首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Dopamine beta-hydroxylase (DBH, EC 1.14.17.1) is present in both membrane-bound and soluble forms in neurosecretory vesicles. This study was designed to investigate the differences between membrane-bound and soluble DBH and how they may arise from translation of a single mRNA. Antisera to a peptide corresponding to the carboxyl terminus of rat DBH was found to specifically immunoprecipitate the 77- and 73-kDa subunits of newly synthesized DBH in rat brain. Thus, both soluble and membrane-bound forms contain the same carboxyl terminus. To investigate differences at the amino terminus, full-length rat DBH mRNA, translated in a cell-free system, produced a 66-kDa peptide. An additional higher molecular mass product was synthesized upon co-translational addition of microsomal membranes. This product was glycosylated since it bound to concanavalin A-Sepharose and reverted to the 66-kDa polypeptide after treatment with endoglycosidase H. This glycosylated product was resistant to protease digestion and fractionated with microsomal membranes on sucrose gradients, indicating that it is incorporated into the microsomal membranes. Amino-terminal sequencing of the glycosylated translation product indicated that the amino-terminal "signal" sequence was not cleaved. The results indicate that in the cell-free system newly synthesized DBH undergoes glycosylation and incorporation into microsomal membranes without cleavage of the NH2-terminal signal sequence.  相似文献   

2.
The biogenesis of two microvillar enzymes, aminopeptidase N (EC 3.4.11.2) and sucrase (EC 3.2.1.48)-isomaltase (EC 3.2.1.10), was studied by pulse-chase labelling of pig small-intestinal explants kept in organ culture. Both enzymes became inserted into the membrane during or immediately after polypeptide synthesis, indicating that translation takes place on ribosomes attached to the rough endoplasmic reticulum. The earliest detectable forms of aminopeptidase and sucrase-isomaltase were polypeptides of Mr 140 000 and 240 000 respectively. These polypeptides were susceptible to treatment with endo-beta-N-acetylglucosaminidiase H (EC 3.2.1.96), suggesting that the microvillar enzymes during or immediately after completion of protein synthesis become glycosylated with a 'high-mannose' oligosaccharide structure similarly to other plasma-membrane and secretory proteins. After 20--40 min or 60--90 min of chase, respectively, aminopeptidase N and sucrase-isomaltase were reglycosylated to give the polypeptides of Mr 166 000 (aminopeptidase N) and 265 000 (sucrase-isomaltase). These were expressed at the microvillar membrane after 60--90 min. During the entire process of synthesis and transport to the microvillar membrane the enzymes were bound to membranes, indicating that the biogenesis of aminopeptidase N and sucrase-isomaltase occurs in accordance with the membrane flow hypothesis.  相似文献   

3.
Pig small intestinal mucosal explants, labelled with [35S]-methionine, were fractionated into Mg2+-precipitated (intracellular and basolateral) and microvillar membranes, and the orientation of newly synthesized aminopeptidase N (EC 3.4.11.2) in vesicles from the two fractions was studied by its accessibility to proteolytic cleavage. The mature polypeptide of Mr 166 000 from the latter fraction was cleaved by trypsin, proteinase K and papain, consistent with an extracellular location of the enzyme at its site of function. In contrast, both the mature form and the transient form of Mr 140 000 from the Mg2+-precipitated fraction were equally well protected from proteolytic cleavage (in the absence of Triton X-100). This indicates that the basolateral plasma membrane is unlikely to be involved in the post-Golgi transport of newly synthesized aminopeptidase N and suggests instead a direct delivery of the enzyme to the apical plasma membrane. A crude membrane preparation from labelled explants was used in immunoelectrophoretic purification of membranes to determine at what stage during intracellular transport newly synthesized microvillar enzymes are sorted, i.e., accumulated in areas of the membrane from where other proteins are excluded. The transient form of aminopeptidase N was only moderately enriched by immunopurification, using antibodies against different microvillar enzymes, but the mature form was enriched approximately 30-fold from explants, labelled for 30 min. This suggests that for microvillar enzymes, the aspects of sorting studied take place in, or shortly after exit from, the Golgi complex.  相似文献   

4.
A sulfhydryl-endopeptidase was purified as a 33 kilodalton (kD) mass polypeptide from cotyledons of Vigna mungo seedlings. Immunoblot analysis with antiserum made against the purified enzyme showed that the sulfhydryl-endopeptidase was synthesized only in the cotyledons during germination and that the amount of the enzyme increased until 4 days after imbibition and decreased thereafter. Next, an RNA fraction was prepared from cotyledons of 3 day old seedlings and translated in a wheat germ system. The synthesis of a 45 kD polypeptide was shown by the analysis of its translation products by immunoprecipitation with the antiserum to the endopeptidase and gel electrophoresis. When the RNA fraction was translated in the presence of canine microsomal membranes, a smaller polypeptide, having a 43 kD molecular mass, was detected as the translation product. When membrane-bound polysomes, but not free polysomes, prepared from cotyledons were used for translation in the wheat germ system, both the 43 and 45 kD polypeptides were synthesized. By incubation of a crude enzyme extract from cotyledons at 5 ± 1°C at neutral pH, the 43 kD polypeptide was sequentially cleaved to the 33 kD polypeptide via 39 and 36 kD intermediate polypeptides. The endopeptidase was activated simultaneously with the processing. Two-dimensional polyacrylamide gel electrophoresis showed that the 33 kD polypeptide was the fully activated form of the enzyme, whereas little or no activity was detected in other forms. From the present results, we postulate that the sulfhydryl-endopeptidase is first synthesized as the 45 kD precursor with a 2 kD signal peptide being cleaved, and that the 43 kD polypeptide is further cleaved to give the 33kD mature enzyme.  相似文献   

5.
Bovine lung angiotensin-converting enzyme was isolated in pure form and the sequence of the first twenty-two NH2-terminal amino acids determined. Oligonucleotides, complementary to a selected portion of the NH2-terminal amino acid sequence of the bovine glycoprotein (Mr 145,000), were synthesized and used for hybridization selection of angiotensin-converting enzyme mRNA. The hybridization-selected mRNA programmed the in vitro synthesis of a single polypeptide (Mr 130,000) that was specifically immunoadsorbed by anti-bovine enzyme antibodies. Preliminary sequence analysis of the primary translation product suggests that bovine angiotensin-converting enzyme is synthesized without a transient NH2-terminal signal sequence.  相似文献   

6.
Three RNA fractions (12SE, 9SE and 8SE) were isolated from highly purified mitochondrial preparations of Crithidia oncopelti. Using inhibitory analysis and competitive hybridization, it was shown that the mitochondrial fractions under study are synthesized in the kinetoplasts and do not belong to ribosomal RNA. It was demonstrated that these fractions possess template activity, since they stimulate protein synthesis in a cell-free system of E. coli. Each fraction is subjected to translation to form one predominant polypeptide with molecular weight of about 20 000, 10 000 and 7000, respectively.  相似文献   

7.
The primary translation product of the mRNA for rabbit haptoglobin was obtained from a rabbit reticulocyte lysate cell-free system by immunoprecipitation with an antiserum that was directed to the beta chain of haptoglobin. Analysis of the translation product by gel electrophoresis and by protein sequencing analysis identified a single polypeptide of Mr 41 000. Sequence analysis established a signal region of 18 residues that was immediately followed by the alpha chain sequence. These results give strong evidence that haptoglobin is initially synthesized as a single chain composed of a signal peptide followed by alpha and beta chain regions, respectively.  相似文献   

8.
E M Danielsen 《Biochemistry》1992,31(8):2266-2272
A polyvalent antiserum which precipitates the native, folded, but not the denatured molecular forms of pig intestinal aminopeptidase N (EC 3.4.11.2) and sucrase-isomaltase (EC 3.2.1.48, EC 3.2.1.10) was used to determine the kinetics of polypeptide folding of the two newly synthesized brush border enzymes. In pulse-labeled mucosal explants, complete synthesis of the polypeptide chains of aminopeptidase N and sucrase-isomaltase required about 2 and 4 min, respectively, whereas maximal antiserum precipitation was acquired with half-times of 4-5 and 8 min, respectively. Fructose, which induces a defective cotranslational high-mannose glycosylation, increased the half-time of polypeptide folding to about 12 min for aminopeptidase N as well as for sucrase-isomaltase. Short-pulse experiments suggested that fructose exerts its effect by slowing the rate of glycosylation, making this partially a posttranslational process. In the presence of fructose, not only the malglycosylated forms but also the electrophoretically normal, high-mannose-glycosylated form of the brush border enzymes were retained in the endoplasmic reticulum and proteolytically degraded. The results obtained demonstrate an intimate interrelationship between glycosylation and polypeptide folding in the synthesis of membrane glycoproteins and, more specifically, indicate that the timing of these two early biosynthetic events is essential for correct polypeptide folding.  相似文献   

9.
A crude RNA fraction, prepared from pig small intestine, was found to be more efficient than a fraction enriched in polyadenylated RNA in directing translation of polypeptides with Mr greater than 100000 in a rabbit reticulocyte lysate system. Aminopeptidase N (EC 3.4.11.2) synthesized in vitro was immunopurified from the translation mixture and analysed by sodium dodecyl sulphate/polyacrylamide-gel electrophoresis. It was found to have an apparent Mr of 115000 regardless of whether the translation was performed in the absence or presence of proteinase inhibitors. This result contradicts the possibility of aminopeptidase N being synthesized as a large single-chain precursor polypeptide.  相似文献   

10.
The rates of biosynthesis of adult and foetal pig small-intestinal aminopeptidase N (EC 3.4.11.2) were compared to determine at which level the expression of the microvillar enzyme is developmentally controlled. In organ-cultured explants, the rate of biosynthesis of foetal aminopeptidase N is only about 3% of the adult rate. The small amount synthesized occurs in a high-mannose-glycosylated, membrane-bound, form that is processed to the mature, complex-glycosylated, form at a markedly slower rate than that of the adult enzyme. Extracts of total RNA from adult and foetal intestine contained comparable amounts of aminopeptidase N mRNA, encoding gel-electrophoretically identical primary translation products. Together, these data indicate that the expression of aminopeptidase N is controlled at a translational level.  相似文献   

11.
The synthesis and dimerization of beta-chains during the formation of catalytically active beta-hexosaminidase B were studied in a cell-free system. beta-chain mRNA, transcribed from the cloned cDNA with SP6 polymerase, was translated in a rabbit reticulocyte protein-synthesizing system in the presence of dog pancreas microsomal membranes and oxidized glutathione. Under these conditions, the primary beta-chain translation product was translocated into the microsomal vesicles and modified by the addition of N-linked oligosaccharide chains. After transfer into the microsomal vesicles, the beta-polypeptide assumed a conformation resembling the native state as determined by antibody reactivity. Like the authentic precursor enzyme, the microsomally located chains were assembled into dimers and were catalytically active. In intact human fibroblasts, dimerization of beta-chains occurred within 15 min after their synthesis, consistent with a site of assembly in the rough endoplasmic reticulum. The cell-free expression system was also useful in establishing the functionality of beta-chain initiator methionine codons. By expression of beta-chain mRNAs with altered methionine codons, we demonstrated that polypeptides initiating from any of the first three methionine codons in the beta-chain sequence contain a functional signal sequence and form catalytically active enzymes.  相似文献   

12.
Polyadenylated RNA prepared from neonatal rat muscle was translated in a rabbit reticulocyte cell-free system. Two sarcoplasmic reticulum proteins, the Ca2+ + Mg2+-dependent adenosine triphosphatase (ATPase) and calsequestrin, were isolated from the translation mixture by immunoprecipitation, followed by electrophoresis in sodium dodecyl sulfate-polyacrylamide gels. The [35S]methionine-labeled translation products were characterized by molecular weight, peptide mapping, and NH2-terminal sequence analysis. The ATPase synthesized in the cell-free system was found to have the same molecular weight (Mr = 100,000) and [35S]-methionine-labeled peptide map as the mature ATPase. The methionine residue present at the NH2 terminus of the mature ATPase was donated by initiator methionyl-tRNArMet and it became acetylated during translation. These results suggest that the ATPase was synthesized without an NH2-terminal signal sequence. Calsequestrin (Mr - 63,000) was synthesized as a higher molecular weight precursor (Mr = 66,000) that contained an additional [35S]methionine-labeled peptide when compared to mature calsequestrin. The NH2-terminal sequence of the precursor was different from the mature protein. The precursor was processed to a polypeptide with a molecular weight identical with mature calsequestrin when microsomal membranes prepared from canine pancreas were included during translation. These results show that calsequestrin is synthesized with an NH2-terminal signal sequence that is removed during translation. These data add to the evidence that the ATPase and calsequestrin follow distinctly different biosynthetic pathways, even though, ultimately, they are both located in the same membrane.  相似文献   

13.
Polyadenylated RNA, extracted from a human medullary thyroid carcinoma, was translated in cell-free systems prepared from wheat germ and reticulocyte lysates. The major product of the translations was a protein of 15,000 MR which was immunoprecipitated specifically with an antiserum to synthetic human calcitonin. Addition to the translation reactions of microsomal membranes, prepared from canine pancreas, resulted in the partial disappearance of the 15,000 MR polypeptide and the concomitant appearance of a smaller peptide (11,000 MR), also immunoprecipitated specifically by antisera to calcitonin. These results indicate that human calcitonin is synthesized in the form of a precursor of 15,000 MR and suggest that the precursor contains a leader sequence that is cleaved from the polypeptide by enzymes associated with microsomal membranes.  相似文献   

14.
E M Danielsen  J Olsen 《FEBS letters》1988,228(1):102-104
Pig small intestinal mRNA was translated in a rabbit reticulocyte lysate system supplemented with microsomal membranes. Castanospermine, an inhibitor of glucosidase I, induced a high mannose-glycosylated form of microvillar aminopeptidase N (EC 3.4.11.2) of increased molecular mass, indicating the blocked removal of glucose residues. In contrast to its reduced expression in a mucosal explant system [(1986) Biochem. J. 240, 777-782], this molecular form of aminopeptidase N was at least as abundant in cell-free translation as its normal high mannose-glycosylated counterpart, ruling out degradation taking place in the rough endoplasmic reticulum. Degradation of newly produced, malprocessed enzyme must therefore occur at a later stage during intracellular transport, presumably in the sarcoplasmic reticulum or in transitional elements between this organelle and the Golgi complex.  相似文献   

15.
Rat liver pI-6.4 esterase was purified from microsomes (microsomal extracts) and used to generate antibodies in the rabbit. Two active enzyme forms, similarly sensitive to endo-H (endo-beta-N-acetylglucosaminidase H (EC 3.2.1.96), but differing slightly in polypeptide chain length, were present in the preparation. In microsomes, immunoblots revealed a single form, with Mr congruent to 62,000, identical with the large component of the purified enzyme, indicating that the second component is an artefact. Rabbit reticulocyte lysates and wheat germ extracts programmed with RNA extracted from total or bound polysomes synthesized a single immunoreactive 61 kDa polypeptide, which was not formed with RNA extracted from free polysomes. The immunoreactive product synthesized in the presence of dog pancreas microsomes was slightly larger (62 kDa); like the authentic enzyme, it bound to concanavalin A and was decreased in molecular size to 60 kDa by the action of endo-H. Thus the enzyme is synthesized with a short cleavable sequence and bears at least one high-mannose oligosaccharide chain. Metabolic labelling in hepatocytes cultured with [35S]methionine also generated a single immunoreactive polypeptide of 62 kDa, which was decreased to 60 kDa in size by treatment with endo-H or addition of tunicamycin to the culture medium. This confirms the molecular homogeneity and the glycosylation of the enzyme in the intact cell. Culture media contained no pI-6.4-esterase-related protein, whether tunicamycin was present or not. The processing steps in the synthesis of pI-6.4 esterase are thus, as for other esterases of the endoplasmic reticulum [Robbi & Beaufay (1986) Eur. J. Biochem. 158, 187-194; (1987) Biochem. J. 248, 545-550] indistinguishable from those occurring early in the synthesis of secretory proteins. Glycosylation is apparently not the sorting signal responsible for their retention in the endoplasmic reticulum.  相似文献   

16.
Zhao J  Weaver LM  Herrmann KM 《Planta》2002,216(1):180-186
A cDNA encoding 3-deoxy-D-arabino-heptulosonate 7-phosphate (DAHP) synthase (EC 4.1.2.15) from potato (Solanum tuberosum L.) presumably specifies a chloroplast transit sequence near its 5'-end. In order to show the function of this transit sequence, we constructed a plasmid that contains the entire coding region of the cDNA downstream from a T7 promoter. Using this plasmid as template, DAHP synthase mRNA was synthesized in vitro with T7 RNA polymerase. The resulting mRNA served as template for the in vitro synthesis of a 59-kDa polypeptide. This translation product was identified as the DAHP synthase precursor by immunoprecipitation with a monospecific polyclonal antibody raised against pure tuber DAHP synthase and by radiosequencing of the [(3)H]leucine-labeled translation product. Incubation of the 59-kDa polypeptide with isolated spinach (Spinacia oleracea L.) chloroplasts resulted in a 53-kDa polypeptide that was resistant to protease treatment. Fractionation of chloroplasts, reisolated after import, showed the mature DAHP synthase in the stroma fraction. Incubation of the 59-kDa polypeptide with a chloroplast precursor-processing enzyme cleaved the precursor between Ser49 and Ala50, generating a mature DAHP synthase of 489 residues. The uptake of the DAHP synthase precursor into isolated chloroplasts was inhibited by anti-DAHP synthase, and the precursor was not processed cotranslationally by canine microsomal membranes. We conclude that the transit sequence is able to direct DAHP synthase into chloroplasts.  相似文献   

17.
Early events in the biosynthesis of alpha-glucosidase (EC 3.2.1.20) were studied in a wheat-germ cell-free translation system, using control and mutant RNA. In vitro, the primary translation product of the alpha-glucosidase mRNA is a 100 kDa protein. When canine microsomal membranes are added to the translation system, the nascent alpha-glucosidase precursor is cotranslationally transported across the microsomal membranes, yielding a 110 kDa glycosylated form. This protein has the same electrophoretic characteristics as the alpha-glucosidase precursor observed after in vivo labeling of control fibroblasts. Inhibition of glycosylation in vivo by tunicamycin or deglycosylation of the in vivo synthesized alpha-glucosidase precursor by glycopeptidase F reveals a core protein similar in molecular mass to the primary translation product. Total RNA from a patient with the adult form of glycogenosis type II is not able to direct the synthesis of normal amounts of alpha-glucosidase in vitro. Northern blot analysis of the RNA, using cloned alpha-glucosidase cDNA sequences as a probe, demonstrates that in this patient the amount of the 3.4 kb alpha-glucosidase mRNA is highly reduced. The results indicate that the synthesis or stability of the mRNA is affected.  相似文献   

18.
Precursor forms of lactase-phlorizin hydrolase, sucrase-isomaltase and aminopeptidase N were studied by pulse-labelling of organ-cultured human intestinal biopsies. After labelling the biopsies were fractionated by the Ca2+-precipitation method and the enzymes isolated by immunoprecipitation. The results indicate that the lactase-phlorizin hydrolase is synthesized as a Mr 245 000 polypeptide, which is intracellularly cleaved into its mature Mr 160 000 form. Sucrase-isomaltase is shown to be synthesized as a single chain precursor (Mr 245 000 and 265 000) while the precursor of aminopeptidase N is shown to be of apparently the same size as the mature enzyme (Mr 140 000 and 160 000).  相似文献   

19.
Microsomes prepared from the rice seed scutellum were incubated in wheat germ extracts (S-100 fraction) to direct the synthesis of alpha- amylase, a secretory protein subject to proteolytic processing (cleavage of the N-terminal signal sequence) as well as glycosylation during its biosynthesis. The characterization and identification of the immunoprecipitable products synthesized were performed by SDS gel electrophoresis and subsequent fluorography. The molecular weight of the alpha-amylase synthesized by the microsomes was found to be identical with that of the mature secretory form of the enzyme on the basis of electrophoretic mobilities. A significant portion of the enzyme molecules synthesized was shown to be segregated into the microsomal vesicles and protected against digestion by endo-beta-N- acetylglucosaminidase, indicating that both proteolytic processing and glycosylation of the precursor polypeptide chains take place in the microsomes. The modification of the polypeptide chains was further examined by disrupting the microsomal membranes with Triton X-100. Detergent treatment of the microsomes prior to protein synthesis caused an inhibition of both proteolytic processing and glycosylation of the polypeptide chains, leading to the synthesis of the unprocessed nascent (precursor I), processed but nonglycosylated nascent (precursor II) forms, in addition to the mature form of alpha-amylase. Furthermore, the results of time-sequence analysis of the inhibitory effect of Triton X-100 on the modification of the polypeptide chains have led us to conclude that both proteolytic processing and subsequent glycosylation occur in the microsomes during the biosynthesis of alpha- amylase.  相似文献   

20.
The coding properties of individual poly(A)+ protamine mRNA subcomponents have been explored by analysis of their translation products in two different cell-free protein synthesis systems, the rabbit reticulocyte lysate and the wheat germ S-30, both of which can translate total protamine mRNA. The products synthesized in the reticulocyte lysate in the presence of total poly(A)+ PmRNA consisted mainly of protamine components CII and CIII with component CI only a minor product. However, in the wheat germ S-30, the same mRNA preparation supported the synthesis of all three protamine components, in approximately equal amounts. In addition a new polypeptide, a putative fourth protamine component, labelled CO, was also synthesized. The translation products of subcomponents of poly(A)+ PmRNA separated as individual bands on polyacrylamide gels were similarly analyzed and it was shown that each of the isolated poly(A)+ PmRNA species could stimulate the incorporation of [3H]arginine into protamines in both translational systems. Although each mRNA band stimulated the synthesis of one particular protamine polypeptide predominantly in a given cell-free system, the same RNA preparation was found to direct preferentially the synthesis of a different protamine component in the second cell-free system. The products synthesized in the rabbit reticulocyte lysate in the presence of the individual mRNA species still showed component CI present as a minor product.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号