with 5,5'-dithiobis(2-nitrobenzoic acid) protects partially against the inactivating effect of butanedione. 10. The results suggest that an arginine residue is present in the nucleotide binding centre of the enzyme.  相似文献   

17.
The kinetics of inactivation of the pyruvate dehydrogenase component of the pigeon breast muscle pyruvate dehydrogenase complex in the presence of 5,5'-dithiobis (2-nitrobenzoate) is biphasic. The rate constants for the fast and slow phases of the inactivation reaction are close to those for modification of two classes of SH-groups differing in their reactivities towards the inhibitor. The reaction order with respect to the inhibitor concentration suggests that the two distinct SH-groups are essential for the enzyme activity. Modification of these SH-groups results in inhibition of the overall activity of the pyruvate dehydrogenase complex and of the 2-hydroxyethyl thiamine pyrophosphate - acceptor oxidoreductase activity of its decarboxylating component. Thiamine pyrophosphate exerts a protective effect on the enzyme only at the slow phase of the enzyme inactivation and SH-modification. As a result of interaction between the holoenzyme and pyruvate (or apoenzyme and 2-hydroxyethyl thiamine pyrophosphate) the rate of the enzyme inactivation is increased. This is associated with masking of non-essential SH-groups and with an increase of the accessibility of two essential SH-groups to the inhibitor. The data obtained suggest the interrelationship between the essential SH-groups and the 2-hydroxyethyl thiamine pyrophosphate-acceptor oxidoreductase activity of pyruvate dehydrogenase.  相似文献   

18.
1. Diethyl pyrocarbonate inactivated l-lactate oxidase from Mycobacterium smegmatis. 2. Two histidine residues underwent ethoxycarbonylation when the enzyme was treated with sufficient reagent to abolish more than 90% of the enzyme activity, but analyses of the inactivation showed that the modification of one histidine residue was sufficient to cause the loss of enzyme activity. The rates of enzyme inactivation and histidine modification were the same. 3. Substrate and competitive inhibitors decreased the maximum extent of inactivation to a 50% loss of enzyme activity and modification was decreased from 1.9 to 0.75–1.2 histidine residues modified/molecule of FMN. 4. Treatment of the enzyme with diethyl [14C]pyrocarbonate (labelled in the carbonyl groups) confirmed that only histidine residues were modified under the conditions used and that deacylation of the ethoxycarbonylhistidine residues by hydroxylamine was concomitant with the removal of the 14C label and the re-activation of the enzyme. 5. No evidence was found for modification of tryptophan, tyrosine or cysteine residues, and no difference was detected between the conformation and subunit structure of the modified and native enzyme. 6. Modification of the enzyme with diethyl pyrocarbonate did not alter the following properties: the binding of competitive inhibitors, bisulphite and substrate or the chemical reduction of the flavin group to the semiquinone or fully reduced states. The normal reduction of the flavin by lactate was, however, abolished.  相似文献   

19.
《Phytochemistry》1987,26(3):633-636
The effect of chemical modification of histidine, lysine, arginine, tryptophan and methionine residues on the enzymatic activity of calotropin DI has been studied. 1,3-Dibromoacetone inhibited the enzyme completely, indicating that a single histidine residue and a cysteine residue are involved in its catalytic activity. Its second bistidine residue was modified with diethyl pyrocarbonate without loss of activity. Modification of seven of its 13 lysine residues with 2,4,6-trinitrobenzene sulphonic acid led to 90% loss of its activity, but no single lysine residue appears to be essential for its activity. Four of the 12 arginine residues by 1,2-cyclohexanedione can be modified with little loss of activity. Modification of a single tryptophan residue and two methionine residues did not inhibit enzymatic activity. The blocked amino-terminal amino acid residue of calotropin DI has been identified as pyroglutamic acid. Its amino-terminal amino acid sequence to residue 14 has been determined and compared with that of papain. They show an extensive homology in their amino-terminal amino acid sequences.  相似文献   

20.
Modification of histidine residues, SH- and epsilon-NH2-groups of myosin from rat sarcoma-45 by specific reagents was studied. It was shown that diethylpyrocarbonate modifies histidine residues essential for the ATPase activity. A kinetic analysis of myosin epsilon-NH2-groups modification by 2,4,6-trinitrobenzene sulfonate revealed that myosin trinitrophenylation and its inactivation by Ca2(+)-ATPase occurs in two steps: a fast and a slow (Km = 2400 and 1.7 s-1 M-1, respectively). Two essential epsilon-NH2-groups of tumour myosin active sites react in the fast reaction. The relatively low concentrations of p-chloromercuribenzoic acid activate rat sarcoma-45 myosin Ca2(+)-ATPase and Mg2(+)-ATPase, whereas higher ones inhibit the enzyme. The data obtained suggest that two SH-groups, SH1 and SH2 are essential for the tumour myosin ATPase function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号