首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The tet operators of two naturally evolved tetracycline resistance determinants differ by a G.C to A.T transition at the sixth base pair. This mutation prevents heterologous recognition of these tet operators by their respective two Tet repressor proteins. The amino acid side chains responsible for this sequence-specific distinction of operators were determined. For this purpose in vitro recombinants of the two tetR genes were constructed. Restriction sites were introduced by oligonucleotide-directed mutagenesis in both genes followed by the exchange of different coding segments between them. The encoded chimeric Tet repressor proteins were expressed and their operator recognition specificity was scored in vivo. Exchanging gradually smaller coding segments led finally to a single amino acid exchange in both genes at position 40 of the primary structures. Each Tet repressor containing Thr at this position recognizes the G.C operator while those with Ala recognize the A.T operator regardless of the rest of the sequences. This result demonstrates clearly that the amino acid 40 of Tet repressor contacts and recognizes base pair 6 of tet operator. Sterical interference of the large Thr side chain with the methyl group of A.T and a possible involvement of the hydroxyl in hydrogen bonding to the operator are discussed as the molecular basis of this differentiation between A.T and G.C base pairs.  相似文献   

3.
Tn10 tet operator mutations affecting Tet repressor recognition.   总被引:5,自引:1,他引:4       下载免费PDF全文
The effect of single base pair alterations of the Tn10 encoded tet operator on recognition of Tet repressor was studied in vivo using a repressor titration system and in vitro by dissociation rate determinations of the respective complexes. Both methods reveal that the two operators, O1 and O2, which are in a tandem arrangement in the wild type, are recognized with a two-fold different affinity when separated. Studies on synthetic operator sequences indicate that the Tet repressor binds with higher affinity to the non-palindromic O2 wildtype than to the respective palindromic sequences. The in vivo repressor titration system links the expression of lacZ to the affinity of tet operator to Tet repressor. It was used to isolate tet operator mutations with reduced affinity to the repressor. The in vivo and in vitro obtained results with these mutants agree quantitatively and indicate, that the GC base pairs at positions 2, 6, and 8 are involved in interaction with the Tet repressor. Their importance for recognition decreases in that order. Transitions at position 7 of the tet operator show smaller effects on recognition than transversions.  相似文献   

4.
B Hecht  G Müller    W Hillen 《Journal of bacteriology》1993,175(4):1206-1210
We have developed a new genetic selection system for Tet repressor mutations with a noninducible phenotype for tetracycline (TetRs). Extensive chemical mutagenesis of tetR yielded 93 single-site Tet repressor mutations. They map from residue 23 preceding the alpha-helix-turn-alpha-helix operator binding motif to residue 196 close to the C terminus of the repressor. Thirty-three of the mutations are clustered between residues 95 and 117, and another 27 are clustered between residues 131 to 158. Several of the mutants were characterized quantitatively in vivo for induction by tetracycline and anhydrotetracycline. While all of these are severely reduced in tetracycline-mediated induction, only some of them are affected for anhydrotetracycline-mediated induction.  相似文献   

5.
Allosteric regulation of the Tet repressor (TetR) homodimer relies on tetracycline binding that abolishes the affinity for the DNA operator. Previously, interpretation of circular dichroism data called for unfolding of the α-helical DNA-binding domains in absence of binding to DNA or tetracycline. Our small angle X-ray scattering of TetR(D) in solution contradicts this unfolding as a physiological process. Instead, in the core domain crystal structures analyses show increased immobilisation of helix α9 and two C-terminal turns of helix α8 upon tetracycline binding. Tetracycline complexes of TetR(D) and four single-site alanine variants were characterised by isothermal titration calorimetry, fluorescence titration, X-ray crystal structures, and melting curves. Five crystal structures confirm that Thr103 is a key residue for the allosteric events of induction, with the T103A variant lacking induction by any tetracycline. The T103A variant shows anti-cooperative inducer binding, and a melting curve of the tetracycline complex different to TetR(D) and other variants. For the N82A variant inducer binding is clearly anti-cooperative but triggers the induced conformation.  相似文献   

6.
A saturating oligonucleotide-directed mutagenesis of both tet operators in the tet regulatory sequence was performed yielding mutants with four identical base pair exchanges at equivalent positions in the four tet operator half sides. The mutants were cloned between bipolar lacZ and galK indicator genes on a multicopy plasmid allowing the quantitative analysis of their effects in vivo. In the absence of Tet repressor the mutations lead to considerably different expression levels of both genes. They are discussed with respect to the promoter consensus sequences. In particular, the -10 region of the in vivo active tetPR2 promoter is unambiguously defined by these results. In the presence of Tet repressor most of the mutants exhibit a lower affinity for that protein as determined quantitatively by their reduced expression levels. In general, tet operator recognition is most strongly affected by alterations of base pairs near the center of the palindromic sequence. The most important position is the third base pair, followed by base pairs two, four, five and six, the latter showing similar effects as base pair one. At each position, the four possible base pairs show different affinities for Tet repressor. They are discussed according to their exposure of H-bond donors and -acceptors in the major and minor grooves of the B-DNA. The results are in agreement with major groove contacts at positions two, three and five. At position four a low potential correlation of efficiencies with the H-bonding in the minor groove is found, while mutations at position six seem to influence repressor binding by other mechanisms.  相似文献   

7.
Eight Tn10 Tet repressor mutants with an induction-deficient phenotype and with primary mutations located at or close to the dimer interface were mutagenized and screened for inducibility in the presence of tetracycline. The second-site suppressors with wild-type-like operator binding activity that were obtained act, except for one, at a distance, suggesting that they contribute to conformational changes in the Tet repressor. Many of these long-range suppressors occur along the dimer interface, indicating that interactions between the monomers play an important role in Tet repressor induction.  相似文献   

8.
The tetracycline repressor of pSC101   总被引:5,自引:0,他引:5  
  相似文献   

9.
Sin3a is the central scaffold protein of the prototypical Hdac1/2 chromatin repressor complex, crucially required during early embryonic development for the growth of pluripotent cells of the inner cell mass. Here, we compare the composition of the Sin3a‐Hdac complex between pluripotent embryonic stem (ES) and differentiated cells by establishing a method that couples two independent endogenous immunoprecipitations with quantitative mass spectrometry. We define the precise composition of the Sin3a complex in multiple cell types and identify the Fam60a subunit as a key defining feature of a variant Sin3a complex present in ES cells, which also contains Ogt and Tet1. Fam60a binds on H3K4me3‐positive promoters in ES cells, together with Ogt, Tet1 and Sin3a, and is essential to maintain the complex on chromatin. Finally, we show that depletion of Fam60a phenocopies the loss of Sin3a, leading to reduced proliferation, an extended G1‐phase and the deregulation of lineage genes. Taken together, Fam60a is an essential core subunit of a variant Sin3a complex in ES cells that is required to promote rapid proliferation and prevent unscheduled differentiation.  相似文献   

10.
Contacts between tet operator DNA and Tet repressor protein are characterized by modification interference studies. The modified DNA fragments are separated into fractions with high, intermediate and low affinities for Tet repressor by polyacrylamide gel electrophoresis. Ethylation of the phosphates with N-ethylnitrosourea reveals 12 contacts of a repressor dimer to tet operator. Eight of these contacts appear to be important for Tet repressor binding, as judged by the strong interference at these positions, while four contacts are probably less important. All of the phosphate contacts are located on the same side of the B-DNA structure. The sequences of tet operators proposed to interact with the recognition alpha-helix of Tet repressor are TCTATC in three cases and CCTATC in one case. After methylation of N-7 with dimethylsulfate, strong interference is observed at the guanine residues at positions +/- 2. None of the N-7 functions of other guanine residues seems to be involved in tight contacts to Tet repressor. Tet repressor subunits form identical phosphate and guanine N-7 contacts with each half side of the two tet operators indicating twofold dyad symmetry of the complexes. Attempts to analyze the methylation interference at the adenine N-3 sites reveal different results for the operators. Modification of DNA fragments with diethylpyrocarbonate yields hypersensitive sites in the tet operators, indicating different local DNA structures. Carbethoxylation interference studies confirm the contacts at the purines found by methylation interference. All of the sequence-specific protein-DNA contacts detected in this study are centered at the inside four base-pairs in each tet operator half side. The contacts are discussed with respect to the structure of the repressor-operator complex.  相似文献   

11.
Saturation mutagenesis of Tn10-encoded tet operator O1 was performed by chemical synthesis of 30 sequence variants yielding all possible point mutations of an operator half side. Their effect on Tet repressor binding was scored by an in-vivo repressor titration system. Tet repressor affinities of selected operator mutants were further characterized in vitro by dissociation rate measurements. The O1 sequence spans 19 base-pairs. Out of these, all 18 palindromic base-pairs are involved in Tet repressor recognition. The central base-pair does not contribute to sequence-specific binding of Tet repressor. At position 1 a pyrimidine residue is sufficient for maximal affinity to the repressor. At positions 2, 3 and 4, each mutation reduces repressor binding at least tenfold. Mutations at positions 5, 6, 7, 8 and 9 result in less drastic reductions of Tet repressor binding. Differential effects of mutations at a given position are used to deduce the chemical functions contacted by Tet repressor. The T.A to A.T transversion at position 9 increases Tet repressor affinity slightly, while all other mutations decrease repressor binding. The increased affinity of the wild-type tet operator O2 compared to wild-type O1 results from the addition of two favorable transversions at positions +/- 9 and an unfavorable T.A to C.G transition at position -7. Deletion or palindromic doubling of the central base-pair of the O1 palindrome reveals that the wild-type spacing of both operator half sides is crucial for efficient Tet repressor binding.  相似文献   

12.
The mechanism by which gene regulatory proteins gain access to their DNA target sites is not known. In vitro, binding is inherently cooperative between arbitrary DNA binding proteins whose target sites are located within the same nucleosome. We refer to such competition-based cooperativity as collaborative competition. Here we show that arbitrarily chosen foreign DNA binding proteins, LexA and Tet repressor, cooperate with an adjacently binding endogenous activator protein, Gcn4, to coactivate expression of chromosomal reporter genes in Saccharomyces cerevisiae. Coactivation requires that the cooperating target sites be within a nucleosome-length distance; it leads to increased occupancy by Gcn4 at its binding site; and it requires both Gcn5 and Swi/Snf which, at an endogenous Gcn4-dependent promoter, act subsequent to Gcn4 binding. These results imply that collaborative competition contributes to gene regulation in vivo. They further imply that, even in the presence of the cell's full wild-type complement of chromatin remodeling factors, competition of regulatory proteins with histone octamer for access to regulatory target sites remains a quantitative determinant of gene expression levels. We speculate that initial target site recognition and binding may occur via spontaneous nucleosomal site exposure, with remodeling factor action required downstream to lock in higher levels of regulatory protein occupancy.  相似文献   

13.
14.
15.
16.
17.
18.
Single-chain Tet transregulators   总被引:3,自引:1,他引:2       下载免费PDF全文
We demonstrate here that the Tet repressor (TetR), a dimeric allosterical regulatory protein, can be converted to a fully functional monomer when connected by a 29 amino acid linker. TetR-based transregulators are widely used to regulate gene expression in eukaryotes. They can be fused to form single-chain (sc) Tet transregulators with two TetR moieties and one eukaryotic regulatory domain. Sc variants of transactivator and transsilencer exhibit the same regulatory properties as their respective dimeric counterparts in human cell lines. In particular, the reverse ‘tet-on’ phenotype of rtTA variants is also present in the sc variants. Coexpression of a reverse transactivator and sc transsilencer leads to reduced background expression and shows full activation upon induction. The data demonstrate that sc Tet transregulators exhibit the phenotype of their respective dimers and lack functional interference when coexpressed in the same cell.  相似文献   

19.
20.
Regulatory proteins often communicate with each other to manage various cellular processes. Such interactions mostly rely on the recognition of small peptide motifs. The activity of other regulatory proteins depends on small molecular weight effectors and allostery. We demonstrate the in vivo regulation of the tetracycline-dependent Tet repressor by an oligopeptide fused to the N or C terminus of thioredoxin A. The binding site of the peptide overlaps but is not identical with the tetracycline binding site. Several TetR mutants that are non-inducible by tetracycline also respond to the peptide. This demonstrates for the first time the conversion of a small molecular weight effector-dependent regulator to a protein-protein contact-dependent potential member of designed signaling chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号