首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To meet nutritional needs, primates adjust their diets in response to local habitat differences, though whether these dietary modifications translate to changes in dietary nutrient intake is unknown. A previous study of two populations of the mountain gorilla (MG: Gorilla beringei) found no evidence for intraspecific variation in the nutrient composition of their diets, despite ecological and dietary differences between sites. One potential explanation is that nutritional variability in primate diets requires greater ecological divergence than what was captured between MG sites, underpinning environmental differences in the nutrient quality of plant foods. To test whether Gorilla exhibits interspecific variation in dietary composition and nutrient intake, we studied the composition and macronutrients of the western gorilla (WG: Gorilla gorilla) staple diets and compared them with published data from the two MG populations. We recorded feeding time and food intake of four adult female WGs from one habituated group over a period of 11 months (December 2004–October 2005) at the Mondika Research Center, Republic of Congo, allowing for assessment of seasonal patterns of nutrient intake. Staple diets of WGs and MGs diverged in their dietary and macronutrient composition. Compared to MGs, the staple diet of WGs (by intake) contained higher proportions of fruit (43%) and leaf (12%) and a lower proportion of herb (39%), resulting in a higher intake of total nonstructural carbohydrate and fiber and a lower intake of crude protein. Staple gorilla fruits and herbs differed in nutrient quality between sites. Gorillas exhibit nutritional flexibility that reflects ecological variation in the nutrient quality of plant foods. Since dietary quality typically affects rates of growth and reproduction in primates, our results suggest that interspecific differences in nutrient intake and food quality may shape differences in gorilla nutrient balancing and female life history strategies.  相似文献   

2.
Strong resource seasonality in Madagascar has led to the evolution of female feeding priority and weaning synchrony in most lemur species. For these taxa, pregnancy/early lactation periods coincide with low food availability, and weaning of infants is timed with increased resources at the onset of the rainy season. Reproductive females experience high metabolic requirements, which they must accommodate, particularly when food resources are scarce. Female ring-tailed lemurs (Lemur catta) residing in spiny forest habitat must deal with resource scarcity, high temperatures (~36-40°C) and little shade in early to mid-lactation periods. Considered "income breeders," these females must use resources obtained from the environment instead of relying on fat stores; thus, we expected they would differ from same-sized males in time spent on feeding and in the intake of food and nutrients. We investigated these variables in two groups (N = 11 and 12) of Lemur catta residing in spiny forest habitat during early gestation and early to mid-lactation periods. Focal animal data and food plant samples were collected, and plants were analyzed for protein, kcal, and fiber. We found no sex differences for any feeding or nutrient intake variable for the top five food species consumed. Females in early gestation spent more time feeding compared with early/mid-lactation. Physiological compensation for spiny forest-dwelling females may be tied to greater time spent resting compared with gallery forest conspecifics, consuming foods high in protein, calories, and water, reduced home range defense in a sparsely populated habitat, and for Lemur catta females in general, production of relatively dilute milk compared with many strepsirrhines.  相似文献   

3.
Measurement of short-term nutrient uptake rates in cranberry by aeroponics   总被引:1,自引:1,他引:1  
Aeroponics, a soil-less plant culture system in which fresh nutrient solutions are intermittently or continuously misted on to plant roots, is capable of sustaining plant growth for extended periods of time while maintaining a constantly refreshed nutrient solution. Although used relatively extensively in commercial installations and in root physiology research, use of aeroponics in nutrient studies is rare. The object of this study was to examine whether nutrient uptake rates could be calculated for aeroponic systems by difference using measurements of concentrations and volumes of input and efflux solutions. Data were collected from an experiment with cranberry plants (Vaccinium macrocarpon Ait. cv. Stevens) cultured aeroponically with nutrient solutions containing various concentrations of ammonium-N and isotopically labelled nitrate-N. Validation of the calculated uptake rates was sought by: (1) evaluating charge balance of the solutions and total ion uptake (including proton efflux) and (2) comparison with N-isotope measurements. Charge balance and proton efflux calculations required use of chemical modelling of the solutions to determine speciation of dissolved phosphate and acid-neutralizing capacity (ANC). The results show that charge balance requirements were acceptably satisfied for individual solution analyses and for total ion uptake when proton efflux was included. Relative rates of nitrate/ammonium uptake determined by difference were in agreement with those determined by isotopic techniques. Additional information was easily obtained from this experimental technique, including evidence of diurnal variation in nutrient uptake, correlation between ammonium uptake and proton efflux, and the relationship between ion concentration and uptake. Use of aeroponic systems for non-destructive measurement of water and ion uptake rates for numerous other species and nutrients appears promising.  相似文献   

4.
All free-living animals must make choices regarding which foods to eat, with the choices influencing their health and fitness. An important goal in nutritional ecology is therefore to understand what governs animals’ diet selection. Despite large variation in the availability of different food items, Peruvian spider monkeys (Ateles chamek) maintain a relatively stable daily protein intake, but allow total energy intake to vary as a function of the composition of available food items. This is referred to as protein-dominated macronutrient balancing. Here we assess the influence of this nutritional strategy on daily and seasonal nutritional intakes, estimate the nutritional value of different foods, and interpret unusual food choices. We conducted continuous all-day observations of focal spider monkeys inhabiting a semideciduous forest in Bolivia. We recorded feeding events, collected foods, and analyzed their nutrient content. By using the Geometric Framework for nutrition, we show that individuals reached their daily end-point in nutrient space —balance between protein and nonprotein energy intake— by consuming nutritionally balanced foods or by alternating between nutritionally complementary foods. The macronutritionally balanced figs of Ficus boliviana were their primary staple food and therefore dominated their overall nutritional intake. Our results also demonstrate that spider monkeys consumed a diverse array of ripe fruits to overcome periods of fig scarcity rather than vice versa; they could obtain sufficient protein on a diet of pure fruit; and unripe figs constituted a nutritionally rewarding and reliable food resource. We hope that the approaches taken and the conclusions reached in this study will catalyze further inquiries into the nutritional ecology of frugivorous primates.  相似文献   

5.
浮游动物化学计量学稳态性特征研究进展   总被引:5,自引:1,他引:4  
苏强 《生态学报》2012,32(22):7213-7219
稳态性是有机体的基本属性,也是生态化学计量学理论成立的前提和基础。一般来讲,浮游植物的元素组成变化较大,而浮游动物具有明显的稳态性特征。浮游动物稳态性特征的研究不仅有助于了解水生生态系统的能量流动和物质循环,同时也对研究营养元素如何调节生物生长、繁殖和代谢起到促进作用。在综述生态化学计量学研究的基础上,主要介绍了稳态性的概念和浮游动物稳态性特征的基本框架及变化规律,以期为促进国内相关研究工作的开展提供参考。  相似文献   

6.
Long-lived animals, including social insects, often display seasonal shifts in foraging behavior. Foraging is ultimately a nutrient consumption exercise, but the effect of seasonality per se on changes in foraging behavior, particularly as it relates to nutrient regulation, is poorly understood. Here, we show that field-collected fire ant colonies, returned to the laboratory and maintained under identical photoperiod, temperature, and humidity regimes, and presented with experimental foods that had different protein (p) to carbohydrate (c) ratios, practice summer- and fall-specific foraging behaviors with respect to protein-carbohydrate regulation. Summer colonies increased the amount of food collected as the p:c ratio of their food became increasingly imbalanced, but fall colonies collected similar amounts of food regardless of the p:c ratio of their food. Choice experiments revealed that feeding was non-random, and that both fall and summer ants preferred carbohydrate-biased food. However, ants rarely ate all the food they collected, and their cached or discarded food always contained little carbohydrate relative to protein. From a nutrient regulation strategy, ants consumed most of the carbohydrate they collected, but regulated protein consumption to a similar level, regardless of season. We suggest that varied seasonal food collection behaviors and nutrient regulation strategies may be an adaptation that allows long-lived animals to meet current and future nutrient demands when nutrient-rich foods are abundant (e.g. spring and summer), and to conserve energy and be metabolically more efficient when nutritionally balanced foods are less abundant.  相似文献   

7.
To investigate the consequences of different patterns of switching between nutritionally complementary foods, nymphs of Locusta migratoria L. (Orthoptera: Acrididae) were forced to alternate between pairs of artificial foods differing only in their protein and carbohydrate content at one of several fixed intervals. Total food and nutrient intake over 6days were very similar in all groups despite the considerable variation in temporal patterns of nutrient intake. The effects of these treatments were determined using measurements of growth, stadium duration and carcass composition. Those given a low variance food pairing showed little effect in any of the measures while those given a high variance pairing showed no differences in dry weight growth or stadium duration but did differ in protein and lipid content. There was little evidence from our measurements that an ad-libitum alternation time of 4h previously observed in a laboratory experiment was physiologically optimal, suggesting that ecological factors may underlie such behaviour. Possible compensatory mechanisms used by L. migratoria are suggested.  相似文献   

8.
Nutrient requirements by male and female insects are likely to differ, but relatively little is known regarding how sexes differ in their regulation of macronutrient acquisition. The present study reports the results from a laboratory experiment in which behavioural and physiological components of nutrient regulation were compared between male and female caterpillars of Spodoptera litura (Fabricius). When provided with choices between two nutritionally complementary foods (one is a protein-biased diet and the other a carbohydrate-biased diet), both males and females adjusted their food selection to defend an intake target. However, the composition of diet preferred by the two differed, with females selecting significantly more protein than males with no difference in carbohydrate intake between the two. When confined to single diets with varying mixtures of protein and carbohydrate [P:C ratios, expressed as the percentage of diet by dry mass: protein 42%:carbohydrate 0% (p42:c0), p35:c7, p28:c14, p21:c21, p14:c28, p7:c35], females consumed more macronutrients than did males across on all P:C diets except the extremely carbohydrate-biased diet (p7:c35). Under both choice and no-choice feeding condition, such sex differences in nutrient intake were not expressed until late in the feeding stage of the final stadium. Sexes also differed in post-ingestive utilization of ingested nutrients. Females utilized ingested protein for body growth with greater efficiency compared to males, presumably reflecting provisioning their adult needs for protein to develop eggs, whereas males were more efficient at depositing lipids from carbohydrate intake than females.  相似文献   

9.
Both the successful development of healthy, long-term animal models to study fetal nutrition and metabolism and the improved survival of low-birth-weight, preterm infants have focused interest and research on fetal and neonatal nutrition and metabolism. Such a focus is important, given the recent emphasis on promoting neonatal growth in preterm infants at “normal” in utero growth rates. Estimates of nutrient requirements for growth in a human fetus remain ill defined, however. Body composition data appear biased toward thin infants. Animal data suggest that fetal nutrition proceeds according to species-specific growth rates, with variations in fat content largely dependent on placental fat permeability and on maternal nutrient supply as regulated by the placenta.After birth, neonatal nutrition is affected primarily by food intake and the functional integrity and capacity of the gastrointestinal tract. Additionally, muscle activity, thermoregulation and stresses of various kinds and degrees modify a neonate''s nutritional requirements. Functional deficits of the gastrointestinal tract have been circumvented by a more aggressive use of intravenous nutrition. Both intravenous and enteral nutrient mixtures have been substantially improved in the quantity of all nutrients and have been modified qualitatively toward compositions that are closer to those of human milk. These nutrient mixtures now produce plasma nutrient concentrations that approximate those of a healthy, breast-fed infant.Although such efforts to improve the nutritional balance and growth of preterm infants have been successful, much remains to be learned about the nutritional requirements of sick infants.  相似文献   

10.
Recent progresses in data-driven analysis methods, including network-based approaches, are revolutionizing many classical disciplines. These techniques can also be applied to food and nutrition, which must be studied to design healthy diets. Using nutritional information from over 1,000 raw foods, we systematically evaluated the nutrient composition of each food in regards to satisfying daily nutritional requirements. The nutrient balance of a food was quantified and termed nutritional fitness; this measure was based on the food’s frequency of occurrence in nutritionally adequate food combinations. Nutritional fitness offers a way to prioritize recommendable foods within a global network of foods, in which foods are connected based on the similarities of their nutrient compositions. We identified a number of key nutrients, such as choline and α-linolenic acid, whose levels in foods can critically affect the nutritional fitness of the foods. Analogously, pairs of nutrients can have the same effect. In fact, two nutrients can synergistically affect the nutritional fitness, although the individual nutrients alone may not have an impact. This result, involving the tendency among nutrients to exhibit correlations in their abundances across foods, implies a hidden layer of complexity when exploring for foods whose balance of nutrients within pairs holistically helps meet nutritional requirements. Interestingly, foods with high nutritional fitness successfully maintain this nutrient balance. This effect expands our scope to a diverse repertoire of nutrient-nutrient correlations, which are integrated under a common network framework that yields unexpected yet coherent associations between nutrients. Our nutrient-profiling approach combined with a network-based analysis provides a more unbiased, global view of the relationships between foods and nutrients, and can be extended towards nutritional policies, food marketing, and personalized nutrition.  相似文献   

11.
Commercially prepared milk replacers are frequently used to provide the sole source of nutrition for hand‐reared cheetah cubs (Acinonyx jubatus). The nutrient composition of two commonly used milk replacers was determined. Using titanium dioxide as an indigestible marker, nutrient digestibility was calculated from the analyses of fecal samples collected from each cub (n = 4 on formula 1, and n = 2 on formula 2). Mean apparent total tract digestibility for both formulas was >90% for all nutrients analyzed (crude protein, amino acids, crude fat (CF), and dry matter). However, the total CF content and the concentration of the essential fatty acids, such as α‐linolenic, linolenic, and arachidonic acid, of both formulas was lower than reported for maternal cheetah milk. Additionally, one formula contained a comparatively high amount of carbohydrate, at the expense of protein. Although data were lacking for cheetah maternal milk, comparison with domestic cat milk revealed high concentrations of a number of minerals (K, Fe, Zn, and Cu), while vitamin D3 was not detected in one formula. Both formulas were low in the majority of essential amino acids compared with domestic cat maternal milk. Despite their apparently high digestibility, neither formula was complete or balanced in terms of nutrient concentrations and ratios when maternal cheetah milk and/or the requirements established for growth in domestic cats were used as estimates of ideal. On this basis, although all cubs in this study were healthy and maintained good body conditions for the duration of the trial, the results of dietary analyses indicate that these milk replacers may not provide optimal nutrition for growth in cheetah cubs when used for extended periods. Zoo Biol 30:412–426, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
The recent literature on plant secondary compounds and their influence on primate feeding behavior is reviewed. Many studies of nonhuman primates document the extreme selectivity that primates, particularly herbivorous species, demonstrate in their food choice. Until quite recently investigators interpreted this to mean that herbivorous primates were not food limited. This view has been challenged in the past 10 years by researchers concentrating on the primate–plant interaction. Chemical analyses have demonstrated that plant parts are of varying quality due to differences in nutrient and secondary compound content. The assumption that all leaves (or fruits, flowers, and insects) are potential foods of equal value to the primates eating them is refuted. The observed selectivity and preferences of primates for specific plant or insect species and parts are now viewed as strategies for dealing with the nutrient and secondary compound content variation in these foods.  相似文献   

13.
The common marmoset is one of the few callitrichid species that is not threatened or endangered in the wild, and is widely used in biomedical research, yet relatively little is understood about its digestive physiology. Dietary specialization on plant exudates has lead to relatively reduced small intestines, yet the common marmoset has exceptional dietary breadth, allowing it to successfully utilize a variety of habitats. We predicted that passive, paracellular nutrient absorption would be used by the common marmoset to a greater extent than in other non-flying mammals. We measured the bioavailability and rates of absorption of two metabolically inert carbohydrates not transported by mediated pathways (L-rhamnose and cellobiose, molecular masses of 164 and 342, respectively) to measure paracellular uptake, and of a non-metabolized D-glucose analog (3-O-methyl-D-glucose) to measure total uptake by both mediated and paracellular pathways. We found high bioavailability of 3-O-methyl-D-glucose (83+/-5%), and much higher bioavailability of the paracellular probes than in similarly sized non-flying mammals (30+/-3% and 19+/-2% for L-rhamnose and cellobiose, respectively). Passive, paracellular nutrient absorption accounts for around 30% of total glucose absorption in common marmosets and intestinal permeability is significantly higher than in humans, the only other species of primate measured to date. This may allow the common marmoset to maintain high digestive efficiency when feeding on higher quality foods (fruit, arthropods, gums with higher proportions of simple sugars), in spite of relatively reduced small intestines correlated with adaptations for fermentative digestion of plant gums. We find no evidence to support, in primates, the hypothesis that reliance on paracellular nutrient absorption should increase with body size in mammals, but suggest instead that it may be associated with small body size and/or taxon-specific adaptations to diet.  相似文献   

14.
For most animals, the ability to regulate intake of specific nutrients is vital to fitness. Recent studies have demonstrated nutrient regulation in nonhuman primates over periods of one observation day, though studies of humans indicate that such regulation extends to longer time frames. Little is known about longer-term regulation in nonhuman primates, however, due to the challenges of multiple-day focal follows. Here we present the first detailed study of nutrient intake across multiple days in a wild nonhuman primate. We conducted 30 consecutive all day follows on one female chacma baboon (Papio hamadryas ursinus) in the Cape Peninsula of South Africa. We documented dietary composition, compared the nutritional contribution of natural and human-derived foods to the diet, and quantified nutrient intake using the geometric framework of nutrition. Our focus on a single subject over consecutive days allowed us to examine daily dietary regulation within an individual over time. While the amounts varied daily, our subject maintained a strikingly consistent balance of protein to non-protein (fat and carbohydrate) energy across the month. Human-derived foods, while contributing a minority of the diet, were higher in fat and lower in fiber than naturally-derived foods. Our results demonstrate nutrient regulation on a daily basis in our subject, and demonstrate that she was able to maintain a diet with a constant proportional protein content despite wide variation in the composition of component foods. From a methodological perspective, the results of this study suggest that nutrient intake is best estimated over at least an entire day, with longer-term regulatory patterns (e.g., during development and reproduction) possibly requiring even longer sampling. From a management and conservation perspective, it is notable that nearly half the subject’s daily energy intake derived from exotic foods, including those currently being eradicated from the study area for replacement by indigenous vegetation.  相似文献   

15.
Determining the nutritional and phenolic basis of food preference is important for understanding the nutritional requirements of animals. Preference is a measure of which foods would be consumed by an animal if there was no variation in availability among food items. From September 2004 to August 2005, we measured the food preferences of four wild mountain gorilla groups that consume foliage and fruit in Bwindi Impenetrable National Park, Uganda, to determine what nutrients and phenols are preferred and/or avoided. To do so, we asked the following questions: (1) Which plant species do the gorillas prefer? (2) Considering the different plant parts consumed of these preferred species, what nutrients and/or phenols characterize them? (3) Do the nutritional and phenolic characteristics of preferred foods differ among gorilla groups? We found that although some species were preferred and others were not, of those species found in common among the different group home ranges, the same ones were generally preferred by all groups. Second, all groups preferred leaves with relatively high protein content and relatively low fiber content. Third, three out of four groups preferred leaves with relatively high sugar amounts. Fourth, all groups preferred pith with relatively high sugar content. Finally, of the two groups tested, we found that the preferred fruits of one group had relatively high condensed tannin and fiber/sugar contents, whereas the other group's preferred fruits were not characterized by any particular nutrient/phenol. Overall, there were no differences among gorilla groups in nutritional and phenolic preferences. Our results indicate that protein and sugar are important in the diets of gorillas, and that the gorillas fulfil these nutritional requirements through a combination of different plant parts, shedding new light on how gorillas balance their diets in a variable environment. Am. J. Primatol. 70:927–938, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

16.
Zooplankton growth and nutrient recycling are key processes in the operation of pelagic food webs. Most studies investigating these processes rely on complex methods and often require extensive laboratory facilities. Here we introduce a technique for preserving algae by rapid drying for later use in laboratory- or field-based growth and nutrient recycling experiments. Chemostat-grown Scenedesmus acutus was rapidly dried for later experiments evaluating its nutritional composition, suitability for animal growth and potential for use in nutrient release experiments. Reconstituted dried algae had slightly lower nitrogen (N), Phosphorus (P) and protein content (% dry weight) than fresh algae, but lipid content did not differ and elemental ratios were in the range considered to indicate favorable food quality. These elemental and biochemical differences did not appear functionally important, as Daphnia magna grew identically on fresh and dried food. Freeze-dried S.acutus did not work as an alternative to oven drying as it resulted in 100% mortality. NH4 and PO4 concentrations did not change over 24 h when dried algae were resuspended in normal media or boiled lake water. However, concentrations of PO4 decreased over 24 h, suggesting chemical adsorption of PO4 to the dried algae and reinforcing the need for animal-free controls in nutrient release experiments using this approach. N and P release rates for D.magna and natural zooplankton communities were estimated using dried algae, and values were comparable to published ones. Thus, dried algae may be a useful, simple technique for studying food quality and nutrient release in environments where maintaining active algal cultures may not be practical and a constant supply of consistent quality food is needed.   相似文献   

17.
18.
Generalist primates eat many food types and shift their diet with changes in food availability. Variation in foods eaten may not, however, match variation in nutrient intake. We examined dietary variation in a generalist‐feeder, the blue monkey (Cercopithecus mitis), to see how dietary food intake related to variation in available food and nutrient intake. We used 371 all‐day focal follows from 24 adult females (three groups) in a wild rainforest population to quantify daily diet over 9 months. We measured food availability using vegetation surveys and phenology monitoring. We analyzed >700 food and fecal samples for macronutrient content. Subjects included 445 food items (species‐specific plant parts and insect morphotypes) in their diet. Variation in fruit consumption (percentage of diet and total kcal) tracked variation in availability, suggesting fruit was a preferred food type. Fruits also constituted the majority of the diet (by calories) and some fruit species were eaten more than expected based on relative availability. In contrast, few species of young leaves were eaten more than expected. Also, subjects ate fewer young leaves (based on calories consumed) when fruit or young leaves were more available, suggesting that young leaves served as fallback foods. Despite the broad range of foods in the diet, group differences in fiber digestibility, and variation that reflected food availability, subjects and groups converged on similar nutrient intakes (grand mean ± SD: 637.1 ± 104.7 kcal overall energy intake, 293.3 ± 46.9 kcal nonstructural carbohydrate, 147.8 ± 72.4 kcal lipid, 107.8 ± 12.9 kcal available protein, and 88.1 ± 17.5 kcal structural carbohydrate; N = 24 subjects). Thus, blue monkeys appear to be food composition generalists and nutrient intake specialists, using flexible feeding strategies to regulate nutrient intake. Findings highlight the importance of simultaneously examining dietary composition at both levels of foods and nutrients to understand primate feeding ecology.  相似文献   

19.
Phytochemical or nutrient analyses of primate diets have revealed clues to their food selection in a single species. On the other hand, few interspecific comparisons of phytochemical or nutrient composition of primate diets have been made, although diets are considered to differ in phytochemical or nutrient content from primate species to species, since different species have different body weights and different morphological and physiological characteristics. I compared the nutrient content of diet between patas monkeys (Erythrocebus patas) and tantalus monkeys (Cercopithecus aethiops tantalus) living sympatrically in Cameroon. Patas subsisted on a smaller number of food items, most of which were also tantalus food items. Then, I compared the protein–fiber ratio and the available energy content of the food items eaten by patas (patas foods) with those items eaten only by tantalus (tantalus foods). Both variables were higher in patas than tantalus foods, although there was no significant difference in available energy of plant foods. Next, when I performed discriminant analysis for patas foods and tantalus foods, employing the above two variables, a discriminant function with positive coefficients for both variables was obtained. The mean discriminant-function score of patas foods was higher than that of tantalus foods. Despite being somewhat larger in weight, patas selectively fed on a smaller number of foods of higher quality than did tantalus. I discuss why the results are inconsistent with a well known body weight–diet relationship (Jarman–Bell principle). Energy-efficient locomotion enables patas to exploit not only small dispersed food items of high quality but also areas where high-quality foods are distributed in clumps. Electronic Publication  相似文献   

20.
Stoichiometric food quality and herbivore dynamics   总被引:4,自引:1,他引:3  
Herbivores may grow with nutrient or energy limitation, depending on food abundance and the chemical composition of their food. We present a model that describes herbivore growth as a continuous function of two limiting factors. This function uses the synthesizing unit concept, has the hyperbolic Monod model as a limiting case, and has the same number of parameters as the Monod model coupled to Liebig's discontinuous minimum rule. We use the model to explore nutrient-limited herbivore growth in a closed system with algae, Daphnia and phosphorus as the limiting nutrient. Phosphorus in algae may substantially influence Daphnia growth. This influence changes over time and is most pronounced when algae and Daphnia populations fluctuate strongly. Relative to classic models that only consider food quantity as a determinant of Daphnia growth, our model shows richer dynamical behaviour. In addition to the standard positive equilibrium, which may be stable or unstable depending on nutrient availability, a new positive equilibrium may arise in our model when mortality rates are relatively high. This equilibrium is unstable and reduces the likelihood of long-term persistence of Daphnia in the system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号