首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
A Yamamoto  H Niimi 《Biorheology》1983,20(5):615-622
Effects of high osmotic media on the shape and deformability of RBC were examined for determining increasing factors of blood viscosity. Dog blood and Urographin (a hypertonic contrast medium) were used; the plasma osmolality was changed by Urografin suspended in blood. The viscosity was measured for normal RBC and glutaraldehyde-treated RBC suspensions with a cell volume concentration. The RBC deformability was evaluated from the difference in viscosity between the two suspensions. It was shown that normal RBC suspension increased the viscosity with increase in osmolality at high shear rate; hardened RBC suspension decreased the viscosity with increase in osmolality. It was concluded that the RBC deformability decreased with increasing osmolality.  相似文献   

2.
Hydroxyethyl starch (HES) has often been used as a plasma expander, but questions still remain concerning the mechanisms by which it produces changes in the rheological properties of blood and erythrocyte (RBC) suspensions under various flow conditions. The present investigation has shown that the dynamic viscosity of HES (232,000 and 565,000 daltons) solutions rises in a nonlinear fashion with increasing HES concentration, and for a given concentration of HES exhibits Newtonian behavior at shear rates between 0.15 to 124 sec-1. At low (less than 0.9 sec-1) shear rates the apparent viscosity of a 40% RBC suspension increases with lower concentrations of HES because of RBC aggregation. At higher concentrations of HES, increases in suspension viscosity are due to an increase in the viscosity of the continuous phase since the RBC are largely disaggregated. At high (greater than 36 sec-1) shear rates the relative viscosity (eta/eta O) of RBC suspensions slowly decreases with increasing HES concentration. At low shear rates eta/eta O increases and then decreases with increasing HES concentration. Evidence of the concentration-dependent effects of HES on RBC aggregation is provided not only by the viscometric analysis but also from measurements of erythrocyte sedimentation rate (ESR) and the zeta sedimentation ratio (ZSR). HES is a more potent aggregating agent in phosphate buffered saline (PBS) than it is in plasma. Polymer size has only a slight effect on the extent of RBC aggregation produced, but does have a significant effect on the concentration of polymer at which maximum aggregation occurs. The viscosity-corrected electrophoretic mobility of RBC in HES rises monotonically with the concentration of HES in the suspending medium. Decreases in the extent of RBC aggregation with increasing polymer concentrations probably result from an increase in the electrostatic repulsive forces between the cells.  相似文献   

3.
T Murata 《Biorheology》1983,20(5):471-483
The effects of the deformation of red blood cells on non-Newtonian viscosity of a concentrated red cell suspension are investigated theoretically. To simplify the problem an elastic spherical shell filled with an incompressible Newtonian fluid is considered as a model of a normal red cell. The equation of the surface of the shell suspended in a steady simple shear flow is calculated on the assumption that the deformation from a spherical shape is very small. The relative viscosity of a concentrated suspension of such particles is obtained based on the "free surface cell" method proposed by Happel. It is shown that the relative viscosity decreases as the shear rate increases.  相似文献   

4.
Although the effects of red blood cell (RBC) aggregation on low-shear rate blood viscosity are well known, the effects on in vivo flow resistance are still not fully resolved. The present study was designed to explore the in vivo effects of RBC aggregation on flow resistance using a novel technique to enhance aggregation: cells are covalently coated with a block copolymer (Pluronic F-98) and then suspended in unaltered plasma. RBC aggregation was increased in graded steps by varying the Pluronic concentration during cell coating and was verified by microscopy and erythrocyte sedimentation rate (ESR), which increased by 200% at the highest Pluronic level. RBC suspensions were perfused through an isolated in situ guinea pig hindlimb preparation while the arterial perfusion pressure was held constant at 100 mmHg via a pressure servo-controlled pump. No significant effects of enhanced RBC aggregation were observed when studies were conducted in preparations with intact vascular control mechanisms. However, after inhibition of smooth muscle tone (using 10(-4) M papaverin), a significant change in flow resistance was observed in a RBC suspension with a 97% increase of ESR. Additional enhancements of RBC aggregation (i.e., 136 and 162% increases of ESR) decreased flow resistance almost to control values. This was followed by another significant increase in flow resistance during perfusion with RBC suspensions with a 200% increase of ESR. This triphasic effect of graded increases of RBC aggregation is most likely explained by an interplay of several hemodynamic mechanisms that are triggered by enhanced RBC aggregation.  相似文献   

5.
《Biorheology》1997,34(4-5):349-362
The sedimentation rate (SR) of non-aggregated spherical particles in suspension was determined using an ultrasonic interferometry technique (Echo-Cell); this method is based on A-mode echography and measures the rate of formation of a sediment on a solid plate during settling. The particle accumulation rate, which is related to SR, is obtained from the interference of two waves reflected by two interfaces: one between the plate and the sediment and the other between the sediment and the suspension. Studies were carried out at 25°C using latex spheres of different diameters (7 to 20 μm) and densities (1.062 to 1.190 g/cm3) suspended in distilled water at various volume fractions (1% to 5%). As anticipated by the Stokes model, linear relations were found between SR and both particle density and the square of particle radius. Experimental SR values decreased with increasing suspension particle concentration; these concentration effects were in good agreement with those predicted by the Steinour model. Our results thus serve to validate the theoretical aspects of the Echo-Cell method and suggest its usefulness as a tool for studies of RBC interaction and RBC aggregation.  相似文献   

6.
S K Wang  N H Hwang 《Biorheology》1992,29(2-3):353-377
Blood cells suspended in shear flows exhibit much larger dispersive motions than those predicted by the Stokes-Einstein formula for Brownian diffusion. The lateral migration and the erratic motions of the 8 microns red blood cells (RBC) is thought to be analogous to a diffusive process. It is shown that the often cited convective-diffusion theory may not be an adequate model for describing the transverse migration of suspended cells in blood flow. A comprehensive review of both the classical theory and of contemporary work in particle transport is presented, with particular emphasis on low Reynolds number tube flows. The mechanisms of Taylor dispersion, the effects of Brownian perturbations on translational and rotational motions of the suspended particles in shear fields, and the influence of integratable and chaotic advections, are individually examined. The classical experiment by Segre and Silberberg (1962) lead us to believe that particle hydrodynamics may play an important role in transverse migrations. In this light, we have further examined the hydrodynamic aspects of the so-called "tubular pinch" effect, the lateral migration of rigid spheres. We have also discussed the transverse motions of liquid drops, and the reversibility of the organization of suspensions in transport. The convective accelerations in the entrance region of a tube can produce relative velocities between fluid medium and various type of particulates if there is a difference in density. The deformable RBC, an "active-type" particle, can provide feedback to the flow from both mass and momentum considerations; the more rigid platelet, a "passive-type" particle, will experience a much smaller relative velocity as compared to the RBC. We may expect that particles of different densities are transported to different equilibrium annular positions before entering the fully developed flow region. The erratic, lateral movement of suspended particulates in steady laminar tube flow can be described by the usual Lagrangian coordinates.  相似文献   

7.
《Biorheology》1997,34(3):235-247
Low-shear viscometry is one of the methods commonly used to estimate the degree of red blood cell (RBC) aggregation in various bloods and RBC suspensions. However, it has been previously shown that alterations in RBC morphology and mechanical behavior can affect the low-shear apparent viscosity of RBC suspensions; RBC aggregation is also sensitive to these cellular factors. This study used heat treatment (48°C, 5 min), glutaraldehyde (0.005–0.02%) and hydrogen peroxide (1 mM) to modify cell geometry and deformability. Red blood cell aggregation was assessed via a Myrenne Aggregometer (“M” and “Ml” indexes), RBC suspension viscosity was measured using a Contraves LS-30 viscometer, and RBC shape response to fluid shear stresses (i.e., deformability) was determined by ektacytometry (LORCA system). Our results indicate that low-shear apparent viscosity and related indexes may not always reflect changes of RBC aggregation if cellular properties are altered: for situations where RBC aggregation has been only moderately affected, cellular mechanical factors may be the major determinant of low-shear viscosity. These findings thus imply that in situations which may be associated alterations of RBC geometry and/or deformability, low-shear viscometry should not be the sole measurement technique used to assess RBC aggregation.  相似文献   

8.
The sedimentation rates (SR) of human red blood cells (RBC) were measured in diluted suspensions using the thin plate chamber. If the suspension medium was phosphate buffer saline or 0,18 M NaCl the SR-dependence on the distance to the chambers wall corresponded to SR distribution of small particles without interaction. The more NaCl content was decreased down to 0.145 M, the more temperature-dependent variations of SR were noted, while SR distribution became distinct with the predicted one for the non-interacting particles. The use of SR distribution is discussed for testing the RBC interaction in diluted suspensions caused by sedimentation. The electrophoretic measurements carried out under vertical oriented electrical field showed the rate of RBC movement to be the linear function of the field gradient and to be not influenced under the SR modifying conditions.  相似文献   

9.
The rheological properties of the bacteria Pseudomonas aeruginosa and Bacillus cereus have been investigated. The apparent viscosity of the bacterial suspensions has been measured at different conditions. The results showed that the bacterial suspensions' apparent viscosity increased with increasing biomass concentration of each of these strains. The P. aeruginosa suspension followed shear thinning behavior while B. cereus suspension followed shear thickening behavior. The shear stress versus shear rate experimental data were best represented by the Herschel-Bulkley model. The apparent viscosity of the P. aeruginosa and B. cereus suspensions decreased with increasing temperature. The relationship between the apparent viscosity and the shearing time highlighted the rheopectic behavior of the suspensions used in this work.  相似文献   

10.
The morphology of dried Candida lipolytica yeast suspended in aqueous solutions (H2O, 0.4% NaOH, 2N HCl, and 6N HCl) and organic solvents (95% alcohol and acetone) was studied using a scanning electron microscope (SEM) and an optical microscope. The effect of high-pressure homogenization on cell-wall structure and cell clumps was also determined. The protein extractability, sedimentation property, and viscosity of cells subjected to different mechanical and chemical treatments were also investigaged. The dried yeast cells were in a spherical agglomeration consisting of 100s of closely bound cells. The clump was resistant to water, aqueous 2N HCl solution at 25°C, 95% alcohol and acetone, but vulnerable to 6N HCl, aqueous 0.4% NaOH solution, and homogenization. The homogenization of the cell suspension not only broke the clump but also cracked the cell-wall structure. The aqueous alkaline solution could have weakened the cell wall and increased the solubility of the protein released through the cracks in the cell wall. The destruction of the agglomeration and the cell-wall structure increased the hydration of the cell and thereby increased the stability of the suspension. The sedimentation and the viscosity of the cell suspension corresponded to the morphological changes and the extractability of protein in the cell suspensions with different treatments.  相似文献   

11.
We report on the rheology of dilute suspensions of red blood cells (RBC) and vesicles. The viscosity of RBC suspensions reveals a previously unknown signature: it exhibits a pronounced minimum when the viscosity of the ambient medium is close to the value at which the transition from tank-treading to tumbling occurs. This bifurcation is triggered by varying the viscosity of the ambient fluid. It is found that the intrinsic viscosity of the suspension varies by about a factor of 4 in the explored parameter range. Surprisingly, this significant change of the intrinsic viscosity is revealed even at low hematocrit (5%). We suggest that this finding may be used to detect blood flow disorders linked to pathologies that affect RBC shape and mechanical properties. This opens future perspectives on setting up new diagnostic tools, with great efficiency even at very low hematocrit. Investigations are also performed on giant vesicle suspensions, and compared to RBCs.  相似文献   

12.
Using a constant-amplitude (+/- 1 degree) oscillatory Couette viscometer (f = 0.01-1.0 Hz), we have measured the viscous (eta') and elastic (eta") components of the complex viscosity at 25 degrees C for shape-transformed human RBC suspended in isotonic buffer at 80% hematocrit. Morphology-altering drugs employed were: ECHINOCYTIC AGENT 2,4-dinitrophenol (DNP, 0.1-5 mM); STOMATOCYTIC AGENT chlorpromazine hydrochloride (CPZ, 0.01-0.1 mM). All suspensions exhibited decreasing eta' and eta" with increasing frequency. Compared to biconcave, control RBC suspensions, salient effects of shape transformation included: 1) for DNP, a dose-related elevation of both eta' and eta", with a 850% increase in eta' and a 2500% increase in eta" at 5 mM and the lowest frequency; 2) for CPZ, a dose-related elevation of both eta' and eta", with a 170% increase in eta' and a 280% increase in eta" at 0.1 mM and the lowest frequency; 3) for both DNP and CPZ, the elevations of eta' and eta" were inversely related to frequency. Using 2 mM DNP and various concentrations of CPZ, both eta' and eta" could be returned to control with 0.08 mM CPZ; further increases of CPZ at constant DNP led to elevations of both components. Comparisons of eta' and eta" to steady shear viscometric data indicated that neither a nominal shear rate approach nor a RMS complex viscosity technique was able to completely reconcile these data; a modified Kelvin-Voigt model proved useful in evaluating cellular versus membrane contributions to eta". These results indicate that RBC morphology is an important determinant of the oscillatory behavior of RBC suspensions and suggest the usefulness of the technique for studies of drug-membrane interactions.  相似文献   

13.
J P Freyer  D Fillak  J H Jett 《Cytometry》1989,10(6):803-806
In this report we describe the use of xantham gum as a biologically inert material for increasing the viscosity of a suspension of cells or particles during flow cytometric analysis and sorting. A 0.1% concentration of xantham gum in culture medium or saline will increase the viscosity approximately 9-fold. For suspensions of multicellular spheroids 100-400 microns in diameter the measured sedimentation velocity was approximately 9 times slower than that in medium alone. Thus, spheroids of 100 microns diameter remain in suspension in 0.1% xantham gum for 66 min, compared to 7.5 min in culture medium. This allows extended periods of sorting without stirring or agitating the sample suspension. The xantham gum solution is noncytotoxic for periods up to 8 h as measured by clonogenicity assay. Xantham gum has the added advantage that the viscosity is significantly reduced when the solution is subjected to shear stress, such as during flow. This technique should be applicable to extended sorting of suspensions of spheroids, plant cells, and other large particles, as well as for analyzing and sorting single cells for extended periods.  相似文献   

14.
Measurements were made of the viscosity of suspensions of synthetic erythrocytes composed of hemoglobin solutions encapsulated in liposomes, as a function of shear rate, temperature, suspension concentration, lipid membrane composition, and the viscosity of the suspending medium. It was found that the viscous behavior of the synthetic erythrocyte suspensions was non-Newtonian and nearly the same as that of suspensions of natural erythrocytes prepared similarly, with the major difference being that synthetic erythrocyte suspensions are somewhat more viscous. Suspensions of Fluosol FC-43 prepared similarly were found to be essentially Newtonian fluids, and substantially different and more viscous than either erythrocyte suspension. The higher viscosity of synthetic erythrocyte suspensions probably accounts for the ability of these suspensions to maintain normal systemic vascular resistance in transfusion experiments, in spite of the fact that synthetic erythrocytes are smaller than natural erythrocytes.  相似文献   

15.
The fields of regenerative medicine and tissue engineering require large‐scale manufacturing of stem cells for both therapy and recombinant protein production, which is often achieved by culturing cells in stirred suspension bioreactors. The rheology of cell suspensions cultured in stirred suspension bioreactors is critical to cell growth and protein production, as elevated exposure to shear stress has been linked to changes in growth kinetics and genetic expression for many common cell types. Currently, little is understood on the rheology of cell suspensions cultured in stirred suspension bioreactors. In this study, we present the impact of three common cell culture parameters, serum content, cell presence, and culture age, on the rheology of a model cell line cultured in stirred suspension bioreactors. The results reveal that cultures containing cells, serum, or combinations thereof are highly shear thinning, whereas conditioned and unconditioned culture medium without serum are both Newtonian. Non‐Newtonian viscosity was modeled using a Sisko model, which provided insight on structural mechanisms driving the rheological behavior of these cell suspensions. A comparison of shear stress estimated by using Newtonian and Sisko relationships demonstrated that assuming Newtonian viscosity underpredicts both mean and maximum shear stress in stirred suspension bioreactors. Non‐Newtonian viscosity models reported maximum shear stresses exceeding those required to induce changes in genetic expression in common cell types, whereas Newtonian models did not. These findings indicate that traditional shear stress quantification of cell or serum suspensions is inadequate and that shear stress quantification methods based on non‐Newtonian viscosity must be developed to accurately quantify shear stress.  相似文献   

16.
E Hovav  D Halle  S Yedgar 《Biorheology》1987,24(4):377-384
The effect of medium viscosity on lysis of red blood cells (RBC) induced by snake venom phospholipase A2 (PLA2) was examined. The medium viscosity was modified by the addition of various macromolecules which differ in their chemical nature and in their capacity to increase fluid viscosity. PLA2 and Ca++ were applied to cells suspended in viscous medium to induce hemolysis. It was found that the hemolysis is inhibited in direct proportion to increasing viscosity of the extracellular fluid. This phenomenon was observed with aggregated as well as disaggregated RBC. To examine whether the viscosity interferes with the accessibility of the enzyme to the cell, the medium viscosity was modified after binding of the enzyme to the cells; PLA2 was added to a RBC suspension in the presence of Ba++ which binds the enzyme to the cell membrane but does not activate it. The cell-enzyme complex was separated by gel filtration and suspended in viscous medium in the presence of Ca++ which activates the reaction. Also in this case RBC lysis was inhibited as the medium viscosity was increased. It is proposed that the action of PLA2 on RBC membrane is regulated by the viscosity of the cell surface aqueous environment.  相似文献   

17.
The steady flow viscosity at shear rates 0 to 120 sec-1 and dynamic viscoelasticity at frequencies 0.02 to 0.8 Hz were determined for aqueous suspensions of uniform polystyrene microspheres of 1.0 micron diameter. Rheological properties of the microsphere suspensions were Newtonian for particle concentrations up to 32%. By introducing dextran and calcium chloride into the particle suspensions, non-Newtonian behavior was produced similar to that observed for human blood. The cooperative effects of dextran and calcium ions promoted aggregation of particles at a concentration as low as 12%. Thus, a suspension of uniform sized spherical polystyrene particles in aqueous solution of dextran may be made to mimic blood by controlling the surface charge on the polystyrene spheres using addition of calcium ions to the medium.  相似文献   

18.
T Murata  T W Secomb 《Biorheology》1989,26(2):247-259
The flow properties of aggregating red cell suspensions flowing at low rates through vertical tubes with diameters from 30 microns to 150 microns are analyzed using a theoretical model. Unidirectional flow is assumed, and the distributions of velocity and red cell concentration are assumed to be axisymmetric. A three-layer approximation is used for the distribution of red cells, with a cylindrical central core of aggregated red cells moving with uniform velocity, a cell-free marginal layer near the tube wall, and an annular region located between the core and the marginal layer containing suspended non-aggregating red cells. This suspension is assumed to behave approximately as a Newtonian fluid whose viscosity increases exponentially with red cell concentration. Physical arguments concerning the mechanics of red cell attachment to, and detachment from the aggregated core lead to a kinetic equation for core formation. From this kinetic equation and the equation for conservation of red cell volume flux, a relationship between core radius and pressure gradient is obtained. Then the relative viscosity is calculated as a function of pseudo-shear rate. At low flow rates, it is shown that the relative viscosity decreases with decreasing flow and that the dependence of relative viscosity on shear rates is more pronounced in larger tubes. It is also found that the relative viscosity decreases with increasing aggregation tendency of suspension. These theoretical predictions are in good qualitative and quantitative agreement with experimental results.  相似文献   

19.
The viscosity, density, and sedimentation characteristics of suspensions of whole and mechanically disrupted yeast cells were measured. Mechanical disruption increases the suspension viscosity and its non-Newtonian behavior. Experiments showed a good correlation between laboratory- and industrial-scale centrifugation results.  相似文献   

20.
This study has examined the effect of MDA, an end product of lipid peroxidation, on the viscosity of AA and SS RBC suspensions. MDA accumulation in RBC was accomplished in vitro in human RBC by treating them with exogenous standard MDA. MDA accumulation assessed by the thiobarbituric acid reactivity of in vitro MDA-treated RBC was comparable to that of the RBC in vivo in hemolytic anemias. There was a significant increase in the viscosity of both AA and SS RBC suspensions after in vitro treatment with MDA. The increase in viscosity or RBC was significantly positively correlated with the extent of MDA accumulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号