首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The paper presents data on a change in lysozyme content in tissues of spleen, liver and heart in fry of the Lena River sturgeon exposed to the presence of sublethal concentrations of Hg2+, Cd2+, and Cu2+ under conditions of chronic experiment. It has been shown that the lysozyme content in fish tissues varies and has a phasic character. The amplitude of fluctuations of this parameter depends on the moment of sampling, nature of the toxicant, and structural-functional organization of the studied organs.  相似文献   

2.
Divalent copper was found to inhibit non-competitively the lysis of Micrococcus lysodeikticus cells by hen egg-white lysozyme, with an inhibition constant Ka= 3.8 × 102m?1. The association constants of Cu2+ for lysozyme and for a derivative of lysozyme in which tryptophan residue 108 was selectively modified, were measured spectrofluorimetrieally and found to be 1.8 × 102m?1 and 1.0 × 103m?1, respectively. The electron spin resonance spectrum of Cu2+ was not affected by the addition of lysozyme, whereas many new lines appeared on addition of the modified protein. This was interpreted as evidence for the binding of Cu2+ in the neighbourhood of tryptophan 108. To unequivocally establish the site of ligation of Cu2+, crystals of lysozyme soaked in Cu2+ were examined by X-ray crystallography and the results compared to those obtained from crystals of native lysozyme. Cu2+ was found to be located 2 to 3 Å from the carboxyl side-chain of aspartic acid 52, 5 Å from the carboxyl of glutamic acid 35 and about 7 Å from tryptophan 108.The addition of a saccharide inhibitor to lysozyme was found to increase the association constant of Cu2+ for lysozyme from a value of 1.8 × 102m?1 to 6.0 × 102m?1. This finding was interpreted as indicative of a change in conformation around tryptophan 108 and glutamic acid 35 induced by the interaction of saccharides with the enzyme, which affects the metal binding properties of aspartic acid 52.  相似文献   

3.
Lysozyme fails to penetrate through the outer membrane of stationary phase cells of Escherichia coli when it is simply added to suspensions of plasmolyzed cells. Lysozyme penetrates the outer membrane only when these cells are exposed to a mild osmotic shock in the presence of EDTA and lysozyme.In the presence of Mg2+, the outer membrane is stabilized sufficiently so that there is no lysozyme penetration during osmotic shock. If Mg2+ is added after an osmotic shock has been used to cause lysozyme to penetrate a destabilized outer membrane, the outer membrane is stabilized once again. In this case however, cells are converted to spheroplasts by the lysozyme which has gained access to the murein layer prior to the addition of Mg2+. Mg2+ stabilizes the outer membranes of these spheroplasts sufficiently so that they remain immune to lysis even in the absence of osmotic stabilizers such as sucrose.These results are discussed in terms of current information on the structure of the murein layer and the outer membrane.  相似文献   

4.
The solubility of aqueous solutions of lysozyme in the presence of polyethylene glycol and various alkaline salts was studied experimentally. The protein-electrolyte mixture was titrated with polyethylene glycol, and when precipitation of the protein occurred, a strong increase of the absorbance at 340 nm was observed. The solubility data were obtained as a function of experimental variables such as protein and electrolyte concentrations, electrolyte type, degree of polymerization of polyethylene glycol, and pH of the solution; the last defines the net charge of the lysozyme. The results indicate that the solubility of lysozyme decreases with the addition of polyethylene glycol; the solubility is lower for a polyethylene glycol with a higher degree of polymerization. Further, the logarithm of the protein solubility is a linear function of the polyethylene glycol concentration. The process is reversible and the protein remains in its native form. An increase of the electrolyte (NaCl) concentration decreases the solubility of lysozyme in the presence and absence of polyethylene glycol. The effect can be explained by the screening of the charged amino residues of the protein. The solubility experiments were performed at two different pH values (pH = 4.0 and 6.0), where the lysozyme net charge was +11 and +8, respectively. Ion-specific effects were systematically investigated. Anions such as Br, Cl, F, and (all in combination with Na+), when acting as counterions to a protein with positive net charge, exhibit a strong effect on the lysozyme solubility. The differences in protein solubility for chloride solutions with different cations Cs+, K+, and Na+ (coions) were much smaller. The results at pH = 4.0 show that anions decrease the lysozyme solubility in the order (the inverse Hofmeister series), whereas cations follow the direct Hofmeister series (Cs+ < K+ < Na+) in this situation.  相似文献   

5.
We previously developed a calcium phosphate (CaP) calcifying solution that allows to deposit a uniform layer of nanocrystalline apatite on metallic implants in a few hours. In this work we modified the composition of the CaP solution by addition of Sr2+, Mg2+, and Mn2+, in order to improve the biological performance of the implants. The results of the investigation performed on the coatings, as well as on the powders precipitated in the absence of the substrates, indicate that both Sr2+ and Mg2+ reduce the extent of precipitation, although they are quantitatively incorporated into the nanocrystalline apatitic phase. The inhibitory effect on deposition is much more evident for Mn2+, which completely hinders the precipitation of apatite and yields just a small amount of amorphous phosphate relatively rich in manganese content. Human osteoblast-like MG-63 cells cultured on the different materials show that the Mg2+ and Sr2+ apatitic coatings promote proliferation and expression of collagen type I, with respect to bare Ti and to the thin layer of amorphous phosphate obtained in the presence of Mn2+. However, the relatively high content of Mn2+ in the phosphate has a remarkable beneficial effect on osteocalcin production, which is even greater than that observed for Sr2+.  相似文献   

6.
The effects of Cu2+ on growth, chlorophyll and other ion contents ofKoeleria splendens originated from Cu-contaminated soil have been investigated in nutrient solution. The most evident Cu2+ effects concern the root growth, especially the root length. Since in plants grown under lower Cu2+ concentrations (4 and 8 μM) root elongation, biomass, chlorophyll, Mg2+, Fe2+, Ca2+ and K+ content were increased compared with the control, the development of an adaptive mechanism ofK. splendens to Cu2+ is suggested. High Cu2+ concentration (160 μM) caused a significant reduction in root length and biomass as well as a decreased rate of chlorophyll biosynthesis. The reduction of growth can be correlated with the toxic effect of Cu2+ on photosynthesis, root respiration and protein synthesis in roots. 160 μM Cu2+-treatment had a negative influence on the concentrations of Ca2+, Fe2+, Mg2+ and K+ and a positive influence on the Cu2+ concentration in the plant tissues. Loss of nutrients similar to the senescence response suggests that excess of Cu2+ leads to the progressive senescence of the plants. Our results demonstrate the existence of an adaptive mechanism ofK. splendens under low Cu2+ concentrations, while high Cu2+ quantities cause disturbances in plant function.  相似文献   

7.
A specific alkaline phosphatase (ALPase) from the integument of white pupae has been purified 500-fold. The purification procedure included solubilization with Triton X-100, butanol extraction, fractionation with ammonium sulfate, and chromatography on concanavalin A-Sepharose, Sephadex G-200, and Sepharose 6B. Two peaks with enzyme activity were observed. The major peak had a molecular weight of approximately 180,000, while the minor peak, which had identical kinetic parameters and substrate specificity as those of the major one, was eluted in a high molecular weight form (about 900,000), probably cross-linked with chitin, since the enzyme was separated from the chitin only by lysozyme treatment. The enzyme hydrolyzes only tyrosine phosphate and β-glycerophosphate, with apparent Kms of 0.35 mM and 0.22 mM, respectively, but not serine phosphate, threonine phosphate, ATP, and AMP. The optimum pH was in the alkaline range, with a peak at pH 9.4. The divalent cations Mn2+, Mg2+, and Ba2+ had stimulatory actions, while Cu2+ exerted a very strong inhibitory action on the enzyme activity. The ALPase was inhibited by L-tyrosine in a dose-dependent fashion. At a concentration of 2 mM, L-tyrosine totally inhibited the enzyme activity, while L-phenylalanine inactivated the enzyme about 25%. The accumulated evidence that ALPase is involved in the sclerotization process of insect integument is discussed.  相似文献   

8.
Ribosomes containing 23S rRNA with one scission per molecule were found to be inactive in the synthesis of lysozyme, total protein, and polyphenylalanine at 9.1 mm Mg2+. Increasing the Mg2+ concentration to 12.0 mm restored synthesis of lysozyme and total proteins. Ribosomes with two or more scissions in 23S rRNA were fully active in the synthesis of lysozyme, total protein, and polyphenylalanine at 9.1 mm Mg2+. It appears that one scission in the 23S rRNA molecule in a 70S ribosome allows the structure of the ribosome to change so as to disorient ribosomal proteins or rRNA. A second scission in 23S rRNA or an increase in Mg2+ concentration reverses the change which occurred with the first scission.  相似文献   

9.
The interaction of different species variants of cytochrome c and myoglobin, as well as hen egg white lysozyme, with the hard Lewis metal ions Al3+, Ca2+, Fe3+, and Yb3+ and the borderline metal ion Cu2+, immobilized to iminodiacetic acid (IDA)-Sepharose CL-4B, has been investigated over the rangepH 5.5–8.0. With appropriately chosen buffer and metal ion conditions, these proteins can be bound to the immobilized M n +-IDA adsorbents via negatively charged amino acid residues accessible on the protein surface. For example, tuna heart cytochrome c, which lacks surface-accessible histidine residues, readily bound to the Fe3+-IDA adsorbent, while the other proteins also showed affinity toward immobilized Fe3+-IDA adsorbents when buffers containing 30 mM of imidazole were used. These studies document that protein selectivity can be achieved with hard-metalion immobilized metal ion affinity chromatography (IMAC) systems through the interaction of surfaceexposed aspartic and glutamic acid residues on the protein with the immobilized M n +-IDA complex. These investigations have also documented that the so-called soft or borderline immobilized metal ions such as the Cu2+-IDA adsorbent can also interact with surface-accessible aspartic and glutamic acid residues in a protein-dependent manner. A relationship is evident between the number and extent of clustering of the surfaceaccessible aspartic and glutamic acid residues and protein selectivity with these IMAC systems. The use of elution buffers which contain organic compound modifiers which replicate the carboxyl group moieties of these amino acids on the surface of proteins is also described.Abbreviations IDA iminodiacetic acid - IDA-Mn+ iminodiacetic acid chelated to metal ion - IMAC immobilized metal affinity chromatography - DHCC dog heart cytochrome c - HHCC horse heart cytochrome c, THCC, tuna heart cytochrome c - HMYO horse skeletal muscle myoglobin - SMYO sheep skeletal muscle myoglobin - HEWL hen egg white lysozyme  相似文献   

10.
The synergistic stimulation of ethylene production by kinetin and Ca2+ in hypocotyl segments of mung bean (Phaseolus aureus Roxb.) seedling was further studied. The requirement for Ca2+ in this system was specific. Except for Sr2+, which mimicked the effect of Ca2+, none of the following divalent cations, including Ba2+, Mg6+, Cu2+, Hg2+, Co2+, Ni2+, Sn2+, and Zn2+, showed synergism with kinetin on ethylene production. Fe2+, however, showed a slight synergism with kinetin. Some of them (Hg2+, Co2+, and Ni2+) had a strong inhibitory effect, while others (Zn2+, Mg2+, Sn2+, and Ba2+) had a slight or no inhibitory effect on ethylene production in the absence or presence of kinetin.  相似文献   

11.
Inhibition of ethylene production by cobaltous ion   总被引:10,自引:13,他引:10       下载免费PDF全文
Lau OL  Yang SF 《Plant physiology》1976,58(1):114-117
The effect of Co2+ on ethylene production by mung bean (Phaseolus aureus Roxb.) and by apple tissues was studied. Co2+, depending on concentrations applied, effectively inhibited ethylene production by both tissues. It also strongly inhibited the ethylene production induced by IAA, kinetin, IAA plus kinetin, Ca2+, kinetin plus Ca2+, or Cu2+ treatments in mung bean hypocotyl segments. While Co2+ greatly inhibited ethylene production, it had little effect on the respiration of apple tissue, indicating that Co2+ does not exert its inhibitory effect as a general metabolic inhibitor. Ni2+, which belongs to the same group as Co2+ in the periodic table, also markedly curtailed both the basal and the induced ethylene production by apple and mung bean hypocotyl tissues.  相似文献   

12.
重金属铜、锌、镉复合胁迫对麻疯树幼苗生理生化的影响   总被引:2,自引:0,他引:2  
该研究以Cu~(2+)、Zn~(2+)、Cd~(2+)单一胁迫为对照,探讨不同浓度的Cu~(2+)、Zn~(2+)、Cd~(2+)复合胁迫对麻疯树幼苗生理生化指标的影响。结果表明:随着Cu~(2+)、Zn~(2+)、Cd~(2+)浓度的增加,麻疯树幼苗叶片中的蛋白质(Pro)、丙二醛(MDA)含量均逐渐增加,其叶片叶绿素含量随着Zn~(2+)胁迫浓度的增加呈现出先降后升的趋势,在中等浓度(100 mg·L-1)的Zn~(2+)胁迫时含量最低、随着Cu~(2+)胁迫浓度的增加叶绿素含量先升高后降低,在Cu~(2+)浓度为200 mg·L-1时含量最高,达到1 200 mg·g-1FW; Cd~(2+)胁迫对叶绿素含量和根系活力无明显影响。根系活力在Zn~(2+)浓度为100 mg·L~(-1)时最强,随着Cu~(2+)浓度的增加而减弱。低浓度的Cu~(2+)、Zn~(2+)、Cd~(2+)对过氧化物酶活性和可溶性糖含量都具有促进作用。Cu~(2+)、Zn~(2+)、Cd~(2+)复合胁迫时对可溶性蛋白、叶绿素和丙二醛含量均无明显影响,随着复合胁迫时浓度的增加,可溶性糖含量和根系活力先增后减。这表明麻疯树对三种重金属的胁迫具有一定的抗性,过高浓度的胁迫会影响麻疯树幼苗生理生化的一些指标,但是麻疯树可以通过自身的防御系统使伤害降到最小。此外,重金属复合胁迫可以在一定程度上减轻单一胁迫对麻疯树幼苗造成的毒害作用。  相似文献   

13.
Availability of irrigation water of appropriate quality is becoming critical in many regions. Excess salt in irrigation water represents a risk for crop yield, crop quality, and soil properties. During the short vegetation period, field peas require high amounts of water, and irrigation is often indispensable for successful production. Steady presence of NaCl (0.1, 0.2, 0.6 or 1.2 g NaCl L−1 in 1/2 strength Hoagland nutrient solution) under semi-controlled conditions reduced growth and resulted in shorter vegetation. Disturbances in the peas’ water regime were provoked by NaCl, as water content in pea tissues was reduced and stomatal density and stomatal diffusive resistance increased in the presence of higher NaCl concentrations. Concentration of Na+ increased in all pea tissues with increased NaCl concentration in the nutrient medium. In the presence of NaCl, concentrations of K+, Ca2+ and Pi increased in roots, stems and leaves, and decreased and in pods and grains. Concentration ratios Na+/K+, Na+/Ca2+, K+/Ca2+ and (Na++K+)/Ca2+ in various plant parts were affected as well, but magnitudes of changes were variable. Continuous presence of NaCl in concentrations frequently met in irrigation waters significantly reduced pea growth, impaired the water regime, and altered plant chemical composition.  相似文献   

14.
The effects of an arbuscular mycorrhizal (AM) fungus, Glomus mosseae, and a phosphate-solubilizing microorganism (PSM), Mortierella sp., and their interactions, on nutrient (N, P and K) uptake and the ionic composition of different root tissues of the halophyte Kosteletzkya virginica (L.), cultured with or without NaCl, were evaluated. Plant biomass, AM colonization and PSM populations were also assessed. Salt stress adversely affected plant nutrient acquisition, especially root P and K, resulting in an important reduction in shoot dry biomass. Inoculation of the AM fungus or/and PSM strongly promoted AM colonization, PSM populations, plant dry biomass, root/shoot dry weight ratio and nutrient uptake by K. virginica, regardless of salinity level. Ion accumulation in root tissues was inhibited by salt stress. However, dual inoculation of the AM fungus and PSM significantly enhanced ion (e.g., Na+, Cl?, K+, Ca2+, Mg2+) accumulation in different root tissues, and maintained lower Na+/K+ and Ca2+/Mg2+ ratios and a higher Na+/Ca2+ ratio, compared to non-inoculated plants under 100 mM NaCl conditions. Correlation coefficient analysis demonstrated that plant (shoot or root) dry biomass correlated positively with plant nutrient uptake and ion (e.g., Na+, K+, Mg2+ and Cl?) concentrations of different root tissues, and correlated negatively with Na+/K+ ratios in the epidermis and cortex. Simultaneously, root/shoot dry weight ratio correlated positively with Na+/Ca2+ ratios in most root tissues. These findings suggest that combined AM fungus and PSM inoculation alleviates the deleterious effects of salt on plant growth by enabling greater nutrient (e.g., P, N and K) absorption, higher accumulation of Na+, K+, Mg2+ and Cl? in different root tissues, and maintenance of lower root Na+/K+ and higher Na+/Ca2+ ratios when salinity is within acceptable limits.  相似文献   

15.
Summary The effect of EDTA-decalcification, reactivating and activating procedures on the hydrolysis of ATP was studied histochemically in developing dental tissues in the rat. The incubation media contained lead citrate at alkaline pH and lead nitrate at neutral pH, and the results with ATP as substrate were compared with those obtained with -glycerophosphate.The ion dependency of ATP hydrolysis could only be ascertained in decalcified sections. As in earlier studies on the hydrolysis of -glycerophosphate in dental tissues, this hydrolysis could readily be reactivated through preincubation of the sections in a series of 0.1 M solutions of divalent cations; Zn2+ being the most efficient. This treatment was now found also to give rise to an ATP hydrolysis, which occurred without the need for activating ions in the incubation medium. This ATP hydrolysis should thus be described as nonspecific and, in terms of ion dependency, as due to a metalloenzyme, i.e. alkaline phosphatase. Activating ion dependent ATP hydrolysis in the dental tissues was found in the blood vessels and in the apical part of the secretory ameloblasts. The former was activated by Mg2+, Ca2+ and Mn2+, and the latter by Ca2+ and -almost specifically—by Sr2+. Preincubation with Zn2+ always inhibited the ion dependant ATP hydrolysis in the dental tissues.  相似文献   

16.
Paracoccus denitrificans grown on complex medium deficient in Mg2+ and Ca2+ are rendered lysozyme susceptible by washing with NaCl, whereas cells grown in a succinate-salts medium (Mg2+ and Ca2+ sufficient) or complex medium supplemented with Mg2++Ca2+ are not. The material released by water washing of cells grown on complex medium and complex medium supplemented with Mg2+ and Ca2+ was characterized by a high protein content. There was a high lipid: protein ratio and an appreciable amount of 3-deoxyoctulosonic acid in the material released by NaCl washing of cells grown under all conditions, indicating release of outer membrane material. The lipid ornithine: lipid phosphorous ratios of NaCl wash from cells grown on complex medium and complex medium supplemented with Mg2+ and Ca2+ were 0.54 and 0.34, respectively. Although NaCl washing removed outer membrane material from cells grown under all conditions, only divalent cation deficient cells were rendered lysozyme susceptible. This might be explained by the increased outer membrane ornithine-containing lipid to phospholipid ratio in these cells yielding a more permeable outer membrane.  相似文献   

17.
A fungus J2 producing laccase with high yield was screened in soils and identified as Abortiporus biennis. The production of laccase was induced by 0.1 mM Cu2+, 0.1 mM tannic acid, and 0.5 M ethanol. The laccase from Abortiporus biennis J2 was purified to electrophoretic homogeneity by a couple of steps. The N-terminal amino acid sequence of the enzyme was AIGPTADLNISNADI. The properties of the purified laccase were investigated. The result showed the laccase from Abortiporus biennis J2 is a thermo and pH stable enzyme. The laccase activity was inhibited by Hg2+, Cd2+, Fe2+, Ag+, Cu2+, and Zn2+, while promoted by Mg2+, Mn2+ at 10 mM level. Purified laccase was used to the clarification of litchi juice. After treatment with this laccase, the phenolic content of litchi juice had been found to be greatly reduced along with an increase in the clarity of the juice. The result indicated the potential of this laccase for application in juice procession.  相似文献   

18.
We sought to elucidate the effects of different concentrations of dietary selenium on calcium ion release, MLCK levels, and muscle contraction in the uterine smooth muscle of rats. The selenium (Se) content of blood and of uterine smooth muscle tissues was detected by fluorescence spectrophotometry. Ca2+ content was measured by atomic absorption spectroscopy. Calmodulin (CaM) and MLCK RNA and protein levels were analyzed by quantitative real-time polymerase chain reaction and Western blot, respectively. Dietary Se intake increased the Se levels in the blood and in uterine smooth muscle tissues and increased the Ca2+ concentration in uterine smooth muscle tissues. The addition of Se also promoted CaM expression and enhanced MLCK activation in uterine smooth muscle tissues. In conclusion, Ca2+, CaM, and MLCK were regulated by Se in uterine smooth muscle; Se plays a major role in regulating smooth muscle contraction in the uterus.  相似文献   

19.
NaCl胁迫下沙枣幼苗生长和阳离子吸收、运输与分配特性   总被引:18,自引:0,他引:18  
沙枣(Elaeagnus angustifolia L.)耐盐性强,是我国北方生态脆弱地区造林绿化的一个先锋树种。为探讨沙枣的盐适应机制,研究了不同浓度NaCl(0、100和200 mmol/L)胁迫30d对其水培幼苗生物量累积以及不同组织(根、茎、叶)K+、Na+、Ca2+和Mg2+吸收、运输与分配的影响。结果表明:盐胁迫不同程度地促进了沙枣苗根系生长;100 mmol/L NaCl胁迫对幼苗生物量累积无明显影响,而200 mmol/L则显著抑制了生物量累积;盐胁迫幼苗根、茎、叶中Na+含量以及K+-Na+选择性运输系数(S K,Na)和Ca2+-Na+选择性运输系数(S Ca,Na)显著或大幅度增加,而K+、Ca2+、Mg2+含量以及K+/Na+、Ca2+/Na+和Mg2+/Na+比值则显著或大幅度下降;200 mmol/L NaCl胁迫沙枣根Na+含量和根Na+净累积量分别为22.15 mg/g干重和1.87 mg/株(是对照的16.20倍和20.06倍),根成为Na+净累积量增加幅度最大的组织和Na+含量最高的组织;200 mmol/L NaCl胁迫沙枣茎、叶中的Na+含量以及冠组织Na+净累积量分别高达5.15、7.71 mg/g干重和3.29 mg/株(是对照的7.22倍、9.58倍和5.45倍),但幼苗仍能正常生长。综合分析认为,沙枣的盐适应机制是根系拒盐和冠组织耐盐,主要通过根系的补偿生长效应、根系对Na+的聚积与限制作用以及冠组织对Na+的忍耐来实现的,同时也与根、茎和叶对K+、Ca2+选择性运输能力显著增强有关。  相似文献   

20.
Although several plants belonging to the Bromeliaceae family have been used as heavy metal accumulators in biomonitoring studies, their accumulation ability has not been investigated. The present study obtained the accumulation rates of Ni2+, Cu2+, Pb2+ and Zn2+ in leaves of Tillandsia capillaris and revealed their effects on lipid peroxidation by measuring the Malondialdehyde content (MDA). Leaves of T. capillaris were exposed to different metallic solutions of Cu2+, Ni2+, Pb2+ and Zn2+ cations. After this exposure period, the accumulation of these ions was measured by Total Reflection X-Ray Fluorescence (TXRF) analysis with Synchrotron Radiation, and the MDA content was calculated. Data sets were evaluated by a one-way analysis of variance (ANOVA) and a fitted regression hyperbola model. The results showed significant differences in the accumulation efficiencies of the cations under study. In addition, the enrichment factor (EF) estimated for these cations was higher for Ni2+, suggesting a greater affinity of the plant with this element. Over time, all the metals under study caused significant increases in the MDA content, indicating their toxicity effects even in the most diluted solutions used in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号