首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kumaran S  Jez JM 《Biochemistry》2007,46(18):5586-5594
Cysteine biosynthesis in plants is partly regulated by the physical association of O-acetylserine sulfhydrylase (OASS) and serine acetyltransferase (SAT). Interaction of OASS and SAT requires only the 10 C-terminal residues of SAT. Here we analyze the thermodynamics of formation of a complex of Arabidopsis thaliana OASS (AtOASS) and the C-terminal ligand of AtSAT (C10 peptide) as a function of temperature and salt concentration using fluorescence spectroscopy and isothermal titration calorimetry (ITC). Our results suggest that the C-terminus of AtSAT provides the major contribution to the total binding energy in the plant cysteine synthase complex. The C10 peptide binds to the AtOASS homodimer in a 2:1 complex. Interaction between AtOASS and the C10 peptide is tight (Kd = 5-100 nM) over a range of temperatures (10-35 degrees C) and NaCl concentrations (0.02-1.3 M). AtOASS binding of the C10 peptide displays negative cooperativity at higher temperatures. ITC studies reveal compensating changes in the enthalpy and entropy of binding that also depend on temperature. The enthalpy of interaction has a significant temperature dependence (DeltaCp = -401 cal mol-1 K-1). The heat capacity change and salt dependence studies suggest that hydrophobic interactions drive formation of the AtOASS.C10 peptide complex. The potential regulatory effect of temperature on the plant cysteine synthase complex is discussed.  相似文献   

2.
The biosynthesis of cysteine in bacteria and plants is carried out by a two-step pathway, catalyzed by serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase (OASS; O-acetylserine [thiol] lyase). The aerobic form of OASS forms a tight bienzyme complex with SAT in vivo, termed cysteine synthase. We have determined the crystal structure of OASS in complex with a C-terminal peptide of SAT required for bienzyme complex formation. The binding site of the peptide is at the active site of OASS, and its C-terminal carboxyl group occupies the same anion binding pocket as the alpha-carboxylate of the O-acetylserine substrate of OASS. These results explain the partial inhibition of OASS by SAT on complex formation as well as the competitive dissociation of the complex by O-acetylserine.  相似文献   

3.
Cysteine plays a major role in the antioxidative defense mechanisms of the human parasite Entameoba histolytica. The major route of cysteine biosynthesis in this parasite is the condensation of O-acetylserine with sulfide by the de novo cysteine biosynthetic pathway involving two key enzymes O-acetyl-L-serine sulfhydrylase (OASS) and serine acetyl transferase (SAT). The crystal structure of native OASS from Entameoba histolytica (EhOASS) has been determined at 1.86 A resolution and in complex with its product cysteine at 2.4 A resolution. In comparison with other known OASS structures, insertion in the N-terminal region and C-terminal helix reveal critical differences, which may influence the protein-protein interactions. In spite of lacking chloride binding site at the dimeric interface, the N-terminal extension compared with other known cysteine synthases, participates in dimeric interactions in an interesting domain swapping manner, enabling it to form a stronger dimer. Sulfate is bound in the active site of the native structure, which is replaced by cysteine in the cysteine bound form causing reorientation of the small N-terminal domain and thus closure of the active site. Ligand binding constants of OAS, Cys, and Met with EhOASS are comparable with other known OASS indicating similar active site arrangement and dynamics. The cysteine complexed structure represents the snapshot of the enzyme just before releasing the final product with a closed active site. The C-terminal helix positioning in the EhOASS may effect its interactions with EhSAT and thus influencing the formation of the cysteine synthase complex in this organism.  相似文献   

4.
Control of sulfur metabolism in plants and bacteria is linked, in significant measure, to the behavior of the cysteine synthase complex (CSC). The complex is comprised of the two enzymes that catalyze the final steps in cysteine biosynthesis: serine O-acetyltransferase (SAT, EC 2.3.1.30), which produces O-acetyl-L-serine, and O-acetyl-L-serine sulfhydrylase (OASS, EC 2.5.1.47), which converts it to cysteine. SAT (a dimer of homotrimers) binds a maximum of two molecules of OASS (a dimer) in an interaction believed to involve docking of the C terminus from a protomer in an SAT trimer into an OASS active site. This interaction inactivates OASS catalysis and prevents further binding to the trimer; thus, the system exhibits a contact-induced inactivation of half of each biomolecule. To better understand the dynamics and energetics that underlie formation of the CSC, the interactions of OASS and SAT from Escherichia coli were studied at equilibrium and in the pre-steady state. Using an experimental strategy that initiates dissociation of the CSC at different points in the CSC-forming reaction, three stable forms of the complex were identified. Comparison of the binding behaviors of SAT and its C-terminal peptide supports a mechanism in which SAT interacts with OASS in a non-allosteric interaction involving its C terminus. This early docking event appears to fasten the proteins in close proximity and thus prepares the system to engage in a series of subsequent, energetically favorable isomerizations that inactivate OASS and produce the fully isomerized CSC.  相似文献   

5.
In plants, cysteine biosynthesis plays a central role in fixing inorganic sulfur from the environment and provides the only metabolic sulfide donor for the generation of methionine, glutathione, phytochelatins, iron-sulfur clusters, vitamin cofactors, and multiple secondary metabolites. O-Acetylserine sulfhydrylase (OASS) catalyzes the final step of cysteine biosynthesis, the pyridoxal 5'-phosphate (PLP)-dependent conversion of O-acetylserine into cysteine. Here we describe the 2.2 A resolution crystal structure of OASS from Arabidopsis thaliana (AtOASS) and the 2.7 A resolution structure of the AtOASS K46A mutant with PLP and methionine covalently linked as an external aldimine in the active site. Although the plant and bacterial OASS share a conserved set of amino acids for PLP binding, the structure of AtOASS reveals a difference from the bacterial enzyme in the positioning of an active site loop formed by residues 74-78 when methionine is bound. Site-directed mutagenesis, kinetic analysis, and ligand binding titrations probed the functional roles of active site residues. These experiments indicate that Asn(77) and Gln(147) are key amino acids for O-acetylserine binding and that Thr(74) and Ser(75) are involved in sulfur incorporation into cysteine. In addition, examination of the AtOASS structure and nearly 300 plant and bacterial OASS sequences suggest that the highly conserved beta8A-beta9A surface loop may be important for interaction with serine acetyltransferase, the other enzyme in cysteine biosynthesis. Initial protein-protein interaction experiments using AtOASS mutants targeted to this loop support this hypothesis.  相似文献   

6.
Yi H  Juergens M  Jez JM 《The Plant cell》2012,24(6):2696-2706
Plants produce cyanide (CN-) during ethylene biosynthesis in the mitochondria and require β-cyanoalanine synthase (CAS) for CN- detoxification. Recent studies show that CAS is a member of the β-substituted alanine synthase (BSAS) family, which also includes the Cys biosynthesis enzyme O-acetylserine sulfhydrylase (OASS), but how the BSAS evolved distinct metabolic functions is not understood. Here we show that soybean (Glycine max) CAS and OASS form α-aminoacrylate reaction intermediates from Cys and O-acetylserine, respectively. To understand the molecular evolution of CAS and OASS in the BSAS enzyme family, the crystal structures of Gm-CAS and the Gm-CAS K95A mutant with a linked pyridoxal phosphate (PLP)-Cys molecule in the active site were determined. These structures establish a common fold for the plant BSAS family and reveal a substrate-induced conformational change that encloses the active site for catalysis. Comparison of CAS and OASS identified residues that covary in the PLP binding site. The Gm-OASS T81M, S181M, and T185S mutants altered the ratio of OASS:CAS activity but did not convert substrate preference to that of a CAS. Generation of a triple mutant Gm-OASS successfully switched reaction chemistry to that of a CAS. This study provides new molecular insight into the evolution of diverse enzyme functions across the BSAS family in plants.  相似文献   

7.
Plants and bacteria assimilate sulfur into cysteine. Cysteine biosynthesis involves a bienzyme complex, the cysteine synthase complex (CSC), which consists of serine-acetyl-transferase (SAT) and O-acetyl-serine-(thiol)-lyase (OAS-TL) enzymes. The activity of OAS-TL is reduced by formation of the CSC. Although this reduction is an inherent part of the self-regulation cycle of cysteine biosynthesis, there has until now been no explanation as to how OAS-TL loses activity in plants. Complexation of SAT and OAS-TL involves binding of the C-terminal tail of SAT in one of the active sites of the homodimeric OAS-TL. We here explore the flexibility of the unoccupied active site in Arabidopsis thaliana cytosolic and mitochondrial OAS-TLs. Our results reveal two gates in the OAS-TL active site that define its accessibility. The observed dynamics of the gates show allosteric closure of the unoccupied active site of OAS-TL in the CSC, which can hinder substrate binding, abolishing its turnover to cysteine.  相似文献   

8.
O-acetylserine sulfhydrylase (OASS) catalyzes the synthesis of l-cysteine in the last step of the reductive sulfate assimilation pathway in microorganisms. Its activity is inhibited by the interaction with serine acetyltransferase (SAT), the preceding enzyme in the metabolic pathway. Inhibition is exerted by the insertion of SAT C-terminal peptide into the OASS active site. This action is effective only on the A isozyme, the prevalent form in enteric bacteria under aerobic conditions, but not on the B-isozyme, the form expressed under anaerobic conditions. We have investigated the active site determinants that modulate the interaction specificity by comparing the binding affinity of thirteen pentapeptides, derived from the C-terminal sequences of SAT of the closely related species Haemophilus influenzae and Salmonella typhimurium, towards the corresponding OASS-A, and towards S. typhimurium OASS-B. We have found that subtle changes in protein active sites have profound effects on protein–peptide recognition. Furthermore, affinity is strongly dependent on the pentapeptide sequence, signaling the relevance of P3–P4–P5 for the strength of binding, and P1–P2 mainly for specificity. The presence of an aromatic residue at P3 results in high affinity peptides with Kdiss in the micromolar and submicromolar range, regardless of the species. An acidic residue, like aspartate at P4, further strengthens the interaction and results in the higher affinity ligand of S. typhimurium OASS-A described to date. Since OASS knocked-out bacteria exhibit a significantly decreased fitness, this investigation provides key information for the development of selective OASS inhibitors, potentially useful as novel antibiotic agents.  相似文献   

9.
Wirtz M  Hell R 《The Plant cell》2007,19(2):625-639
Cys synthesis in plants constitutes the entry of reduced sulfur from assimilatory sulfate reduction into metabolism. The catalyzing enzymes serine acetyltransferase (SAT) and O-acetylserine (OAS) thiol lyase (OAS-TL) reversibly form the heterooligomeric Cys synthase complex (CSC). Dominant-negative mutation of the CSC showed the crucial function for the regulation of Cys biosynthesis in vivo. An Arabidopsis thaliana SAT was overexpressed in the cytosol of transgenic tobacco (Nicotiana tabacum) plants in either enzymatically active or inactive forms that were both shown to interact efficiently with endogenous tobacco OAS-TL proteins. Active SAT expression resulted in a 40-fold increase in SAT activity and strong increases in the reaction intermediate OAS as well as Cys, glutathione, Met, and total sulfur contents. However, inactive SAT expression produced much greater enhancing effects, including 30-fold increased Cys levels, attributable, apparently, to the competition of inactive transgenic SAT with endogenous tobacco SAT for binding to OAS-TL. Expression levels of tobacco SAT and OAS-TL remained unaffected. Flux control coefficients suggested that the accumulation of OAS and Cys in both types of transgenic plants was accomplished by different mechanisms. These data provide evidence that the CSC and its subcellular compartmentation play a crucial role in the control of Cys biosynthesis, a unique function for a plant metabolic protein complex.  相似文献   

10.
OASS is a specific enzyme that helps Leishmania parasite to survive the oxidative stress condition in human macrophages. SAT C-terminal peptides in several organisms, including Leishmania, were reported to inhibit or reduce the activity of OASS. Small peptide and small molecules mimicking the SAT C-terminal residues are designed and tested for the inhibition of OASS in different organisms. Hence, in this study, all the possible tetra-peptide combinations were designed and screened based on the docking ability with Leishmania donovani OASS (Ld-OASS). The top ranked peptides were further validated for the stability using 50 ns molecular dynamic simulation. In order to identify the better binding capability of the peptides, the top peptides complexed with Ld-OASS were also subjected to molecular dynamic simulation. The docking and simulation results favored the peptide EWSI to possess greater advantage than previously reported peptide (DWSI) in binding with Ld-OASS active site. Also, screening of non-peptide inhibitor of Asinex Biodesign library based on the shape similarity of EWSI and DWSI was performed. The top similar molecules of each peptides were docked on to Ld-OASS active site and subsequently simulated for 20 ns. The results suggested that the ligand that shares high shape similarity with EWSI possess better binding capability than the ligand that shares high shape similarity with DWSI. This study revealed that the tetra-peptide EWSI had marginal advantage over DWSI in binding with Ld-OASS, thereby providing basis for defining a pharmacophoric scaffold for the design of peptidomimetic inhibitors as well as non-peptide inhibitors of Ld-OASS.

Communicated by Ramaswamy H. Sarma  相似文献   


11.
Cysteine synthetase from Escherichia coli is a bienzyme complex composed of serine acetyltransferase (SAT) and O-acetylserine sulfhydrylase-A (OASS). The effects of the complex formation on the stability of SAT against cold inactivation and proteolysis were investigated. SAT was reversibly inactivated on cooling to 0 degrees C. Ultracentrifugal analysis showed that SAT (a hexamer) was dissociated mostly into two trimers on cooling to 0 degrees C in the absence of OASS, while in the presence of OASS one trimer of the SAT subunits formed a complex with one dimer of OASS subunits. In the presence of OASS, not only the cold inactivation rate was reduced but also the reactivation rate was increased. Furthermore, SAT became stable against proteolytic attack by alpha-chymotrypsin and V8 protease by forming the complex with OASS. On the other hand, SAT was degraded by trypsin in the same manner both in the presence and in the absence of OASS. The different tendency in the stability against proteolysis with the different proteases was discussed with respect to the substrate specificity of the proteases and amino acid sequence of the C-terminal region of SAT that interacts with OASS.  相似文献   

12.
Cysteine (Cys) plays a major role in growth and survival of the human parasite Entamoeba histolytica. We report here the crystal structure of serine acetyltransferase (SAT) isoform 1, a cysteine biosynthetic pathway enzyme from E. histolytica (EhSAT1) at 1.77 Å, in complex with its substrate serine (Ser) at 1.59 Å and inhibitor Cys at 1.78 Å resolution. EhSAT1 exists as a trimer both in solution as well as in crystal structure, unlike hexamers formed by other known SATs. The difference in oligomeric state is due to the N-terminal region of the EhSAT1, which has very low sequence similarity to known structures, also differs in orientation and charge distribution. The Ser and Cys bind to the same site, confirming that Cys is a competitive inhibitor of Ser. The disordered C-terminal region and the loop near the active site are responsible for solvent-accessible acetyl-CoA binding site and, thus, lose inhibition to acetyl-CoA by the feedback inhibitor Cys. Docking and fluorescence studies show that EhSAT1 C-terminal-mimicking peptides can bind to O-acetyl serine sulfhydrylase (EhOASS), whereas native C-terminal peptide does not show any binding. To test further, C-terminal end of EhSAT1 was mutated and found that it inhibits EhOASS, confirming modified EhSAT1 can bind to EhOASS. The apparent inability of EhSAT1 to form a hexamer and differences in the C-terminal region are likely to be the major reasons for the lack of formation of the large cysteine synthase complex and loss of a complex regulatory mechanism in E. histolytica.  相似文献   

13.
Peptide:N-glycanase (PNGase) is an important component of the endoplasmic reticulum-associated protein degradation pathway in which it de-glycosylates misfolded glycoproteins, thus facilitating their proteasomal degradation. PNGase belongs to the transglutaminase superfamily and features a Cys, His, and Asp catalytic triad, which is essential for its enzymatic activity. An elongated substrate-binding groove centered on the active site Cys191 was visualized in the crystal structure of apo-PNGase, whereas its complex with Z-VAD-fmk, a peptide-based inhibitor of PNGase, revealed that the inhibitor occupied one end of the substrate-binding groove while being covalently linked to the active site Cys. Recently, haloacetamidyl-containing carbohydrate-based inhibitors of PNGase were developed and shown to specifically label the active site Cys. In this study, we describe the crystal structure of yeast PNGase in complex with N,N'-diacetylchitobiose (chitobiose). We found that the chitobiose binds on the side opposite to the peptide binding site with the active site Cys191 being located approximately midway between the carbohydrate and peptide binding sites. Mutagenesis studies confirm the critical role of the chitobiose-interacting residues in substrate binding and suggest that efficient oligosaccharide binding is required for PNGase activity. In addition, the N-terminus of a symmetry-related PNGase was found to bind to the proposed peptide-binding site of PNGase. Together with the bound chitobiose, this enables us to propose a model for glycoprotein binding to PNGase. Finally, deleting the C-terminal residues of yeast PNGase, which are disordered in all structures of this enzyme, results in a significant reduction in enzyme activity, indicating that these residues might be involved in binding of the mannose residues of the glycan chain.  相似文献   

14.
A sandwich ELISA method using peptide tags showing a specific affinity to a hydrophilic polystyrene surface (PS-tags), PS 19 composed of RAFIASRRIKRP and KPS19R10 of KRAFIASRRIRRP and a hydrophilic polystyrene (phi-PS) plate was used to analyze protein-protein interactions. An Escherichia coli cysteine synthase complex, in which serine acetyltransferase (SAT) interacts with O-acetylserine sulfhydrylase-A (OASS) was used as a model system. When the interaction was detected by the conventional sandwich ELISA method using a hydrophobic polystyrene (pho-PS) plate, for the exclusive use of ELISA, the signal intensity was barely detectable due to conformational change of the ligand protein, OASS in the adsorbed state. On the contrary, when OASS, genetically fused with PS19 (OASS-PS19) or chemically conjugated with KPS19R10 (OASS-KPS19R10), was immobilized on the phi-PS plate, a high signal intensity was detected. Furthermore, by applying the two-step sandwich ELISA, in which OASS-PS19 or OASS-KPS19R10 formed a complex with SAT in the blocking solution before immobilization on the phi-PS plate, the signal intensity was further increased with a much shorter operational time, because SAT in the blocking solution formed a complex with OASS-PS19 or OASS-KPS19R10 without any steric hindrance.  相似文献   

15.
The major enzymatic activity of the ribosome is the catalysis of peptide bond formation. The active site -- the peptidyl transferase center -- is composed of ribosomal RNA (rRNA), and interactions between rRNA and the reactants, peptidyl-tRNA and aminoacyl-tRNA, are crucial for the reaction to proceed rapidly and efficiently. Here, we describe the influence of rRNA interactions with cytidine residues in A-site substrate analogs (C-puromycin or CC-puromycin), mimicking C74 and C75 of tRNA on the reaction. Base-pairing of C75 with G2553 of 23S rRNA accelerates peptide bond formation, presumably by stabilizing the peptidyl transferase center in its productive conformation. When C74 is also present in the substrate analog, the reaction is slowed down considerably, indicating a slow step in substrate binding to the active site, which limits the reaction rate. The tRNA-rRNA interactions lead to a robust reaction that is insensitive to pH changes or base substitutions in 23S rRNA at the active site of the ribosome.  相似文献   

16.
Helfrich M  Entian KD  Stein T 《Biochemistry》2007,46(11):3224-3233
Biosynthesis of the lantibiotic subtilin in Bacillus subtilis is accomplished by a synthetase complex consisting of the dehydratase SpaB, cyclase SpaC, and transporter SpaT. Genetically engineered subtilin cyclases SpaC and related NisC and EriC proteins involved in biosynthesis of the lantibiotics nisin and ericin A/S, respectively, were analyzed to functionally substitute native SpaC in vivo. We could show for the first time posttranslational modification of a lantibiotic precursor peptide (subtilin) by a hybrid lantibiotic synthetase (SpaBT/EriC). Genetically engineered SpaC alanine replacement mutants revealed the essentiality of residues His231, Trp302, Cys303, Tyr304, Gly305, Cys349, and His350, as well as the conserved C-terminal motif Lys437-Ala438-Leu439-Leu440-Ile441 for subtilin biosynthesis. Assignment of these strictly conserved lantibiotic cyclase residues to the NisC structure [Li, B., Yu, J. B., Brunzelle, J. S., Moll, G. N., van der Donk, W. A., and Nair, S. K. (2006) Science, 311, 1464-1467] revealed the first experimental evidence for structure-function relationships in catalytic centers of lantibiotic cyclases. SpaC residues His231, Cys303, and Cys349 are involved in coordination of the central zinc ion. The pair His231/Tyr304 is discussed to act as general acid/base catalysts in lanthionine formation. Furthermore, pull-down experiments revealed that functional inactive SpaC mutants were still able to interact with the hexahistidine-tagged subtilin precursor peptide in vitro. Our results suggest that Trp302 and the C-terminal residues of SpaC are constituents of a hydrophobic cluster which is involved in stabilization of the catalytic center and binding of the subtilin precursor peptide.  相似文献   

17.
HMA2 is a Zn2+-ATPase from Arabidopsis thaliana. It contributes to the maintenance of metal homeostasis in cells by driving Zn2+ efflux. Distinct from P1B-type ATPases, plant Zn2+-ATPases have long C-terminal sequences rich in Cys and His. Removal of the 244 amino acid C terminus of HMA2 leads to a 43% reduction in enzyme turnover without significant effect on the Zn2+ K(1/2) for enzyme activation. Characterization of the isolated HMA2 C terminus showed that this fragment binds three Zn2+ with high affinity (Kd = 16 +/- 3 nM). Circular dichroism spectral analysis indicated the presence of 8% alpha-helix, 45% beta-sheet, and 48% random coil in the C-terminal peptide with noticeable structural changes upon metal binding (8% alpha-helix, 39% beta-sheet, and 52% random coil). Zn K-edge XAS of Zn-C-MBD in the presence of one equivalent of Zn2+ shows that the average zinc complex formed is composed of three His and one Cys residues. Upon the addition of two extra Zn2+ ions per C-MBD, these appear coordinated primarily by His residues thus, suggesting that the three Zn2+ binding domains might not be identical. Modification of His residues with diethyl pyrocarbonate completely inhibited Zn2+ binding to the C terminus, pointing out the importance of His residues in Zn2+ coordination. In contrast, alkylation of Cys with iodoacetic acid did not prevent Zn2+ binding to the HMA2 C terminus. Zn K-edge XAS of the Cys-alkylated protein was consistent with (N/O)4 coordination of the zinc site, with three of those ligands fitting for His residues. In summary, plant Zn2+-ATPases contain novel metal binding domains in their cytoplasmic C terminus. Structurally distinct from the well characterized N-terminal metal binding domains present in most P1B-type ATPases, they also appear to regulate enzyme turnover rate.  相似文献   

18.
Cobalamin-independent methionine synthase (MetE) catalyzes the synthesis of methionine by a direct transfer of the methyl group of N5-methyltetrahydrofolate (CH3-H2PteGlun) to the sulfur atom of homocysteine (Hcy). We report here the first crystal structure of this metalloenzyme under different forms, free or complexed with the Hcy and folate substrates. The Arabidopsis thaliana MetE (AtMetE) crystals reveal a monomeric structure built by two (betaalpha)8 barrels making a deep groove at their interface. The active site is located at the surface of the C-terminal domain, facing the large interdomain cleft. Inside the active site, His647, Cys649, and Cys733 are involved in zinc coordination, whereas Asp605, Ile437, and Ser439 interact with Hcy. Opposite the zinc/Hcy binding site, a cationic loop (residues 507-529) belonging to the C-terminal domain anchors the first glutamyl residue of CH3-H4PteGlu5. The pterin moiety of CH3-H4PteGlu5 is stacked with Trp567, enabling the N5-methyl group to protrude in the direction of the zinc atom. These data suggest a structural role of the N-terminal domain of AtMetE in the stabilization of loop 507-529 and in the interaction with the poly-glutamate chain of CH3-H4PteGlun. Comparison of AtMetE structures reveals that the addition of Hcy does not lead to a direct coordination of the sulfur atom with zinc but to a reorganization of the zinc binding site with a stronger coordination to Cys649, Cys733, and a water molecule.  相似文献   

19.
BACKGROUND: Glycogen synthase kinase-3 (GSK-3) sequentially phosphorylates four serine residues on glycogen synthase (GS), in the sequence SxxxSxxxSxxx-SxxxS(p), by recognizing and phosphorylating the first serine in the sequence motif SxxxS(P) (where S(p) represents a phosphoserine). FRATtide (a peptide derived from a GSK-3 binding protein) binds to GSK-3 and blocks GSK-3 from interacting with Axin. This inhibits the Axin-dependent phosphorylation of beta-catenin by GSK-3. RESULTS: Structures of uncomplexed Tyr216 phosphorylated GSK-3beta and of its complex with a peptide and a sulfate ion both show the activation loop adopting a conformation similar to that in the phosphorylated and active forms of the related kinases CDK2 and ERK2. The sulfate ion, adjacent to Val214 on the activation loop, represents the binding site for the phosphoserine residue on 'primed' substrates. The peptide FRATtide forms a helix-turn-helix motif in binding to the C-terminal lobe of the kinase domain; the FRATtide binding site is close to, but does not obstruct, the substrate binding channel of GSK-3. FRATtide (and FRAT1) does not inhibit the activity of GSK-3 toward GS. CONCLUSIONS: The Axin binding site on GSK-3 presumably overlaps with that for FRATtide; its proximity to the active site explains how Axin may act as a scaffold protein promoting beta-catenin phosphorylation. Tyrosine 216 phosphorylation can induce an active conformation in the activation loop. Pre-phosphorylated substrate peptides can be modeled into the active site of the enzyme, with the P1 residue occupying a pocket partially formed by phosphotyrosine 216 and the P4 phosphoserine occupying the 'primed' binding site.  相似文献   

20.
Acetolactate synthase (ALS) is the common enzyme in the biosynthesis of valine, leucine, and isoleucine. The role of four cysteinyl residues in tobacco ALS was determined using site-directed mutagenesis and cysteine-specific cleavage. The C411A mutation abolished the enzymatic activity, as well as the binding affinity for the cofactor FAD. The activation constant of C411S for FAD is approximately 50-fold higher than that of wALS. The C607S mutation did not significantly affect the kinetic parameters. The IC(50) values of C411S and C607S for ALS-inhibiting herbicides are not much different from those of wALS. Two mutants, C163S and C309S, are labile and readily degraded to peptide fragments. The treatment of wALS with 2-nitro-5-thiocyanobenzoic acid, specific for cleavage of the N-terminal side of cysteine, yielded three peptides of 37.0, 22. 0, and 7.0 kDa. This fragmentation pattern is consistent with that deduced from the amino acid sequence of tobacco ALS, assuming the disulfide bond between Cys163 and Cys309. These results suggest that Cys411 is involved in the binding of FAD and that the intrachain disulfide bond between Cys163 and Cys309 plays a key role in maintaining the correct conformation of tobacco ALS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号